[1] H. W. Etzel, H. W. Candy, and R. J. Ginther, “Stimulated emission of infrared radiation from ytterbium activated silicate glass,” Appl. Opt., Vol. 1, (1962) p. 534.
[2] H. M. Pask, Robert, J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, "Ytterbium-Doped Silica Fiber Laser s: Versatile Sources for the 1-1.2 pm Region", IEEE J. selected top. In quant. Electron., Vol. 1, (1995) 2-13.
[3] J. Oewiderski, A. Zajac, M. Skórczakowski, Z. Jankiewicz, and P. Konieczny, “Rare-earth-doped high-power Fiber Laser s generating in near infrared range”, Opto-Electronics Review 12(2) (2004)169-173.
[4] A. V. Smith, and J. J. Smith, “Mode Instability thresholds for Tm-doped fiber amplifiers pumped at 790 nm”, Opt. express. Vol. 24, (2016) 975-992.
[5] C. Jauregui, T. Eidam, H. J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Temperature induced index gratings and their impact on mode instabilities in high-power fiber”, laser systems”, Opt. Express, Vol. 20, (2011) 440–451.
[6] C. Jauregui, J. Limpert, and A. Tünnermann, “Derivation of Raman treshold formulas for CW double-clad fiber amplifiers,” Opt. Express 17 (2009) 8476–8490, 2009.
[7] S. Ramachandran, J. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective area, higher-order mode fibers: a new strategy for high-power lasers”, Laser & Photon. Rev. 2, (2008) 429–448.
[8] N. G. R. Broderick, H. L. Offerhaus, D. J. Richardson, R. A. Sammut, J. Caplen, and L. Dong, “Large Mode Area Fibers for High Power Applications”, Optical Fiber Technol., 5 (1999) 185-196.
[9] S. Saitoh, K. Saitoh, M. Kashiwagi, S. Matsuo,and L. Dong, “Design Optimization of Large-Mode-Area All-Solid Photonic Bandgap Fibers for High-Power Laser Applications”, J. Lightwave Technol., 32, (2014) 440- 449.
[10] K. Li, Y. Wang, W. Zhao, G. Chen, Q. Peng, D. Cui, and Z. Xu, “High power single-mode Large-Mode-Area photonic crystal Fiber Laser with improved Fabry-Perot cavity”, Chinese Optics Letters, 4, (2006) 522-524.
[11] G. P. Agrawal, “Applications of Nonlinear Fiber Optics”, Second edition, Academic Press, printed in the United States of America, Copyright c 2008.
[12] Z. Li, Z. Huang, X. Xiang, X. Liang, H. Lin, S. Xu, Z. Yang, J. Wang, and F. Jing, “Experimental demonstration of transverse Mode Instability enhancement by a counter-pumped scheme in a 2 kW all-fiberized laser”, Photonics Research, 5, (2017) 77-81.
[13] K. H. Lee, K. Lee, Y. Kim, Y. H. Cha, G. Lim, H. Park, H. Cho, and D. Y. Jeong, “Transverse Mode Instability induced by Stimulated Brillouin Scattering in a pulsed single-frequency large-core fiber amplifier”, App. Opt., 54 (2015) 189-194.
[14] I.O. Zolotovskii, D.A. Korobko, V.A. Lapin, P.P. Mironov, D.I. Sementsov, A.A. Fotiadi, M.S. Yavtushenko, “Generation of subpicosecond pulses due to the development of modulation instability of whispering-gallery-mode wave packets in an optical waveguide with a travelling refractive-index wave”, Quant. Electron. 48 (2018) 818 – 822.
[15] R. Tao, H. Xiao, H. Zhang, J. Leng, X. Wang, P. Zhou, and X. Xu, “Dynamic characteristics of Stimulated Raman Scattering in high power fiber amplifiers in the presence of mode instabilities”, Opt. Express., 26 (2018) 25095-25110.
[16] J. P. Koplow, D. A. V. Kliner, L. Goldberg, “Single-mode operation of a coiled multimode fiber amplifier”, Opt. Lett., Vol. 25,(2000), 442-444.
[17] M. Karimi, “Theoretical Study of the Thermal Distribution in Yb-Doped Double-Clad Fiber Laser by Considering Different Heat Sources”, Progress in Electromagnetics Research C, 88, (2018) 59–76.
[18] C. Jauregui, H. J. Otto, F. Stutzki, J. Limpert, and A. Tünnermann1, “Simplified modelling the Mode Instability threshold of high-power fiber amplifiers in the presence of photodarkening”, Opt. Express., 23, (2015) 20203- 20218.
[19] B. Ward, “Theory and modeling of photodarkening induced quasi static degradation in fiber amplifiers”, Opt. Express., 24, (2016) 3488-3501.
[20] C. Ye, L. Petit, J. J. Koponen, I-N. Hu, and A. Galvanauskas, “Short-Term and Long-Term Stability in Ytterbium-Doped High-Power Fiber Laser s and Amplifiers”, ieee. j. sel. top. quantum. electron., 20, (2014) 0903512.
[21] M. Engholm, M. Tuggle, C. Kucera, T. Hawkins, P. Dragic, and J. Ballato, “On the origin of photodarkening resistance in Yb-doped silica fibers with high aluminum concentration”, Opt. Materials Express, 11, (2021) 115-125.
[22] H. Z. Li, L. Zhang, R. Sidharthan, Daryl Ho, X. Wu, N. Venkatram, H. D. Sun, T. Y. Huang, S. Yoo, “Pump Wavelength Dependence of Photodarkening in Yb-doped Fibers”, J. Lightwave Technol., 35, (2017) 2535 – 2540.
[23] R. Cao, X. Lin, Y. Chen, Y. Cheng, Y. Wang, Y. Xing, H. Li, L. Yang, G. Chen, and J. Li, “532 nm pump induced photo-darkening inhibition and Photo-Bleaching in high power Yb-doped fiber amplifiers”, Opt. Express, 27, (2019), 26523-26531.
[24] R. Cao, G. Chen, Y. Chen, Z. Zhang, X. Lin, B. Dai, L. Yang, AND J. Li, “Effective suppression of the photodarkening effect in high-power Yb-doped fiber amplifiers by H2 loading”, Photonics Research, Vol. 8, pp. (2020), 288-295.
[25] R. Peretti, C. Gonnet, A. Marie Jurdyc, “A new vision of photodarkening in yb3+-doped fibers”, Optical Components and Materials IX, Proc. of SPIE, 8257, (2012), 825705.
[26] R. Peretti, C. Gonnet, and A. Marie Jurdyc, “Revisiting literature observations on photodarkening in Yb3+doped fiber considering the possible presence of Tm impurities”, App. Phys., 112, (2012), 093511.
[27] S. Liu, K. Peng, H. Zhan, L. Ni, X. Wang, Y. Wang, Y. Li, J. Yu, L. Jiang, R. Zhu, J. Wang, F. Jing, and A. Lin, “3 kW 20/400 Yb-doped alumino-phospho-silicate fiber with high stability,” IEEE Photon. J. 10, (2018) P. 1503408.
[28] R. Sidharthan1, H. Li, K. J. Lim, S. H. Lim, Y. M. Seng1, S. L. Chua and S. Yoo, “Photo darkening suppression in highly Yb-doped Aluminophosphosilicate fiber by addition of Cerium”, IEEE. Conference on Lasers and Electro-Optics Europe (CLEO EUROPE), 17, October (2019), 23-27.
[29]
R. Cao,
G. Chen,
J. Li, “Eliminating photodarkening effect by H2-loading in high power Yb-doped fiber amplifiers”, IEEE. Conference: CLEO: Science and Innovations, 2020.
[31] M. S. Kuznetsov, O. L. Antipov, A. A. Fotiadi, and P. Mégret, “Electronic and thermal refractive index changes in Ytterbium-doped fiber Amplifiers”, Opt. Express., 21, (2013) 22374- 22388.
[32] S. Yoo, C. Basu, A. J. Boyland, C. Sones, J. Nilsson, J. K. Sahu, and D. Payne, “Photodarkening in Yb-doped
aluminosilicate fibers induced by 488 nm irradiation”, Opt. Let., 32 (2007) 16261628.
[33] J. Koponen, M. Söderlund, H. J. Hoffman, D. A. V. Kliner, J. P. Koplow, and M. Hotoleanu, Photodarkening rate in Yb-doped silica fibers”, App. Opt. 47 (2008) 1247-1256.
[34] J. J. Koponen, M. J. Söderlund, S. K. T. Tammela, H. Po, “Photodarkening in ytterbium-doped silica fibers”, proceedings of SPIE Security & Defense Europe ’05 Symposium, Society of Photo-Optical Instrumentation Engineers.2005.
[35] F. Mady, M. Benabdesselam, Y. Mebrouk and B. Dussardier, “Radiation effects in ytterbium-doped silica optical fibers: traps and color centers related to the radiation-induced optical losses”, RADECS 2010 Proceedings – Paper LN2,
[36] M. Engholm, P. Jelger, F. Laurell, and L. Norin, “Improved photodarkening resistivity in ytterbium-doped Fiber Laser s by cerium codoping”, Opt. Lett., 34, (2009) 1285-1287.
[37] C. Jauregui, F. Stutzki, A. Tünnermann, and J. Limpert, “Thermal analysis of Yb-doped high-power fiber amplifiers with Al:P co-doped cores”, Opt. Express., 16, (2018) 15540-15545.
[38] H. Gebavi, S. Taccheo, D. Tregoat, A. Monteville, and T. Robin, “Photobleaching of photodarkening in ytterbium doped aluminosilicate fibers with 633 nm irradiation”, Opt. Mat. Express., 2, (2012) 1286-1291.
[39] L. Xiao, P. Yan, M. Gong, W. Wei, P. Ou, “An approximate analytic solution of strongly pumped Yb-doped double-clad Fiber Laser s without neglecting the scattering loss”, Opt. commun. 230, (2004) 401-410.
[40] P. Leproux and S. F´evrier, “Modeling and Optimization of Double-Clad Fiber Amplifiers Using Chaotic Propagation of the Pump”, Optical Fiber Technol., 6, (2001) 324–339.
[41] D. Kouznetsov, and J. V. Moloney, “Highly Efficient, High-Gain, Short-Length, and Power-Scalable Incoherent Diode Slab-Pumped Fiber Amplifier/Laser”, IEEE J. Quant. Electron., 39, (2003) 1452-1461.
[42] M. Leich, U. Röpke, S. Jetschke, S. Unger, V. Reichel, J. Kirchhof, “Non-isothermal bleaching of photodarkened Yb-doped fibers”, Opt. Express., 17 (2009) 12588-12593.
[43] P. Yan, X. Wang, Y. Huang, C. Fu, J. Sun, Q. Xiao, D. Li, and M. Gong, “Fiber core mode leakage induced by refractive index variation in high-power Fiber Laser”, Chin. Phys. B, 26, (2017) 034205.
[44] J. Li, K. Duan, Y. Wang, X. Cao, W. Zhao, Y. Guo, and X. Lin, “Theoretical analysis of the heat dissipation mechanism in Yb3+-doped double-clad Fiber Laser s”, J. Modern Optic. 55, (2008) 459–471.
[45] J. Li, Y. Chen, M. Chen, H. Chen, X. Jin, Y. Yang, Z. Dai, Y. Liu, “Theoretical analysis and heat dissipation of mid-infrared chalcogenide fiber Raman laser”, Opt. Commun., 284, (2011) 1278–1283.
[46] M. Sabaeian, H. Nadgaran, M. De Sario, L. Mescia, F. Prudenzano, “Thermal effects on double clad octagonal Yb:glass Fiber Laser”, Optical Materials, 31, (2009) 1300–1305.
[47] P. Yan, Anan Xu, and Mali Gong, “Numerical analysis of temperature distributions in Yb-doped double-clad Fiber Laser s with consideration of radiative heat transfer”, Opt. Engin. 45, (2006) 124201.
[48] S. Neumark, “Solution of Cubic and Quartic Equations”, Pergam on Press, Oxford London, First edition, 1965.
[49] D. Polyanin, A. V. Mainchirov, Handbook of mathematics for engineers and scientist, Chapman &Hall/CRC Press, Taylor & Francis Group, Danvers, 2007.
[50] Z. Luo, C. Ye, G. Sun, Z. Cai, M. Si, Q. Li, “Simplified analytic solutions and a novel fast algorithm for Yb3+- doped double-clad Fiber Laser s”, Opt. Commun., 277, (2007) 118–124.
[51] F. Brunet, Y. Taillon, P. Galarneau, and S. LaRochelle, “Practical Design of Double-Clad Ytterbium-Doped Fiber Amplifiers Using Giles Parameters”, IEEE J. Quant. Electron., 40, (2004) 1294-1300.
[52] I. Kelson and A. Hardy, "Optimization of Strongly Pumped Fiber Laser s", J. of Ligthwave Technol. 17 (1999) 891-897.
[53] S. Taccheo, H. Gebavi, A. Monteville, O. Le Goffic, D. Landais, D. Mechin, D. Tregoat, B. Cadier, T. Robin, D. Milanese, and T. Durrant, "Concentration dependence and self-similarity of photodarkening losses induced in Yb-doped fibers by comparable excitation", Optics Express, 19, (2011), 19340-19345.
[54] Y. Peng, Z. Cheng, Y. Zhang, and J. Qiu, “Temperature distributions and thermal deformations of mirror substrates in laser resonators”, App. Opt. Vol. 40, (2001) 4824-4830.
[55] Y. Lv, S. Liu, “Heat dissipation model and temperature distribution of Yb-doped double clad fiber in the composite system”, Opt. Fiber Technol., Vol. 58, (2020) 102269.
[56] Esmaeil Mobini, Mostafa Peysokhan, Behnam Abaie, and Arash Mafi, “hermal modeling, heat mitigation, and radiative cooling for double-clad fiber amplifiers”, Journal of the Optical Society of America B, Vol. 35, (2018) 2484-2493
[57]
P. Li,
C. Zhu,
Meng Chen,
S. Zou,
H. Zhao,
D. Jiang,
G. Li,
M. Chen, “Theoretical and experimental investigation of thermal effects in a high power Yb3+-doped double-clad Fiber Laser”, Optics and Laser Technology, (2007) 119477463.