[1] Batterson, J.G. and Klein, V., 1989. Partitioning of flight data for aerodynamic modeling of aircraft at high angles of attack. Journal of Aircraft, 26(4), pp.334-339.
[2] Dias, J.N., 2015. Unsteady and Post-Stall Model Identification Using Dynamic Stall Maneuvers. In AIAA Atmospheric Flight Mechanics Conference (p. 2705).
[3] Klein, V., Batterson, J.G. and Murphy, P.C., 1981. Determination of airplane model structure from flight data by using modified stepwise regression. NASA Technical Publication (TP), NASA-TP-1916.
[4] Bagherzadeh, S.A., Sabzeparvar, M. and Karrari, M., 2015. Nonlinear aerodynamic model identification using empirical mode decomposition. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 229(9), pp.1588-1605.
[5] Roudbari, A. and Saghafi, F., 2016. Generalization of ANN-based aircraft dynamics identification techniques into the entire flight envelope. IEEE Transactions on Aerospace and Electronic Systems, 52(4), pp.1866-1880.
[6] Verma, H.O. and Peyada, N.K., 2020. Aircraft parameter estimation using ELM network. Aircraft Engineering and Aerospace Technology. 92(6), pp. 895-907.
[7] Sanwale, J. and Singh, D.J., 2018. Aerodynamic parameters estimation using radial basis function neural partial differentiation method. Defence Science Journal, 68(3), p.241.
[8] Talwar, A., Lokhande, G., Jain, R. and Singh, S., 2017, August. Estimation of aerodynamic parameters using Cascade Forward Back Propagation. In 2017 2nd International Conference on Telecommunication and Networks (TEL-NET) (pp. 1-6). IEEE.
[9] Mohamed, M. and Dongare, V., 2018. Aircraft neural modeling and parameter estimation using neural partial differentiation. Aircraft Engineering and Aerospace Technology. 90(5), pp. 764-778.
[10] Fan, H.Y., Dulikravich, G.S. and Han, Z.X., 2005. Aerodynamic data modeling using support vector machines. Inverse Problems in Science and Engineering, 13(3), pp.261-278.
[11] Majeed, M. and Kar, I.N., 2013. Aerodynamic parameter estimation using adaptive unscented Kalman filter. Aircraft Engineering and Aerospace Technology. 85(4), pp. 267-279.
[12] Chowdhary, G. and Jategaonkar, R., 2010. Aerodynamic parameter estimation from flight data applying extended and unscented Kalman filter. Aerospace science and technology, 14(2), pp.106-117.
[13] Göttlicher, C., Gnoth, M., Bittner, M. and Holzapfel, F., 2016. Aircraft parameter estimation using optimal control methods. In AIAA Atmospheric Flight Mechanics Conference (p. 1534).
[14] Saghafi, F. and Roudbari, A., 2014. Modeling and Identification of Fighter Aircraft Nonlinear Flight Dynamics, by Using Fuzzy Logic Algorithm. In Proc. of the Scientific Cooperation’s Intern. Workshops on Engineering Branches, Istanbul, Turkey (pp. 9-17).
[15] Kouba, G., Botez, R.M. and Boely, N., 2010. Fuzzy logic method use in F/A-18 aircraft model identification. Journal of aircraft, 47(1), pp.10-17.
[16] Hemakumara, P. and Sukkarieh, S., 2011, May. Non-parametric UAV system identification with dependent Gaussian processes. In 2011 IEEE International Conference on Robotics and Automation (pp. 4435-4441). IEEE.
[17] Mohammadi, S.J., Sabzeparvar, M. and Karrari, M., 2010. Aircraft stability and control model using wavelet transforms. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 224(10), pp.1107-1118.
[18] Bagherzadeh, S.A., 2018. Nonlinear aircraft system identification using artificial neural networks enhanced by empirical mode decomposition. Aerospace Science and Technology, 75, pp.155-171.
[19] Verma, H.O. and Peyada, N.K., 2017, January. Modelling of aircraft’s dynamics using least square support vector machine regression. In International Conference on Mathematics and Computing (pp. 132-140). Springer, Singapore.
[20] Mengall G. Fuzzy modelling for aircraft dynamics identification. The Aeronautical Journal. 2001 Sep;105(1051):551-5.
[21] Roudbari, A. and Saghafi, F., 2017. Modeling and identification of highly maneuverable fighter aircraft dynamics using block-oriented nonlinear models. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 231(7), pp.1293-1311.
[22] Lan, C.E., Li, J., Yau, W. and Brandon, J., 2002. Longitudinal and lateral-directional coupling effects on nonlinear unsteady aerodynamic modeling from flight data. In AIAA Atmospheric Flight Mechanics Conference and Exhibit (p. 4804).
[23] Kouba, G., Botez, R. M., & Boely, N., 2010. Fuzzy logic method use in F/A-18 aircraft model identification. Journal of aircraft, 47(1), pp.10-17.
[24] Jang, J.S., 1993. ANFIS: adaptive-network-based fuzzy inference system. IEEE transactions on systems, man, and cybernetics, 23(3), pp.665-685.
[25] Roy, A.G. and Peyada, N.K., 2017(a). Aircraft parameter estimation using hybrid neuro fuzzy and artificial bee colony optimization (HNFABC) algorithm. Aerospace Science and Technology, 71, pp.772-782.
[26] Roy, A.G. and Peyada, N.K., 2017(b). Lateral aircraft parameter estimation using neuro-fuzzy and genetic algorithm based method. In 2017 IEEE Aerospace Conference (pp. 1-11). IEEE.
[27] Roy, A.G. and Peyada, N.K., 2017(c). Longitudinal aircraft parameter estimation using neuro-fuzzy and genetic algorithm based method. In AIAA Atmospheric Flight Mechanics Conference (p. 3896).
[28] Kumar, A. and Ghosh, A.K., 2019. ANFIS-Delta method for aerodynamic parameter estimation using flight data. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 233(8), pp.3016-3032.
[29] Holleman EC., 1976. Summary of flight tests to determine the spin and controllability characteristics of a remotely piloted, large-scale (3/8) fighter airplane model. NASA Technical Note (TN). NASA-TN-D-8052.