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ABSTRACT: Direct trajectory tracking of quadrotor system in 3D space is not possible originating 
from the fact that control inputs are not independent in manipulating all flying degrees of freedom. 
The major concentration of the presented study is to describe the design procedure of a new intelligent 
algorithm for moving the quadrotor along a trajectory curve in space. The presented algorithm consists 
of two major parts. In the primary one, the desired Euler angles and their associated rates are intelligently 
estimated by a Fuzzy Logic Controller (FLC) working based on the experimentally Fuzzyfied rules. 
The second part of the proposed algorithm is the Sliding Mode Control (SMC) designed for precise 
tracking of the commanded Euler angles while guaranteeing the robust stability of the quadrotor flight. 
To simulate the airborne performance of the quadrotor equipped with the proposed trajectory algorithm, 
a heavy-duty 6-DOF Hardware-In-the-Loop Motion Simulator (HILMS) by which all motions of a 
quadrotor (either translational or rotational movements) can be precisely evaluated, is designed and 
fabricated. The introduced HILMS employs one load cells for each arm of the quadrotor, allowing the 
microcontroller to access to the thrust of the motors during operation. This way, while the translational 
motion is restricted, the position of the quadrotor can be computed along the governing mathematical 
motion equations. The empirical results confirm stability and trajectory tracking quality of the quadrotor 
by implementation of the proposed two-staged intelligent algorithm.
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1- Introduction
Quadrotor, a well-known flying vehicle with fairly simple 

governing equations of motion, has been an interesting 
subject for many researchers for the last few years. Although, 
a quadrotor can be controlled by an expert pilot through a 
radio control, the autonomous position control of a quadrotor 
using conventional sensor systems such as GPS, INS, and 
ultrasonic sensors is however on its preliminary stages. 

Due to atmospheric disturbances, power limitations, 
under-actuated nature of the quadrotor, plant uncertainties, 
and navigation sensor’s drift in the outdoor applications, 
autonomous guidance of a quadrotor is a complicated fatal 
work. Its repetition requires high financial support alongside 
its probable risks and crashes for a long time in order to 
elaborate a robust and disturbance-tolerant control algorithm. 
In order to find an acceptable solution for autonomous 
flight of a quadrotor, a test-bed is required to simulate the 
translational motion of the system where so many repetitions 
become possible. Additionally, appropriate hardware, which 
is capable of performing designed algorithms while not being 
very different from conventional microcontrollers embedded 
on the commercially applied quadrotors, must be used. 

Despite the suitable performance and robustness of the 

fuzzy-based controllers, their application to the quadrotor 
is almost limited to simulation studies due to three reasons. 
First, the computational burden of the fuzzy controllers is 
heavy, meaning that their application in an ordinary embedded 
processor, the number of rules, fuzzification/defuzzification 
algorithms and inference techniques should be designed 
optimally by scrupulously arranged experiments. Second, a 
lack of simulator for trying numerous tests in order to find 
a final solution prevents the designer to bring the algorithms 
from simulation stages to real applications. Third, when the 
stability proof of the fuzzy controllers is a hard task when 
being designed, which causes their limited real applications 
relative to conventional PID or sliding mode controllers. 

As a review to the previous works, in order to verify new 
controllers in the study of [1], developing a Hardware-In-
the-Loop simulator by using a complete mathematical model 
of the UAV, including the external variables, is discussed. 
Additionally, experimental platform is presented to validate the 
HIL implementation. The study of [2] worked on developing 
an interface for rapid prototyping of control strategies within 
Matlab Simulink with the help of a mono-camera tracking 
system. The accuracy of the system is evaluated theoretically 
and experimentally for HILS, using Simulink blocks. The 
results of the development of an indoor quadrotor with 
the focus on accurate position and orientation sensing are *Corresponding author’s email: mrhomaeinezhad@kntu.ac.ir
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presented in [3]. The system was described for both HIL and 
normal operation. The design, real-time implementation and 
testing of the control and diagnostic functions of a quadrotor, 
using a Network Control System is discussed in [4]. A HIL 
simulator with a real-time simulated model of the drone has 
been set up, and the results of the real time implementation 
and the simulation results using Matlab/Simulink and 
Truetime toolbox are compared. A HIL simulation setup for 
multi-UAV systems is presented in [5]. Using this system, the 
algorithms are tested directly on the onboard computational 
units; Moreover, the communication among multiple boards 
became available. A flexible test-bed derived control method 
for quadrotor is described in [6]. The main objective of this 
HIL system is testing ordinary controllers for quadrotor real-
time orientation movements. It is shown that, the performance 
evaluation, implementation and tuning the required gain 
constants can be made easily and user-friendly in real-time 
operations. A direct approximate-adaptive control, which 
uses Cerebellar Model Arithmetic Computer (CMAC), is 
applied on an experimental quadrotor test-bed to control the 
attitude angles [7]. The proposed method updates adaptive 
parameters in order to adjust the system to unknown payloads 
and to achieve enough robustness. In the attitude experimental 
tests, the method prevents the drift of impulse disturbances, 
where the adaptation mechanism converges to the value of 
unknown payload masses. In [8], an adaptive sliding mode 
control method is issued on a quadrotor to investigate 
uncertainty problems. Simulations demonstrate acceptable 
results for stability and tracking control. Finally, the design, 
development, and testing of a stabilizing control algorithm 
devised for a quadrotor using Mamdani fuzzy logic controller 
is presented, which the implementation of this controller 
is based on trial and error method [9]. With the main focus 
on the maneuverability of this vehicle, the obtained results 
indicated that the fuzzy based stabilizing control system is 
more accurate in high dynamic disturbances compared to 
the traditional systems which used PID integrated stabilizer 
control algorithms. Comprehensive literature review shows 
that Linear Quadratic Regulator (LQR) and linear control 
methods, such as PID controllers, are widely used to enhance 
the stability of quadrotors [10-13].

Furthermore, related works to the simulators that have the 
ability to control the translational motion of a quadrotor are 
discussed as follows. A control algorithm which is based on 
backstepping approach is implemented on a quadrotor with 
the help of vision system, inertial measurement unit, and 
Kalman filter state estimator in [14]. Using a HILS, the path 
tracking results of the system is shown. The study of [15] 
introduces a HIL platform which is capable of simulating and 
testing UAVs with different mathematical models and control 
strategies. The main focus of this survey is the integration 
of modeling, control, simulation, experimentation and data 
display. Another study presents two types of nonlinear 
controllers for position control of a quadrotor [16]. The first 
approach is feedback linearization controller which involves 
high order derivative terms, and the second algorithm is 
adaptive sliding mode controller using input augmentation. 

Simulation results show that feedback linearization controller 
is sensitive to sensor noise and modeling uncertainty, while 
adaptive sliding mode controller achieves better performance 
under noisy conditions, which indicates that adaptation can 
estimate uncertainty such as ground effects. In study of [17], 
two types of controllers (classical PD and hybrid fuzzy PD), 
have been designed in order to control a quadrotor. For the 
simulation, MATLAB-Simulink has been used to compare 
the performance of these controllers in terms of attitude and 
position control. Moreover, some experimental tests were 
implemented on a manufactured test stand to control only 
the yaw (heading) angle. The results showed that although 
both methods could control the system properly, the fuzzy 
PD controller performed better than PD controller, especially 
in rejecting disturbances. An HIL simulation platform is 
presented in [18] to verify the image-based object tracking 
method adopted in small unmanned aerial vehicles. The 
platform consists of image processing module, scene 
generation module, and flight control module. To verify 
the performance of the HIL system, a SURF-based object 
tracking method is developed and tested in the case of vertical 
movement of the target object.  An asymptotic tracking 
controller, using the sliding mode control and invariance 
based adaptive control strategy, is presented in [19]. Using 
sliding mode and adaptive controllers to control the attitude 
and position respectively, the performance of the proposed 
strategy is observed on an HIL simulation test-bed. The study 
of [20] presents a framework in which simple robots can 
be designed, fabricated, and tested. Using these processes, 
a new scripted design for quadrotors with lightweight, low 
cost, and rapidly manufactured systems is introduced and 
the result is compared with other conventional processes. 
Robots generated using this process took less time and cost to 
design and build, but possess lower tolerance and precision. 
Modeling, simulation, and control design of a quadrotor 
and the results of flight experiments conducted on a flying 
platform are presented in [21]. A classical PID controller is 
used to control law. Once the algorithm is validated using 
simulations and 3D visualization, it is implemented on 
hardware and experiments on a test-rig. The controller 
worked adequately for attitude stabilization during a free 
flight experiment. The study of [22] deals with autonomous 
navigation of a quadrotor by performing autonomous behavior 
in GPS-denied environments. Simulation and experimental 
tests show effective results for behaviors, such as exploration 
and waypoints finding. The study of [23] presents a quadrotor 
flight control strategy based on the coupling of fuzzy logic and 
sliding mode control, using a nonlinear sliding surface with 
the main purpose to eliminate the chattering phenomenon. 
Simulation results indicated that the control performance of 
the quadrotor was satisfactory and the proposed fuzzy sliding 
mode control achieved favorable tracking performance. In 
the mentioned study, the stability analysis was conducted for 
the case that the equation of the sliding surface is supposed 
to be crisp. However, the stability analysis for the SMC, in 
which the sliding surface is obtained from a fuzzy algorithm, 
is not performed.
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The aim of this study is to design and control a Hardware-
In-the-Loop system for quadrotor flight simulation, which 
enables the researcher not only to control the rotational 
motion, but to also simulate the translational motion 
of a quadrotor using exact kinetics equations alongside 
geometrical parameters of the physical system. 

Among various control strategies which are implemented 
on different HIL simulators, this survey tries to benefit 
simultaneously from major characteristics of fuzzy logic 
control and sliding mode control. Experimental assessments 
(section 4) from the HIL set-up presented in Fig. 8 indicate 
that SMC gives higher agility for attitude control relative to 
conventional PID or FLC specifically in disturbed situations. 
Moreover, the accuracy of FLC is higher than SMC or 
conventional PID in tracking nominal angular trajectory. 
Hence, in order to improve the performance of a quadrotor 
for its autonomous flight while tracking a predesigned 
trajectory in presence of external disturbances, such as wind 
in outdoor situations, external payload or the impact of 
other objects to the quadrotor, a combination of two major 
control methods, SMC and FLC, is developed to control the 
translational motion of an airborne quadrotor. The stability 
proof of the proposed algorithm is conducted using the 
Lyapunov stability theorem. The algorithm was applied on 
the designed quadrotor motion simulator system in order to 
justify the performance characteristics of the control system.

The paper is arranged as follows: Section 2 describes 
the kinematics and kinetics of the quadrotor. In section 3, 
the design procedure of FLC and SMC and the associated 
stability analysis are propounded. The description of the 
designed simulator, real application of the proposed algorithm 
and some discussions are presented in section 4. Finally in 
section 5, conclusions are deduced.

2- Quadrotor Setup and Mathematical Equations of 
Motion

The configuration known as quadrotor has been used for a 
long time, and its performance has been discussed in previous 
studies [3-6]. 

In Fig. 1, the general structure of a quadrotor with 
appropriate coordinate systems W and B, is depicted. By 
introducing some assumptions and definition of the Euler 
angles as ψ (rotation about inertial Z axis), θ (rotation about y 
axis), and φ (rotation about x axis), the corresponding angular 
and translational equations of motion are derived. 

Assumptions:
The structure is rigid and symmetrical.
The center of mass and the body-fixed frame origin are 

coincident. 
Position equations are obtained straightforwardly by 

applying Newton’s second law as:

B

B

B

x

y

z i

f0
m 0 f

mg f F
r

  
      
       

R   (1) 

 

  z y x

1 0 0
ψ,θ,φ . . . 0 1 0

0 0 1

CψCθ SψCφ CψSθSφ SψSφ CψSθCφ
SψCθ CψCφ SψSθSφ CψSφ SψSθCφ

Sθ CθSφ CθCφ

 
    
  

   
    
    

R R R R

  (2) 

 

 
 

B

B

B

4 2 xx

y 1 3 y

z 1 2 3 4 z

x x x

y y y

z z z

l F F Tω
ω l F F T
ω M M M M T

ω ω ω 0
ω ω ω 0
ω ω ω

r

r

J

   
        
         

       
                
              

I

I

  (3) 

 

φ 11 12 13 2

θ 21 22 23 3

ψ 31 32 33 4

φ
f b b b u

θ f b b b u
f b b b uψ

 
                                  
  

  (4) 

 

{
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Where r   [Xw Yw Zw]T, m is the quadrotor’s mass, 
Bxf , 

Byf , and 
Bzf   are disturbance forces, iF  ,  i 1, , 4= …  is motor 

thrust, and R is the rotation matrix shown by Eq. 2. Note that 
the disturbance forces and torques are generated by external 
agents like wind in actual flight experiments.
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Fig. 1. Quadrotor configuration coordinate systems with global frame W and body frame B 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Quadrotor configuration coordinate systems with global frame W and body frame B
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In Eq. 2, C cosϕ ϕ
 and sinSϕ ϕ .The corresponding 

velocities and positions are obtainable by time integration of 
Eq. 1. 

From Euler’s law, angular equations of quadrotor in the 
body frame are as:
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Where ωx, ωy, and ωz are the angular velocities in the 
body frame, 

BxT , 
ByT , and 

BzT  are disturbance torques, 
iM  ,  i 1, , 4= …  is the reaction moment produced by the 

motors. The inertial matrix I, is diagonal according to the 

aforementioned assumptions, r 1 2 3 4ω ω ω ωΩ = − + −   where  
i  ,  i 1, , 4ω = …  is the angular velocity of the rotors, and Jr 

is the moment of inertia matrix of the rotors with the sole 
term along z axis. In a real quadrotor setup, the non-diagonal 
elements of an inertial matrix, Ixy, Ixz, and Iyz are not equal to 
zero, which causes model uncertainties in dynamic equations. 
The last term in Eq. 3 represents the gyroscopic effect of the 
rotors, although it only takes into account for light-weighted 
quadrotors [24].

Every disturbance force that is introduced to the quadrotor, 
regarding location, produces a disturbance torque around the 
body axis. The components of disturbance force, 

Bxf , 
Byf

, and 
Bzf  are considered in Eq.1. The resulting disturbance 

torques and other external torques, 
BxT , 

ByT , and 
BzT  are 

presented in Eq. 3.
Since the dynamics equations of a quadrotor have been 

well discussed in the previous papers, further equations are 
presented in the Appendix section.

 
3- Designing Two-Staged Trajectory Tracking Algorithm 
of Quadrotor Flight

An important reason behind this simulator’s design is to 
provide the opportunity of applying various control algorithms 
on a quadrotor system, and comparing its behavior under 
these algorithms in a semi-actual condition. The core part of 
a quadrotor’s position control is the precise attitude control of 
the body in order to rotate the total thrust vector to a correct 
direction. As a result, it is first required to have a perfect 
understanding of attitude control in order to control the linear 
motion correctly. Hence, as the first step of this study, the 
attitude control of the quadrotor is discussed in two major parts: 
quadrotor stabilizing control and attitude tracking through a 
desired trajectory. In this study, two types of control techniques 
are applied on a quadrotor simulator, including a SMC and a 

FLC, which the fuzzy inference is based on Mamdani max-
product method. The design and implementation procedures 
of these algorithms are described in the forthcoming sections. 
After implementing these controllers on the pre-discussed 
simulator, some comparisons are accomplished between 
these two control strategies, such as: investigating the ability 
of the controllers to stabilize the quadrotor, their accuracy 
in tracking the desired trajectory, maneuverability of the 
quadrotor with these controllers, their ability of disturbance 
rejection, and their robustness against uncertainties like extra 
masses. Finally, regarding to the attitude control results, a 
new algorithm is designed and implemented for translational 
motion control of the quadrotor as the ultimate goal of this 
paper. Fig. 2 presents the position control procedure of the 
designed quadrotor Hardware-In-the-Loop setup.

3- 1- SMC-based Attitude Control
The intrinsic structure of SMC is based on the model of the 

system. This controller has the advantages of global stability 
of the system and insensitivity to parametric uncertainties and 
non-modeled dynamics [25-26]. 

According to Eq. A3, in order to design an appropriate 
SMC, system’s dynamics is expressed as:
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sφ = ėφ + λφeφ
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sθ = ėθ + λθeθ  
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According to SMC design procedure, multiplicative gain 

uncertainty is presented as follows:
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Letting the control input be of the form of Eq. 9:
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Consequently, the time derivation of the sliding surface 
for role angle is:
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Thus, the sliding condition is verified if:
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In particular, if kφ is chosen:
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The same procedures for pitch and yaw angles lead to Eq. 
13:
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Equations 12 and 13 represent a set of three equations 
in the three switching gains. Based on the Frobenius-Perron 

theorem, not only des they have unique answers for Kϕ ,  Kθ

, and Kψ , but the answers are also positive (or zero) [25].
According to the Lyapunov stability theorem, the stability 

of equilibrium is ensured. Using the LaSalle invariance 
theorem, it can be ensured that by starting from a level curve 
of Lyapunov function, the state evolution is constrained 
inside the region bounded by level curve, and every point 
in the invariance set { }s

s 6
X 0

s X :  V |
=

= ∈ R  is restricted to the 
equilibrium point. Using this fact, the asymptotic stability is 
achieved.

Since quadrotor is a nonlinear and dynamically unstable 
system, the parameters of SMC must be chosen carefully in 
order to have appropriate results. These parameters are achieved 
through numbers of experimental tests conducted on a real test 
stand. These tests indicated that if the parameters are small, the 
quadrotor will track the desired trajectory poorly. However, if 
their value is chosen to be too large, the controller’s ability to 
reject disturbance and noise will decrease.

3- 2- FLC-based Attitude Fuzzyfier for Position Trajectory 
Tracking

The FLC based on Mamdani max-product method is the 
other approach that is chosen to control the quadrotor’s attitude. 
The parameterized associated triangular membership functions 
used for this controller are shown in Fig. 3. The inputs of FLC 
are the errors in angles and angular velocities of the quadrotor 
calculated from body axis coordinate system. The main reasons 

for choosing triangular membership functions are simplicity of 
fuzzifying process and the feasibility of applying the algorithm 
on a real customary embedded processor.

In fuzzy systems, defuzzification process is a procedure 
that the linguistic variables are converted to real and 
numerical quantities. These numerical values will finally be 
applied to actuators as control inputs. Not only should this 
process have computational simplicity in order to be used in 
real-time operations, but also the small changes in variables 
should result small changes in control inputs [27]. Due to its 
cohesion and computational simplicity, the center average 
defuzzifier as in Eq. 14 is exerted to achieve proper control 
inputs:
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The control inputs of the system are functions of 
quadrotor’s angles and angular velocities alongside their 
desired values and fuzzy logic controller parameters, as 
in Eq. 15. The triangular membership functions of the 
control inputs are demonstrated in Fig. 4. In order to have 
a better understanding and a precise study of Fig. 3 and 4, 
the quantities which are used in membership functions are 
shown in Fig. 5. These quantities are d0, d1, d2, d3, and dt 

with different value for each variable ( ,  ,  ϕ ϕ … ), which are 
presented in section 4.2.
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In Fig. 5, d0 = r1d1, d2 = r2d1, d3 = r3d1, and dt = r4d1. The 
optimum value of ri’s and d1 for membership functions in 
defuzzification steps is determined based on the experience 
of the designer, and are found through various kinds of trial 
and error searches. This step is the essential part of designing 
the fuzzy controller. If these parameters are chosen too large, 
the controller will not have the ability to reject disturbances. 
On the other hand, if they are chosen too small, the quadrotor 
will not be able to track the desired trajectory precisely. Fuzzy 
rules used in this controller are presented in Table 1.

With regard to Eq. A10 of the Appendix, des= −e x x  is the 
error of the system, and ( )*

des des , tx g x
  is the time derivative 

of desired trajectory. It is assumed that xdes is a smooth and 
continuous function, which its time derivative can be written 
as a function of xdes and t. Due to this assumption, the function 

( )*
des , tg x  does not contain Dirac delta function and remains 

bounded for all values of xdes.
In order to investigate the stability of the quadrotor 

with the proposed FLC, first the three dimensional diagram 
of control inputs are plotted in terms of angular error and 
angular velocity error. Regarding to the resulted surface, a 
plane’s passing through the curve can be estimated as e = 0 of 
this surface. These surfaces for roll, pitch, and yaw angles are 
demonstrated in Fig. 6. Moreover, equations of the estimated 
surfaces are presented in Eq. 16:
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Assuming vector d as the subtraction of estimated plane 
and fuzzy control input in Eq. 17 and d* as a vector of 
estimation error, the control input can be written as Eq. 18:
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Consequently, angular velocity’s error is reformed as in 
Eq. 19:
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Lyapunov theory is used to analyze attitude stability. The 
Lyapunov candidate function V is presented in Eq. 21:
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Where P is a 6×6 positive definite matrix. Calculating the 
time derivative of Eq. 21 will lead to V , as in Eq. 22:
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By defining g  and *g  as:
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Where:

 

    
Fig. 5. Parameter clarification for fuzzy membership functions 
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Fig. 5. Parameter clarification for fuzzy membership 
functions

Table 1. Table of fuzzy rules, (N: Negative, Z: Zero, P: 
Positive, VS: Very Small, S: Small, B: Big, VB: Very 

Big, U: Ultimate)
 

 

𝐞̇𝐞 ⋱ 𝐞𝐞 NU NB NS Z PS PB PU 
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NS NB NM NS NVS Z PVS PS 

Z NM NS NVS Z PVS PS PM 

PS NS NVS Z PVS PS PM PB 

PB NVS Z PVS PS PM PB PVB 

PU Z PVS PS PM PB PVB PU 

 

Table 1. Table of fuzzy rules, 

(N: Negative, Z: Zero, P: Positive, VS: Very Small, S: Small, B: Big, VB: Very Big, U: Ultimate) 
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Substituting Eq. 23 in Eq. 22, the time derivative of 
Lyapunov function, V , will be achieved by Eq. 25:
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Positive matrix H and positive scalar S are introduced 
in Eq. 26. From equations A11, 20, and 24 and the primary 
assumption about Matrix P (P is positive definite). all elements 
of H are positive. Additionally, S is a positive scalar because 
according to Eq. 17, d and e have the same sign.
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From Eq. A11, the arguments of g1 are either zero 
or multiplication of angular velocities. Regarding to the 
bounded thrust produced by rotors and the fact that rotors 
angular speed cannot have an abrupt change because of 
their intrinsic features and their limited rate of transceiving 
(transmitting and receiving) information, g1 is always lower 
than a maximum value. Eq. 27 presents this fact:
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Thus, according to Eqs. 25-27, the worst scenario for Eq. 
25 can be obtained from linear algebra manipulations as Eq. 
28 [28]:

V̇ ≤ −σmin(𝐇𝐇)‖𝐞𝐞‖2 + σMax(𝐏𝐏)‖𝐠𝐠Max‖‖𝐞𝐞‖ − 

           S + σMax(𝐏𝐏𝐏𝐏)‖𝐝𝐝∗‖‖𝐞𝐞‖ 
(28) 

 

V1 = −σmin(𝐇𝐇)‖𝐞𝐞‖2 + 

          σMax(𝐏𝐏)‖𝐠𝐠Max‖‖𝐞𝐞‖ + σMax(𝐏𝐏𝐏𝐏)‖𝐝𝐝∗‖‖𝐞𝐞‖ 
(29) 
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𝐏𝐏𝐏𝐏𝐏𝐏 + 𝛋𝛋T𝐡𝐡T𝐏𝐏 + 𝐏𝐏𝐏𝐏 + 𝐍𝐍T𝐏𝐏 > 𝟎𝟎  (32) 
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(a)                                                                                                            (b)  

 
(c) 

Fig. 6. FLC inputs’ surfaces and their estimated planes. a) Roll angle, b) Pitch angle, c) Yaw angle 
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Fig. 6. FLC inputs’ surfaces and their estimated planes. a) Roll angle, b) Pitch angle, c) Yaw angle



H. Khajvand and M. R. Homaeinezhad, AUT J. Model. Simul., 53(2) (2021) 113-136, DOI: 10.22060/miscj.2021.19648.5241

121

Where σ(.) is the singular value of the input argument 
matrix. From Eq. 28, V1 is considered as below:

V̇ ≤ −σmin(𝐇𝐇)‖𝐞𝐞‖2 + σMax(𝐏𝐏)‖𝐠𝐠Max‖‖𝐞𝐞‖ − 

           S + σMax(𝐏𝐏𝐏𝐏)‖𝐝𝐝∗‖‖𝐞𝐞‖ 
(28) 

 

V1 = −σmin(𝐇𝐇)‖𝐞𝐞‖2 + 

          σMax(𝐏𝐏)‖𝐠𝐠Max‖‖𝐞𝐞‖ + σMax(𝐏𝐏𝐏𝐏)‖𝐝𝐝∗‖‖𝐞𝐞‖ 
(29) 
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R2 = (σMax(𝐏𝐏)‖𝐠𝐠Max‖ + σMax(𝐏𝐏𝐏𝐏)‖𝐝𝐝∗‖) σmin(𝐇𝐇)⁄  (31) 
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𝐏𝐏𝐏𝐏𝐏𝐏 + 𝛋𝛋T𝐡𝐡T𝐏𝐏 + 𝐏𝐏𝐏𝐏 + 𝐍𝐍T𝐏𝐏 > 𝟎𝟎  (32) 
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According to Eq. 17, d always has the same sign of e, 
meaning S is not negative. Therefore, in Eq. 30 the sufficient 
condition for V  to be negative is V1 ≤ 0.

V̇ ≤ −σmin(𝐇𝐇)‖𝐞𝐞‖2 + σMax(𝐏𝐏)‖𝐠𝐠Max‖‖𝐞𝐞‖ − 

           S + σMax(𝐏𝐏𝐏𝐏)‖𝐝𝐝∗‖‖𝐞𝐞‖ 
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V1 has two roots R1= 0 and R2, presented in Eq. 31. With 

respect to P as a positive definite matrix, if 2R≥e  , then 
1V 0≤ , which results to V 0< . According to Lyapunov 

stability theorem, the stability of the system is ensured. If  

2R<e , then 1V 0> . According to Eq. 30, it is possible 
that V 0≥ , which means that the system might be stable 
or unstable. If the system is unstable, the error will increase, 

which results to 2R≥e   and stability. Therefore, it can be 

concluded that there are two possibilities; first, if 2R≥e  , 

the system is stable, and second, if 2R<e  , the system is 
either asymptotically stable or it includes a stable limit cycle.

V̇ ≤ −σmin(𝐇𝐇)‖𝐞𝐞‖2 + σMax(𝐏𝐏)‖𝐠𝐠Max‖‖𝐞𝐞‖ − 

           S + σMax(𝐏𝐏𝐏𝐏)‖𝐝𝐝∗‖‖𝐞𝐞‖ 
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Using Linear Matrix Inequality (LMI), a positive definite 
matrix P can be found where V 0≥  and V 0< , and 
satisfy the condition of Lyapunov stability theorem with the 
constraint of Eq. 32:

V̇ ≤ −σmin(𝐇𝐇)‖𝐞𝐞‖2 + σMax(𝐏𝐏)‖𝐠𝐠Max‖‖𝐞𝐞‖ − 
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The described procedure is a new method to analyze 
the stability of a class of fuzzy system established based 
on Mamdani technique. In addition, this method can be 
generalized to any control technique where the control input 
can be factorized to a linear surface and a unidirectional 
summing uncertainty function. With the Lyapunov stability 
theorem, two stability zones are achieved; first is a stable limit 
cycle and the other is a stable zone. Regarding to accuracy 
of the estimated surface, the limit cycle can be extended or 
shrunk. The numerical discussions of this method will be 
presented in section 4. 2.

In programing the HILMS, aside from using appropriate 
filtering method, a reasonable bound is considered for every 
variable or output of the sensor that was possible to overshoot 
or have an illogical value. Two methods were employed 
in order to do so. In the first method, the two successive 
outputs were compared. If the subtraction was more than a 
certain value, the previous value was used instead of the last 
one. Second, if the output was more than a logical value, it 
was ignored. For example, each impeller can produce the 
maximum thrust force of 850 gr.F; hence, if the output of the 
load cells were more than 850 gr.F, the value was considered 
as a false value. This way, the divergence of the equations and 
the instability of the setup is avoided.

3- 3- Combination of FLC Trajectory Tracking Commanding 
Units and SMC-based Attitude Control 

In order to control the linear motion of a quadrotor, the 
thrust of all four propellers must be controlled precisely and 
simultaneously. Translational motion control is conducted 
in three successive steps. In the first step, the altitude of the 
quadrotor is controlled and the total thrust, input u1, is the 
manipulated signal. The third row of Eq. 33 is used for this 
purpose.

Due to lack of any direct actuator to control the position 
of the quadrotor, the attitude should change in order to 
rotate the total thrust vector to the desired direction. In the 
second step, two virtual inputs, *uX  and *uY , are extracted 
from translational motion equations to allow the quadrotor 
to follow the desired position (X and Y) in space. From Eq. 
1 and by ignoring disturbance forces the following equations 
are obtained.

V̇ ≤ −σmin(𝐇𝐇)‖𝐞𝐞‖2 + σMax(𝐏𝐏)‖𝐠𝐠Max‖‖𝐞𝐞‖ − 
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Where: 

V̇ ≤ −σmin(𝐇𝐇)‖𝐞𝐞‖2 + σMax(𝐏𝐏)‖𝐠𝐠Max‖‖𝐞𝐞‖ − 
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In Eq. 33, u1 is determined from step 1 (i.e. altitude control). 

In this equation, 
T* *u , u ,cos cosX Yν θ ϕ =     is a unit vector 

which justifies the direction of the total thrust u1, in order to 
follow the desired trajectory. *uX  and *uY  are trigonometric 
equations and their values are always between -1 and +1. 
Moreover, it can easily be proved that the magnitude of   is 

equal to 1, i.e.  
* 2 * 2 2 2
X Yu u cos cos 1θ ϕ+ + = . 

The last step is to control the attitude of the quadrotor, 
which the desired role and pitch angles are obtained by 
finding the solutions of the nonlinear algebraic equations 
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of Eq. 34. The presented solutions in Eq. 35 show that the 

argument of θd is singular when  dcos 0ϕ = , d k
2
πϕ π= 

 
, 

and this means that quadrotor rotates 90 degrees (clockwise 
or counter clockwise) around its role axis. At this state, the 
amount of the vertical thrust along inertial Z axis is zero, 
hence the weight of the quadrotor cannot be compensated. In 
other words, maneuverability of a quadrotor is bounded, and 
if the angles increase significantly, total thrust vector cannot 
tolerate the weight of the vehicle and it will fail. 

V̇ ≤ −σmin(𝐇𝐇)‖𝐞𝐞‖2 + σMax(𝐏𝐏)‖𝐠𝐠Max‖‖𝐞𝐞‖ − 
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where uX and uY are obtained from fuzzy logic controller, 
Eq. 37.

Now that the desired angles are determined, control inputs 
u2, u3, and u4 from Eq. A6 are used to guide the quadrotor to 
its desired attitude, and the process is accomplished.

In order to render the stability of the quadrotor’s position 
control, the same approach in section 3.2 is used. The only 
difference is that matrix g from Eq. A10 is zero, which will 
only simplify the process. Additionally, in matrix h, which 
is presented in Eq. 36, u1 is always positive and since role 

and pitch angles are limited to 
2
π

−  and 
2
π  , cos cosθ ϕ   

is positive as well. Consequently, by introducing a positive 
definite matrix P and following the same procedure, the 
stability proof is complete and the proposed algorithm for 
position control will stabilize the vehicle. 

V̇ ≤ −σmin(𝐇𝐇)‖𝐞𝐞‖2 + σMax(𝐏𝐏)‖𝐠𝐠Max‖‖𝐞𝐞‖ − 
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Finally, fuzzy logic position control functions of the 
inputs are determined as Eq. 37.
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Fig. 7 shows the control block diagram of a quadrotor 
which contains two inner and outer control loops. The 
outer loop input is the desired translational position of the 
quadrotor. This desired 3D trajectory and the current position 
of the quadrotor are compared in fuzzy logic path following 
algorithm (outer loop). The resultant error in position 
provides input u1 to control the altitude and the desired 
angular position, regarding to Eq. 35, which is the reference 
input of the sliding mode attitude controller (inner loop). The 
inner control loop uses gyros, accelerometers and the data of 
the magnetometers as feedback to control the attitude and to 
provide the inputs u2, u3, and u4. The dynamics equations of 
the quadrotor, the applied controller to the system, and the 
data of the load cells are used simultaneously to calculate the 
required thrust of each motor in order to keep the quadrotor in 
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Fig. 2. Quadrotor control block diagram for proposed FLC path following SMC attitude control method 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Quadrotor control block diagram for proposed FLC path following SMC attitude control method
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the desired position in semi-actual flight conditions. Eq. 40 in 
section 4.1 shows the relationship between the input voltage 
to the motors and the resultant thrust which is experimentally 
achieved using the load cells mounted on each arm of the 
quadrotor. Finally, using the output of the force sensors and 
Eq. 40, the input voltage of the motors and consequently the 
resulted PWM signal is computed.

4- Results and Discussions 
4- 1- Quadrotor Flight Hardware-In-the-Loop Test-Bed and 
Calibration Procedure

This paper introduces a new approach to the design 
and construction of a quadrotor flight simulator using 
appropriate electronic circuits and mechanical elements 
in order to overcome the primary difficulties in rotational 
and translational motion control. The proposed HILMS 
consists of a frame connected to a spherical joint carrying the 
thrusting brushless DC (BLDC) motors and their electronic 
appendages, including the inertial navigation system. On the 
other hand, the BLDCs are mounted on high-precision force 
sensors which analogue output is read by microcontroller in 
real-time. These load cells are able to determine the thrust of 
the corresponding motor in any time during operation, which 
allows the simulator to estimate translational motion of a 
quadrotor despite of constraining it with a fully lubricated 
spherical joint. The embedded microcontroller makes an 
elaborate fusion between force sensors, gyro rates and exerts 
commands by a discrete-time mathematical model in order to 
estimate the particle position in the 3-D space. The privilege 
of this HILMS over other quadrotor simulators is executing 
experimental tests of translational motion control of the 
quadrotor before performing airborne tests, which prevents 
any potential case of instability, crashing and other relative 
incidents. The INS system is used to achieve the rotational 
position of the quadrotor, and the load cells are employed to 
obtain the thrust forces of the impellers. Knowing the thrust 
forces and the angles, the virtual position of the quadrotor can 
be evaluated from airborne quadrotor translational motion 

equations. The Hardware-In-the-Loop test-bed, which is 
used to simulate the quadrotor flight, is depicted in Fig. 8 
(a). This setup includes a 72 MHz Cortex-M3 STM32F103RE 
microcontroller, an INS consisting of five 9-channel MPU6050 
and magnetometer MEMS modules, four 750 KV brushless DC 
motors with associated 6 amperes drivers, four 26 cm puller-
pusher propellers and four force sensors with 10 bit resolution 
and minimum readable mass of 2.44 gr.F for measuring the thrust 
of the motors. These load cells, commercially named ZEMIC 
L6D made from aluminum alloy which have a maximum 
capacity of 2.5 kg.F and a recommended voltage between 5 to 
12 volts. These load cells are capable of measuring the thrust of 
each motor in an in-time mode and transfer the corresponding 
signal to microcontroller in order to use them in translational 
motion control. Consequently, combining the information of 
the load cells with the data from the accelerometer, gyros, and 
magnetometers will lead to a total thrust vector that could be 
justified with the help of a proper control system in order to 
follow a designed trajectory. 

The setup is mounted on a spherical joint, shown in Fig. 
8 (b), in order to allow the system to rotate without friction 
while avoiding translational motion. Some more associated 
electrical/digital/mechanical details of the test-bed are 
omitted. The INS system includes 5 modules, where each 
has a tri-axial gyroscope, accelerometer, and magnetometer. 
In order to obtain the angles, first the Levenberg-Marquardt 
algorithm is exploited to eliminate the bias error, scale factor, 
and axes non-orthogonality, and the data from these 5 modules 
were ensemble averaged to lower the adverse effects of high-
frequency noises. Afterwards, an orientation estimation 
algorithm based on a complementary filter algorithm utilized 
the obtained trends where first, the dynamical accelerations 
decreased by a low pass filter. Since the goal of this study 
is not to elaborate the INS system, for further information 
and checking the background of inertial navigation system 
one can refer to author’s previous papers [29-30]. The current 
HILMS uses the INS system along with the load cells to 

Load Cell INS System 

     
                                        (a)                                                         (b)                                                                 (c) 

Fig. 3. a) Designed quadrotor simulator. b) Spherical joint used for constraining translational motion of the 

simulator. c) Test performance of Hardware-In-the-Loop system 

(https://www.youtube.com/watch?v=ZfmD3AKS3P8) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. a) Designed quadrotor simulator. b) Spherical joint used for constraining translational mo-
tion of the simulator. c) Test performance of Hardware-In-the-Loop system (https://www.youtube.

com/watch?v=ZfmD3AKS3P8)
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virtually control the translational motion of the quadrotor, 
studies the results of different control algorithm on the setup, 
and introduces an effective control method to control an 
airborne quadrotor in disturbed situation.

The parameters of this test-bed and two other quadrotors, 
provided only for a comparison purpose are listed in Table 2. 
These parameters which are driven from its associated CAD 
model are used as the geometrical parameters of the quadrotor.

A comparative study between parameters of this simulator 
and other quadrotors indicates that the existence of load 
cells and steel components increases the inertial parameters 
significantly. Therefore, the control system might experience 
larger overshoots, undershoots, and time constant. In airborne 
quadrotors the primary efforts are to decrease the mass of the 
body and inertial parameters in order to increase the battery 
life and load-carrying capacity. However, it is essential in 
Hardware-In-the-Loop systems to increase the reality of the 
test situation. This is the main reason of using load cells. 
Therefore, one has to sacrifice the former in order to achieve 
the later. On the other hand, this HILMS is a test-bed for 
testing different control algorithms and the airborne quadrotor 
will not use load cells and some of the steel components. 
In addition, when the control method is developed on the 
Hardware-In-the-Loop setup, it can be easily used on the 
airborne quadrotor by changing the controller parameters.

The relationship between thrust forces and motors reaction 
moment with the angular speed of the rotor can be obtained 
as Eq. 38 and Eq. 39, where kF and kM are two coefficients 
which could be achieved through experimental tests, and  

, 1, 2,3, 4i i =Ω  is the angular velocity of the rotors.
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In the current HILMS, thrust forces directly given by 
load cells are placed on each arm of the quadrotor. As it has 
been discussed, changes in thrust forces cause changes in the 
rotational of the quadrotor and consequently translational 
position. From Eq. 1, it can be observed that the position of 
the quadrotor is a function of role, pitch, yaw angles, and 
the algebraic sum of thrust forces. Therefore, the reaction 
moments do not directly affect the translational motion 
equations. Furthermore, the controlled input of attitude 
control, u, is obtained from SMC or FLC controllers. 
Consequently, it is not necessary to calculate the reaction 
moments of the rotors separately.

The force sensors used in this simulator create their 
specific noise while measuring the thrust of the motors. 
Due to the vibration of the arms of the simulator while the 
motors are in operation and the essential characteristics of the 
load cells, the raw output of the force sensors is not smooth 
and needs calibration. The raw data measured by the load 
cell is shown in Fig. 9 (a) which an IIR (Infinite Impulse 
Response) filter is used to smooth this noisy output. In order 
to show the reliability of load cells, a harmonic voltage is 
applied to brushless DC (BLDC) motors. Fig. 9(b) shows 
this procedure, which indicates that these load cells have the 
ability to follow the voltage pattern and can fairly estimate 
the thrusts produced by motors.

In order to calibrate the load cells, first the output bias 
should be removed. In Fig. 9 is shown that the output of 
the sensor is a number about 350 when no external force is 
applied. Hence, if the output of the sensor is S, the bias factor 
b, should be subtracted from it (S-b). In the next step, two 
370 gr and 685 gr masses were applied to the arms of the 
simulator and the output of the corresponding load cells were 
observed. This way, the coefficient C is obtained to multiply 
into the later subtraction. The output of load cell with these 
masses mounted on the tail  of the quadrotor is shown in Fig. 
10. 

By eliminating its bias and multiplying with the proper 
coefficient, the load cell is able to correctly evaluate the 
imposed force in gram force (i.e. F(gr.F)=C×(S-b)). After 
repeating several calibration tests and observing the load cells 
output while changing the input voltage, a linear relationship 

Table 2. Quadrotor geometrical parameters
 

Parameter / Name 
Current 

simulator 
OS4 [31] 

Dragan 

Flyer [32] 

Mass (kg) 2.23 0.65 0.5 

Inertia on x axis (kg.m2) 6.2×10-2 7.5×10-3 4.85×10-3 

Inertia on y axis (kg.m2) 6.2×10-2 7.5×10-3 4.85×10-3 

Inertia on z axis (kg.m2) 1.16×10-1 1.3×10-2 8.81×10-3 

Arm length (m) 0.28 0.23 0.2 

 

Table 2. Quadrotor geometrical parameters 
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as in Eq. 40 is obtained between the applied voltage and 
thrust of the BLDC motor. Note that this relationship will be 
different depending on the type of the motor and design of 
the propeller.
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Calibrated and filtered output of a load cell and its 
estimation when the BLDC motor is in operation are shown 
in Fig. 11: 

4- 2- Disturbance Rejection and Path Following Capabilities 
of the Control Algorithms

In this section, results for attitude control of the quadrotor 

simulator in hovering situation and tracking the desired 
angular trajectory are presented. For attitude control, the 
parameters of the  sliding mode controller are presented in 
Eq. 41, while Table 3 represents FLC parameters, where r1, r2, 
r3, and r4 introduced in section 3.1.2 are equal to 0.6, 0.8, 0.6, 
and 1.2, respectively.
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The numerical value of matrix ê  for estimated surfaces 
in Eq. 20 is obtained as: 

  
(a)                                                                                                     (b) 

Fig. 4. Raw output of load cell (without calibration). a) Motor is not operating, b) Applied voltage to the motor 

follows a harmonic pattern 
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Fig. 9. Raw output of load cell (without calibration). a) Motor is not operating, b) Applied voltage to the 
motor follows a harmonic pattern

 
Fig. 5. Load cell’s output loaded with 370gr and 685gr masses for calibration purpose 
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Fig. 6. The output of a load cell and its estimation while voltage changes from 0 to 15 volts 
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From these values and the geometrical parameters in 
Table 2, the positive definite matrix P, which is achieved from 
LMI, and its eigenvalues are presented in Eq. 43.
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Fig. 12 presents the results of the tests carried out during 
stabilization or hover flight situation for both SMC and FLC. 

In the experimental tests depicted in Fig. 12, in order to 
show the ability of the controllers in controlling the angles 
and stabilizing the quadrotor, some shocking disturbances 
are applied to the arms. The sharp peaks indicate the instants 
where these shocks are imposed to the system. The main 
advantage of SMC over FLC is its less settling time when 
the disturbance is applied. This means that the quadrotor is 
more agile to return to the desired state or hovering situation 
when an abrupt change takes place in the attitude. On the 
other hand, with the use of FLC, the chattering phenomenon 
is eliminated and the overshoot is decreased. Therefore, from 
this comparison, it can be concluded that FLC is more robust 
and SMC is more agile to the outdoor disturbances.

To show the reliability of the implemented control systems 
while tracking desired Euler angles φ and θ, a harmonic 
nominal trajectory with ω = 0.4 rad/sec and the amplitude of 
10 degrees, presented by Eq. 44, is introduced to the system. 
The result of this test is shown in Fig. 13. 

1

2

3

4

5

6

0.364 0.327 0 0 0 0
0.178 0.175 0 0 0 0

0 0 0.332 0.349 0 0
 ,  

0 0 0.111 0.159 0 0
0 0 0 0 0.243 0.438
0 0 0 0 0.278 0.527
λ 0.008
λ 0.010
λ 0.031

 
λ 0.460
λ 0.529
λ 0.763

 
 
 
 

  
 
 
 
 


 
 
 
 




P

  (43) 

 

   desφ 10sin ωt   degree   (44) 

 

ME   desφ φ
n

 
 (45) 

 

    
  

0                                                       t 3   
X m 0.3 t 3                              3 t 12

2.5cos 0.3 t 12                   t 12

 


   
  

 

   
  

0                                                        t 3   
Y m 0.3 t 3                                     3 t 12

2.5sin 0.3 t 12 2.5                 t 12

 


   
   

 

   
0                                                       t 3   

Z m 0.3 t 3                                     3 t 30
8                                                     t 30


   
 

 

(46) 

 

 

 

 

 (44)

In the experimental tests conducting in this study, the 
desired value of yaw angle was always considered to be zero, 
except in Fig. 12 were disturbances were applied in order to 
present the effectiveness of the controllers.

In order to compare the maneuverability of the quadrotor 
with the implemented controllers, the frequency of the 
harmonic trajectory alters between relatively slow to high 
frequency. Mean Error (ME) in Eq. 45 is used to compare 
the performance of these controllers.  Fig. 14 shows the ME 
when frequency of the above desired harmonic trajectory 
changes from 0.1 to 2 rad/sec. The mean average of the error 
for Fig. 14 is presented in Table 4. 
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According to Table 4, compared to the SMC, FLC has 
14% and 25.3% improvement in tracking the desired roll 
and pitch angles, respectively. It can be inferred from Fig. 14 
that the mean error for all frequencies is almost unchanged 
when FLC is used, meaning that the FLC has appropriate 
response whether the quadrotor has slow or fast maneuver, 
but without any external disturbances. On the other hand, the 
best response of SMC is when the quadrotor has a moderate 
maneuver, not too slow and not too fast. 

Based on Figs. 12-14 and Table 4, performances of both 
FLC and SMC are suitable enough to be used for attitude 
control. In terms of tracking without disturbances, FLC shows 
a better response with smaller errors and more accuracy, while 
in terms of stabilization and rejecting disturbances, SMC has 
a faster response meaning that when impulsive disturbances 
are applied to the system, the agility of SMC to restore the 
quadrotor to its stability situation is more than FLC designed 
for this test-bed.

To show the robustness of the controllers against 
uncertainties, extra masses are added to two arms of the 
quadrotor in order to create uncertainties around the roll and 
pitch axis and inspect the response of the controllers to model 
uncertainties and their ability to restore the quadrotor to its 
desired state. The distance of these extra masses from the 
center of mass is 0.33m and this test was repeated for masses 
varying from 40gr to 100gr. The results for the 100gr masses 
are demonstrated in Fig. 15, which shows the extra masses 
cause chattering if disturbance is applied to the arms. This 
can be especially observed when the SMC is implemented 
on the set-up. On the other hand, it can be seen that FLC 
has smother response against model uncertainties, such as 
extra mass, in comparison to SMC; but again, it has slower 
response and in some cases even more overshoots.

In summary, the ability of the quadrotor to follow a desired 

Table 3. The magnitude of fuzzy membership func-
tions’ parameters for attitude control 

 φ θ ψ φ̇ θ̇ ψ̇ 2u 3u 4u 

1d 1.8 1.8 2.5 7 7 5 0.56 0.56 0.77 

 

Table 3.  The magnitude of fuzzy membership functions’ parameters for attitude control 
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(a)                                                                                              (b) 

 

Fig. 7. Results of quadrotor stabilization control. a) SMC, b) FLC 
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Fig. 12. Results of quadrotor stabilization control. a) SMC, b) FLC
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               (a)                                                                                               (b) 

Fig. 8. Tracking the harmonic role and pitch angles with ω = 0.4 rad/sec. a) SMC, b) FLC 
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Fig. 13. Tracking the harmonic role and pitch angles with ω = 0.4 rad/sec. a) SMC, b) FLC

 

  
(a)                                                                                          (b) 

Fig. 9. Mean Error in angle versus frequency (𝟎𝟎. 𝟏𝟏 ≤ 𝛚𝛚 (𝐫𝐫𝐫𝐫𝐫𝐫/𝐬𝐬𝐬𝐬𝐬𝐬) ≤ 𝟐𝟐) when role and pitch angles follow a 

harmonic trajectory. a) Roll angle, b) Pitch angle 
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trajectory and its robustness against model uncertainties like 
extra masses with FLC is more than SMC. On the other hand, 
when a shock is applied in a fracture of a second and make 
the quadrotor off the track, the setup is more agile to restore 
to the original condition when using sliding mode control. 
The coefficients of sliding mode controller are tuned when 
no external mass is attached to the setup. As it is presented 
in Fig. 12, the results of SMC in presence of momentary 
disturbances are satisfying, but when a model uncertainty is 
applied, the performance of the controller is decreased based 
on Fig.15.

4- 3- Performance Evaluation of Proposed Algorithm in 3d 
Trajectory Tracking 

The results of attitude control showed that FLC is more 
accurate when the situation is steady with little disturbances 
and the purpose of control is to follow a smooth and 
continuous trajectory, such as indoor filming or outdoor 
applications with insignificant disturbances when more 
precision is required. On the other hand, when a quadrotor 
operates in more disturbed situations, because of its agility 
and swift reaction toward disturbances, SMC is a better 

choice to control the attitude. It may cause a little chattering or 
vibration when disturbances are applied, but the agility of the 
controller compensates this negative point. Therefore, since 
most applications of the quadrotor are in outdoor situations 
with wind disturbances, SMC is a good choice to control the 
attitude. Moreover, since it has less control parameters, it is 
easier to tune a SMC. However, because of its path following 
ability and more precision, it is expected that FLC has better 
response in translational motion control.

In this paper, two strategies are used to control the 
translational motion of the quadrotor. First, FLC is employed 
to control all 6 DOFs of the quadrotor. Since quadrotor is 
tracking a desired trajectory in the 3D space with moderate 
velocity and occasional disturbances, a more effective strategy 
is introduced. In this strategy, a combination of SMC and 
FLC is used as a new method of quadrotor position control. 
In this method, SMC and FLC are exploited to control the 
angular and translational motions, respectively. Along with 
the trajectory tracking ability of FLC, the agility intrinsic of 
SMC is utilized in this method to have both precision and 
momentum, simultaneously.

The controller inputs for position are the error [ex; ey; ez] 
and the rate of error [eֹx; eֹy; eֹz] in x, y, and z axis while the 
controller inputs for attitude are the error [eⱷ; eθ; eψ], and the 
rate of error [e ֹⱷ; e ֹθ; e ֹψ] around x, y, and z axis. The output 
of the controller is [u1; u2; u3; u4; ux; uy], where ux and uy are 
the two virtual inputs that are discussed in Eq.34, and u1, u2, 
u3, and u4 are as A6. Additionally, both attitude and position 
controllers use triangular membership functions; however, 
the parameters are different (Table 3 and Table 5). In order to 
control the position of the quadrotor, the controlled inputs are 
selected based on the logic shown by Figs. 2 and 3, where the 
quantitative value of the membership function parameters is 
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Fig. 10. Controllers’ response when extra masses are added to the quadrotor’ arms. a) SMC, b) FLC 
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Fig. 15. Controllers’ response when extra masses are added to the quadrotor’ arms. a) SMC, b) FLC

Table 4. The average of ME for all different frequencies 
when the angles follow a harmonic pattern 

Control Strategy MEφ (deg) MEθ (deg) 

SMC 1.1483 1.1025 

FLC 0.9854 0.8231 

 

Table 4. The average of ME for all different frequencies when the angles follow a harmonic pattern 
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presented in Table 5.
Implementing these strategies on the simulator, and 

considering the desired predefined time-function trajectory 
first as a 3D line and then as a helix, as in Eq. 46, the results 
of experimental test are presented in Fig. 16. 

1

2

3

4

5

6

0.364 0.327 0 0 0 0
0.178 0.175 0 0 0 0

0 0 0.332 0.349 0 0
 ,  

0 0 0.111 0.159 0 0
0 0 0 0 0.243 0.438
0 0 0 0 0.278 0.527
λ 0.008
λ 0.010
λ 0.031

 
λ 0.460
λ 0.529
λ 0.763

 
 
 
 

  
 
 
 
 


 
 
 
 




P

  (43) 

 

   desφ 10sin ωt   degree   (44) 

 

ME   desφ φ
n

 
 (45) 
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 (46)

In Fig. 16, a slight delay in altitude of the quadrotor is 
observed. The reason is the use of IIR filter for the output 
of the load cells, which causes a delay in sending the thrust 
forces. Moreover, if the test time increases, the altitude of the 
quadrotor will converge to its desired value. As it is presented 
in Fig. 17, if the time increases to 250 seconds, the error in 
altitude will decrease.

The MEs for translational motion are presented in Table 
6. Fig. 16 and Table 6 show the desirable performance of the 
controllers in the following desired trajectory. Note that with 
increasing the time of the test, the altitude of the quadrotor 
will converge to its desired value. 

It can be seen from Table 6 that the proposed SMC-FLC 
has better response in attitude and position tracking compared 
to FLC. Not only does the proposed method increase the 
accuracy of path following, but it also develops the agility 
of the quadrotor to follow the evaluated angles. The results 
show that this controller has an improvement of about 9 % in 
position tracking (X and Y) compared to FLC. 

Moreover, control input signals (thrust of each motor) are 
demonstrated in Fig. 18. 

In Fig. 18, the control input signals for SMC-FLC is a thin 
line, while for its counterpart FLC, it is thicker. Therefore, it 
can be inferred that the high-frequency fluctuation of thrust 
forces is decreased when the SMC-FLC is implemented to 
control the translational motion of the quadrotor. This means 
that by consuming lower energy, the proposed algorithm 

achieves higher trajectory tracking accuracy relative to single 
FLC. 

4- 4- Performance Evaluation of Proposed Algorithm in Way-
Point Reaching, Settling and Departing 

As final analysis, a discontinuous trajectory consisting 
of some waypoints is imposed to the simulator for position 
tracking. The system estimates a virtual line between the 
current position of the quadrotor and the next waypoint, and 
regarding to the remaining time in which the quadrotor should 
reach to its destination, it calculates the proper angle and 
linear velocity which is required to pass the waypoint. The 
algorithm used in this part greats a time-function trajectory 
and the quadrotor must follow that function until it reaches 
the vicinity of the next waypoint. When the error of the 
position becomes less than a definite value (here it’s 8 cm), 
the quadrotor starts to proceed towards the next waypoint. 
The goal is to scrutinize the behavior of the quadrotor with 
the proposed control strategy when a set of waypoints are 
defined in the space with the same altitude and the quadrotor 
is supposed to move through these points. Note that it is not a 
regulation task since the simulator creates and tracks a virtual 
line between two successive points. In this test, the points 
are located on the vertices of a rectangular with side’s length 
of 5 and 3 meters. The result of this inspection is depicted in 
Fig. 19, which shows the position of the quadrotor in a two 
dimensional diagram in terms of X and Y.

Fig. 19 illustrates the quadrotor’s tracking performance 
when the position trajectory includes discontinuous terms. 
This figure shows that the proposed control method enables 
the quadrotor to move throughout the predefined waypoints 
with acceptable precision. In addition, mean errors for X and 
Y directions are 0.0923 and 0.08562 (meter), indicating the 
accuracy of tracking process.

The results show the superiority of the proposed SMC-
FLC controller in position tracking of a quadrotor in semi-
actual conditions. Since the experiments are applied on 
a quadrotor Hardware-In-the-Loop simulator which can 
appropriately simulate the translational motion of a quadrotor 
in outdoor situations, this control strategy can be an effective 
method to control a quadrotor in airborne conditions, and also 
a leading study for future investigations.

5- Conclusions
In this study, design and control of a simulator which can 

properly simulate the translational motion of a real quadrotor 
are discussed. The most important merits of using the 
proposed simulator are decreasing the casualties, which are 
caused by crashing and collision and minimizing the damages 
into nearby individuals and objects. Two control methods, 
including SMC and FLC based on Mamdani max-product 
method with triangular membership functions and center 
average defuzzifier, were implemented to this Hardware-In-
the-Loop test-bed for attitude control of a quadrotor. Both 
controllers showed desirable performance when controlling 
the attitude. From the obtained results, it was observed that 
the fuzzy tracking algorithm provides better performance, 

Table 5. Fuzzy membership functions’ parameters 
magnitude for altitude and position

 

 z x y ż ẋ ẏ 1u Xu Yu 

1d 0.14 0.12 0.13 0.26 0.3 0.34 2.66 0.2 0.2 

 

Table 5. Fuzzy membership functions’ parameters magnitude for altitude and position 
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Fig. 16. a) Translational motion control of the simulator, b) Following the desired angles achieved from position 
tracking control. 1) FLC, 2) SMC-FLC
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Fig. 17. Altitude of the quadrotor when the test time increases to 250 seconds 
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Fig. 17. Altitude of the quadrotor when the test time increases to 250 seconds

Table 6. Mean error for experimental test of position tracking

 

 

 

Control Strategy MEφ (deg) MEθ (deg) MEψ (deg) MEX (m) MEY (m) MEZ (m) 

FLC 0.7460 0.5472 0.8652 0.0724 0.0607 0.2279 

Combination of SMC and FLC 0.5096 0.4926 0.8197 0.0659 0.0550 0.2263 

 

Table 6. Mean error for experimental test of position tracking 

 

 

 

 

 

 
(a)                                                                      (b) 

Fig. 18. Control input signals for translational motion control, a) FLC, b) SMC-FLC 
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Fig. 18. Control input signals for translational motion control, a) FLC, b) SMC-FLC
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while in terms of stabilization and disturbance rejection, SMC 
shows faster response. Additionally, the results for robustness 
and uncertainty tests indicated that FLC had better results 
and its response in steady situations with smooth trajectories 
is preferable. Using the implemented force sensors and 
quadrotor dynamics equations of motion simultaneously, 
enable the simulator to estimate the translational motion. 
For position control of the quadrotor, first a FLC was used 
to control all six DOFs. Afterwards, due to the agility of 
SMC and path following precision of FLC, the combination 
of SMC and FLC was deployed to control the attitude and 
translational motion, respectively. The results showed that 
the proposed control strategy has approximately 9% accuracy 
improvement in tracking desired position trajectory compared 
to the case that only FLC is used to control all six degrees 
of freedom. Briefly, by combining FLC and SMC, position 
tracking, disturbance robustness, noise robustness, trajectory 
tracking accuracy, and the high frequency fluctuations of the 
actuators are improved simultaneously relative to the case that 
only FLC or SMC is used for position control of quadrotors.

List of Acronyms

FLC		 Fuzzy Logic Controller
SMC		 Sliding Mode Controller
HIL		  Hardware-In-the-Loop
HILMS	 Hardware-In-the-Loop Motion Simulator
GPS		  Global Positioning System
INS		  Inertial Navigation System
BFL		  Backstepping Fuzzy Logic
BLMS	 Backstepping Least Mean Square
CAMC	 Cerebellar Model Arithmetic Computer
PID		  Proportional Integral Derivative
LQR		 Linear Quadratic Regulator
LMI		  Linear Matrix Inequality
BLDC	 Brushless Direct Current (motor)
ME		  Mean Error
IRR		  Infinite Impulse Response
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Appendix

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In order to elaborate quadrotor dynamic equations of section 2 and 3, further discussions are 

provided in this section. 

Expanding Eq. 3 leads to: 

Ixxω̇x = l(F4 − F2) − TxB − ωyωz(Izz − Iyy) − ωyJr𝑧𝑧𝛺𝛺𝑟𝑟   
Iyyω̇y = l(F1 − F3) − TyB

+ ωxωz(Izz − Ixx) + ωxJr𝑧𝑧 𝛺𝛺𝑟𝑟   
Izzω̇z = −M1 + M2 − M3 + M4 − TzB − ωxωy(Iyy − Ixx)

  (A1) 

 

The relationship between the Euler angles and angular velocities of the body frame is: 
φ̇ = cosψsecθωx + sinψsecθωy            
θ̇ = −sinψωx + cosψωy                          
ψ̇ = cosψtanθωx + sinψtanθωy + ωz

 (A2) 

 By calculating the time derivative of Eq. A2, and then substituting Eqs. A1 and A2 into it, the angular 

motion equations are obtained as Eq. A3, where x = [φ, θ, ψ] T and u = [u2, u3, u4] T: 
𝐱̈𝐱 = 𝐟𝐟(𝐱𝐱) + 𝐛𝐛. 𝐮𝐮  (A3) 

 

where 

 

𝐟𝐟(x) = 

[
 
 
 
 
 
 
 
 
 
 
 
 secθ ∗ [− 1

Ixx
(cosψωyωzIz−y + ωyJr𝑧𝑧𝛺𝛺𝑟𝑟) + 1

Iyy
(sinψωxωzIz−x + ωxJr𝑧𝑧𝛺𝛺𝑟𝑟) + aθ̇tanθ − bψ̇

                                                                 − 1
Ixx

cosψTxB − 1
Iyy

sinψTyB ]                                                                 

 1Ixx
(sinψωyωzIz−y + ωyJr𝑧𝑧𝛺𝛺𝑟𝑟) + 1

Iyy
(cosψωxωzIz−x + ωxJr𝑧𝑧𝛺𝛺𝑟𝑟) − aψ̇ + 1

Ixx
sinψTxB − 1

Iyy
cosψTyB

− 1
Ixx

cosψtanθωyωzIz−x + 1
Iyy

sinψtanθωxωzIz−x − 1
Izz

ωxωyIy−x + a(1 + tan2θ)θ̇ − bψ̇tanθ

− 1
Ixx

cosψtanθTxB − 1
Iyy

sinψtanθTyB − 1
Izz

TzB ]
 
 
 
 
 
 
 
 
 
 
 
 

3×1

 

(A4) 

 

𝐛𝐛(x) =

[
 
 
 
 
 
 1
Ixx

cosψsecθ 1
Iyy

sinψsecθ 0

− 1
Ixx

sinψ 1
Iyy

cosψ 0

1
Ixx

cosψtanθ 1
Iyy

sinψtanθ 1
Izz]

 
 
 
 
 
 

3×3

 (A5) 

 

where Iz-x=(Izz-Ixx), Iz-y=(Izz-Iyy), Iy-x=(Iyy-Ixx), a=(cosψωx+ sinψωy), and b=(sinψωx- cosψωy). Finally, 

the control inputs are given by Eq. A6: 
u1 = F1 + F2 + F3 + F4     
u2 = l(F4 − F2)                   
u3 = l(F1 − F3)                   
u4 = M1 − M2 + M3 − M4

  (A6) 

 

A quadrotor's attitude equation while hovering can be simplified as Eq. A7: 

φ̈ = Iyy−Izz
Ixx

θ̇ψ̇ + 1
Ixx

u2

θ̈ = Izz−Ixx
Iyy

φ̇ψ̇ + 1
Iyy

u3

ψ̈ = Ixx−Iyy
Izz

φ̇θ̇ + 1
Izz

u4

  (A7) 

 

Assuming state variables are as Eq. A8, the state-space equations are given by Eq. A9: 



H. Khajvand and M. R. Homaeinezhad, AUT J. Model. Simul., 53(2) (2021) 113-136, DOI: 10.22060/miscj.2021.19648.5241

136

By calculating the time derivative of Eq. A2, and then substituting Eqs. A1 and A2 into it, the angular 

motion equations are obtained as Eq. A3, where x = [φ, θ, ψ] T and u = [u2, u3, u4] T: 
𝐱̈𝐱 = 𝐟𝐟(𝐱𝐱) + 𝐛𝐛. 𝐮𝐮  (A3) 

 

where 

 

𝐟𝐟(x) = 

[
 
 
 
 
 
 
 
 
 
 
 
 secθ ∗ [− 1

Ixx
(cosψωyωzIz−y + ωyJr𝑧𝑧𝛺𝛺𝑟𝑟) + 1

Iyy
(sinψωxωzIz−x + ωxJr𝑧𝑧𝛺𝛺𝑟𝑟) + aθ̇tanθ − bψ̇

                                                                 − 1
Ixx

cosψTxB − 1
Iyy

sinψTyB ]                                                                 

 1Ixx
(sinψωyωzIz−y + ωyJr𝑧𝑧𝛺𝛺𝑟𝑟) + 1

Iyy
(cosψωxωzIz−x + ωxJr𝑧𝑧𝛺𝛺𝑟𝑟) − aψ̇ + 1

Ixx
sinψTxB − 1

Iyy
cosψTyB

− 1
Ixx

cosψtanθωyωzIz−x + 1
Iyy

sinψtanθωxωzIz−x − 1
Izz

ωxωyIy−x + a(1 + tan2θ)θ̇ − bψ̇tanθ

− 1
Ixx

cosψtanθTxB − 1
Iyy

sinψtanθTyB − 1
Izz

TzB ]
 
 
 
 
 
 
 
 
 
 
 
 

3×1

 

(A4) 

 

𝐛𝐛(x) =

[
 
 
 
 
 
 1
Ixx

cosψsecθ 1
Iyy

sinψsecθ 0

− 1
Ixx

sinψ 1
Iyy

cosψ 0

1
Ixx

cosψtanθ 1
Iyy

sinψtanθ 1
Izz]

 
 
 
 
 
 

3×3

 (A5) 

 

where Iz-x=(Izz-Ixx), Iz-y=(Izz-Iyy), Iy-x=(Iyy-Ixx), a=(cosψωx+ sinψωy), and b=(sinψωx- cosψωy). Finally, 

the control inputs are given by Eq. A6: 
u1 = F1 + F2 + F3 + F4     
u2 = l(F4 − F2)                   
u3 = l(F1 − F3)                   
u4 = M1 − M2 + M3 − M4

  (A6) 

 

A quadrotor's attitude equation while hovering can be simplified as Eq. A7: 

φ̈ = Iyy−Izz
Ixx

θ̇ψ̇ + 1
Ixx

u2

θ̈ = Izz−Ixx
Iyy

φ̇ψ̇ + 1
Iyy

u3

ψ̈ = Ixx−Iyy
Izz

φ̇θ̇ + 1
Izz

u4

  (A7) 

 

Assuming state variables are as Eq. A8, the state-space equations are given by Eq. A9: 

x1 = φ
x2 = φ̇
x3 = θ
x4 = θ̇
x5 = ψ
x6 = ψ̇

  (A8) 

 
ẋ1 = x2                                
ẋ2 =

Iyy−Izz
Ixx

x4x6 +
1
Ixx
u2

ẋ3 = x4                                
ẋ4 =

Izz−Ixx
Iyy

x2x6 +
1
Iyy
u3

ẋ5 = x6                                
ẋ6 =

Ixx−Iyy
Izz

x2x4 +
1
Izz
u4

  (A9) 

 

Eq. A9 can be written in vector form as: 
𝐱̇𝐱 = 𝐠𝐠(𝐱𝐱) + 𝐡𝐡6×3𝐮𝐮3×1 (A10) 

 

Where: 

𝐱𝐱 =

{
 
 

 
 
x1
x2
x3
x4
x5
x6}
 
 

 
 

, 𝐡𝐡 =

[
 
 
 
 
 
 
 0 0 0
1
Ixx

0 0
0 0 0
0 1

Iyy
0

0 0 0
0 0 1

Izz]
 
 
 
 
 
 
 

, 𝐠𝐠(𝐱𝐱) =

[
 
 
 
 
 
 
 

x2
Iyy−Izz
Ixx

x4x6
x4

Izz−Ixx
Iyy

x2x6
x6

Ixx−Iyy
Izz

x2x4]
 
 
 
 
 
 
 

 ,  
2

3

4

u
u
u

 
   
  

u  (A11) 

 

Consequently, Eq. A3 and Eq. A10 are the exact and simplified quadrotor’s attitude equation, 

respectively.  

 


