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ABSTRACT: Aimed at the nonlinear system identification of aeroelastic aircraft, the signal 
decomposition methods are required to extract the contributing natural and non-standard flight modes 
from flight test data, especially in the presence of flight noise. To this end, the SSA-EMD algorithm is 
proposed in this paper as a noise-tolerant signal decomposition method. The SSA-EMD is an improved 
Empirical Mode Decomposition (EMD) in which the sifting process is implemented by a direct approach 
to the signal trend extraction as a substitute for the envelope concept. In the proposed method, Singular 
Spectrum Analysis (SSA) is used for extraction of the signal trend in order to improve the mathematical 
foundation of the EMD. The proposed method is verified by decomposing some benchmark signals. 
Numerical results demonstrate that the proposed method outperforms the original one, especially in 
handling noisy signals. Afterwards, a novel gray-box non-parametric system identification method 
is proposed for considering extracted flight mode in the aircraft dynamics. The performance of the 
SSA-EMD is studied for the aircraft system identification from real flight test data of an aeroelastic 
aircraft in the transonic regime. It can be observed that the average fitness values of 60.01% and 88.41% 
are obtained for the lateral flight parameters using the EMD and SSA-EMD, respectively. Moreover, 
the RMSE values of the flight parameters predicted by the EMD and SSA-EMD are 1.85 and 0.65, 
respectively. Therefore, the SSA-EMD can achieve better results than the original EMD for the aircraft 
system identification due to its noise rejection properties. 
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1- Introduction
Recent studies in the field of aircraft system identification 

demonstrate that the overall aircraft dynamics are composed 
of several nonlinear flight modes [‎1]. The number of non-
standard flight modes due to the aerodynamic or structural 
nonlinearities is more than the natural modes conceived by the 
classical analysis. In order to accurately predict the nonlinear 
aircraft dynamics, both the natural and non-standard modes 
should be considered. The non-standard flight modes usually 
have small damping ratios; therefore, they cannot be easily 
detected. Thus, for extracting flight features from flight 
data, one may need signal processing methods. Recently, 
Empirical Mode Decomposition (EMD) and Singular 
Spectrum Analysis (SSA) are employed for flight mode 
identification [‎2]. Once flight modes are detected, they can 
be used for the identification of aircraft with aerodynamic 
and structural nonlinearities [‎2]. Despite acceptable results, 
the studies indicate that the EMD encounter difficulties due 
to flight data noise.

Flight test data is always contaminated with noise during 
the data acquisition process. The type and intensity of noise 

depend on the Flight Test Instruments (FTIs) used for the 
determination of the flight data. FTIs receive data from a wide 
variety of sources such as the Air Data System (ADS), Inertial 
Navigation System (INS), Global Positioning System (GPS), 
and Radio Navigation System (RNS). Therefore, several 
factors affect flight data noise. Furthermore, flight conditions 
(e.g., the airspeed and altitude) exert strong influences on 
the measurement noise. Due to the complex nature of flight 
data noise, sophisticated methods are required for de-noising. 
EMD is one of the most effective methods for noise reduction 
of the flight data [‎3-‎4]. Despite the successful applications of 
EMD for de-noising, there is a considerable ambiguity about 
it [‎5-‎9]. This is due to the drawbacks of EMD, most notably 
a lack of a mathematical foundation for its algorithm. As a 
result, it is difficult to predict the behavior of EMD in dealing 
with complex data such as noisy signals. Therefore, a more 
rigorous formulation of EMD should be presented for dealing 
with flight data noise.

The original EMD algorithm is suggested by Ref. [‎10] to 
extract the signal components called Intrinsic Mode Functions 
(IMFs). To that end, it is necessary to separate the signal trend 
containing the highest time-scale from other components. In 
the EMD algorithm, the signal trend is repeatedly estimated 
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and subtracted from the signal within the “sifting process” 
until a narrow-band component is attained. The envelope 
approach is utilized by the original sifting process in which 
the (pseudo) trend is extracted by averaging the upper and 
lower envelopes of the signal. There are many ambiguities 
about all of its procedures:

What control points are intersected by the envelopes? In 
the sifting process, it is suggested that the local maxima and 
minima are used as control points to create upper and lower 
envelopes, respectively. However, recent studies indicate that 
optimum control points are not necessarily the local extrema 
[‎11].

How can the control points be detected in the presence 
of noise and discrete-time sampling? The occurrence of 
unrealistic extrema due to noise may disturb the envelopes. 
Additionally, real extrema may remain undetected due 
to discrete-time sampling. Moreover, unreal duplicated 
extrema may occur due to sampling. Recent studies stress 
the importance of these effects ignored by the sifting process 
[‎12].

How can the control points be connected in order to 
approximate the envelopes? Numerous studies have been 
conducted to interpolate between control points. Following 
the natural cubic splines suggested by Ref. [‎10], a variety 
of interpolation methods have been employed to improve 
the envelopes such as the rational splines [‎13-‎14], linear 
combinations of B-splines [‎15], the Akima spline [‎16], the 
piecewise cubic Hermite interpolation [‎17-‎18], and non-
polynomial splines [‎19-‎20]. More researches are needed to 
prevent abnormal fluctuations of the envelopes by controlling 
the curve smoothness and continuity.

How can the effect of a single control point on the whole 
signal be restricted? While the sifting process is a global 
method, studies demonstrate that EMD is more successful 
when it is applied locally to signal portions [‎21].

How can it be assured that the signal does not intersect 
the envelopes? This condition may not be guaranteed by the 
sifting process. The violation results in undesired fluctuations 
in the IMFs [‎22].

Can the IMFs be obtained from the EMD algorithm in 
practice? Studies indicate that the results of EMD are not 
precisely compatible with the IMF definition [‎23]. It can be 
observed that the higher the number of iterations of the EMD 
algorithm, the less significant the resulting IMFs.

The direct approach of EMD was presented to resolve 
some of these problems. In direct approach, the signal trend 
is directly extracted from the signal without the need for the 
concept of the envelopes. The question then arises: what is 
the signal trend and how can it be extracted? Unfortunately, 
there is no exact definition for the signal trend. Hence, various 
direct EMD methods have been presented in which diverse 
trend definitions are employed. On one hand, some methods 
suggest rigorous mathematical definitions for the signal 
trend: For example, a parabolic partial differential equation 
was proposed for an analytical solution to the signal trend 
[‎22]; however, the existence of high-order derivatives and 
the need to identify inflection points cause many numerical 

difficulties. Moreover, the signal trend optimized using 
quadratic programming was used [‎24]; nevertheless, some 
of its requirements (e.g., the identification of extrema) cause 
problems like those of ones of the envelope approach. On 
the other hand, some studies have attempted to numerically 
identify the signal process. For instance, the smoothing 
filters [‎21] were exploited to extract the signal trend in a 
direct manner; however, they need higher computing time 
and cost than the sifting process. Examining previous studies 
demonstrates that there is still an obvious need for appropriate 
methods to directly estimate the signal trend. In the current 
study, it is proposed that the signal trend can be achieved 
by the Singular Spectrum Analysis (SSA) to provide a more 
rigorous formulation for EMD. There are some studies in the 
literature aimed at combining of EMD and SSA. For example, 
Ref. [‎25] employed SSA after EMD as a post-processing 
technique to improve the trend extraction process. In this 
paper, however, SSA is utilized inside the EMD algorithm to 
improve the sifting process in dealing with noise.

The remainder of the paper is organized as follows: A 
brief overview of the EMD and SSA are provided in Section 
2. Afterwards, the SSA-EMD method is proposed in Section 
3 in which the trend extraction of the EMD algorithm is 
performed by SSA. Next, the proposed method is verified 
by some decomposition benchmark signals against some 
measures of the decomposition quality in Section 4. Later on, 
EMD and SSA-EMD are applied to the flight test data within 
a nonlinear aircraft system identification problem in Section 
5. Finally, the paper is concluded in Section 6.

2- A Brief Overview of the EMD and SSA
2- 1- The EMD

The EMD is a method for obtaining contributing the 
IMFs of a signal. The heart of the EMD algorithm is the trend 
extraction sifting process. Once the trend is detected, it can 
be eliminated from the signal to obtain the high-frequency 
oscillation:
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in which ( )tx  is the investigated signal, ( )tm  is the 

trend. and ( )th  is the high-frequency oscillation (i.e., proto-
IMF). If ( )th  does not satisfy the stopping criteria, the above 
process should be repeated within the inner loop of the EMD:     tmtxth   (1) 
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where k  and i  are the counter of the inner and outer 

loops, respectively. If the high-frequency oscillation satisfies 
the stopping criteria, it can be detected as an IMF:
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where ic  is the i th IMF. Several stopping criteria have 

been presented until now. The stopping criterion proposed by 
Ref. [‎10] has been used by numerous studies. Once an IMF is 
extracted, it can be eliminated from the signal. Similarly, the 
remainder can be treated in the outer loop:
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in which ir  is the remainder of the i th iteration of the 

outer loop. The signal can be reconstructed by summation of 
the IMFs and the last remainder:
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where ( ) ( )trtr e= . The EMD algorithm is illustrated 

in Fig. 1.

2- 2- The SSA
The SSA was introduced by Ref. [‎26] as a method for 

analyzing time series. The SSA is essentially a method for 
decomposing time series into the constituent components 
containing physical significance. This method is based on 
the Singular Value Decomposition (SVD) of the augmented 
matrix of the delayed time series. This advantage makes 
the SSA straightforward. There are four steps for the 
implementation of SSA. In the first step, the trajectory matrix 
should be calculated for the time series ( )tx , in which 

nt ,,1= . For this purpose, the signal ( )tx  is divided into 
k  delayed time series ( )txi :
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in which the window length l  is an integer in the range 

of 
22 nl ≤≤ . By collecting k  delayed time series, the 

trajectory matrix can be obtained:
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Fig. 1. The EMD algorithm 
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in which 1+−= lnk . In the second step, matrix Y  is 
obtained as follows:
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In the second step, the SVD can be applied to matrix Y :
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where [ ]ldiag λλ 1=Λ  and iλ  for li ,,1=  

are eigenvalues sorted in descending order. Additionally, 
[ ]lppP 1=  and ip  for li ,,1=  are eigenvectors 

called Empirical Orthogonal Functions (EOFs). 
The Principal Components (PCs) are defined as follows:

     tmtxth   (1) 

 

     tmthth kikiki ,1,,    (2) 

 

   thtc kii ,  (3) 

 

     tctrtr iii  1  (4) 

 

     trtctx
e

j
j 

1
 (5) 

 

       kilixixtx T
i ,,1,1,,               (6) 

 

 kxxX 1                          (7) 

 

TXXY                                   (8) 

 

TPPY   (9) 

 

diforpXq ii
T

i ,,1    (10) 

 

dXXX  1                                  (11) 

 

 (10)

	
in which d  is the rank of matrix X . Therefore, matrix X  

can be written as the summation of the elementary matrices:
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where elementary matrices iX  for di ,,1=  can be 

defined as follows:
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In the third step, elementary matrices can be divided into 

g  groups so that each elementary matrix is present only in 
one of the groups:
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In the fourth stage, the time series associated with each 

of the groups should be extracted. Finally, the investigated 
time series ( )txi  can be expressed as its Reconstructed 
Components (RCs):
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2- 3- A summary
The EMD and SSA are very compatible due to the 

following properties:
Are aimed at decomposing a signal into its constituents.
Can be used to analyze different types of signals and 

processes.
Are non-parametric methods that do not require a 

predetermined structure.
Are suitable for nonlinear and non-stationary signals.
Have data-driven and adaptive bases.
Generate physically interpretable components.
Hence, the EMD and SSA may be used together. There 

are, however, important differences between the EMD and 
SSA:

There is a rigorous mathematical definition for SSA, 
while EMD is an iterative algorithm.

EMD decomposition is based on time-scale contents 
of the signal; therefore, the IMFs are categorized by their 
frequency. However, the SSA decomposition is based on 
the eigenvalues of the augmented matrix of the delayed 
time series; therefore, the RCs are distinguished by their 
amplitudes. Since frequency decomposition is more closely 
related to the physical significance of the signal, EMD is 
often more comprehensible.

3- The SSA-EMD
The SSA-EMD is an enhanced version of the EMD in 

which the original sifting process is modified. In the proposed 
sifting process, both the trend detection technique and the 
stopping criterion of the sifting process are improved using 
SSA. The key idea is to employ the SSA for trend extraction 
task, and stopping criteria required by the inner loop of the 
EMD algorithm. Therefore, the EMD algorithm is preserved 
by SSA-EMD. Consider the trend extraction task (i.e., the box 
“Calculate kim , ”) in the inner loop of Fig. 1. To extract the 
signal trend by SSA, first, the investigated signal should be 
decomposed by SSA. Second, the eigenvalues corresponding 
to the trend of the signal should be identified. Finally, the sum 
of the RCs associated with the trend eigenvalues can be used 
as the signal trend.

Once the eigenvalues, EOFs, PCs and RCs of the signal 
are found by SSA, it is essential to detect the eigenvalues 
corresponding to the signal trend in the second step. For 
this purpose, the technique described by Ref. [‎27] is used in 
which the smooth EOFs are isolated in order to reconstruct 
the signal trend.

Suppose the time series ( )tx  for nt ,,1= , in which 
n  is an even integer. The finite Fourier series of the time 
series can be defined as follows:

diforqpX T
iiii ,,1   (12) 

 

gZZX  1  (13) 

 

   


g

i
i tztx

1
 (14) 

 

 
 

ta
n
ktb

n
ktaatx n

n

k
kk  cos2sin2cos 2

12

1
0  



 




 (15) 

 

  

 

 

    































n

t

t
n

n

t
k

n

t
k

n

t

tx
n

a

n
kttx

n
b

n
kttx

n
a

tx
n

a

1
2

1

1

1
0

11

2sin2

2cos2

1





 (16) 

 




























2
12

2
10

02

2
,

2
2

22

2
0

n
pa

n
pba

pa
n

n
pxI

n

pp  (17) 

 

  













0

,,

n
p n

pxIx  (18) 

 (15)

diforqpX T
iiii ,,1   (12) 

 

gZZX  1  (13) 

 

   


g

i
i tztx

1
 (14) 

 

 
 

ta
n
ktb

n
ktaatx n

n

k
kk  cos2sin2cos 2

12

1
0  



 




 (15) 

 

  

 

 

    































n

t

t
n

n

t
k

n

t
k

n

t

tx
n

a

n
kttx

n
b

n
kttx

n
a

tx
n

a

1
2

1

1

1
0

11

2sin2

2cos2

1





 (16) 

 




























2
12

2
10

02

2
,

2
2

22

2
0

n
pa

n
pba

pa
n

n
pxI

n

pp  (17) 

 

  













0

,,

n
p n

pxIx  (18) 



S. A. Bagherzadeh and H. Mohammadkarimi, AUT J. Model. Simul., 53(2) (2021) 153-178, DOI: 10.22060/miscj.2021.19742.5243

157

where the coefficients can be obtained as follows:
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The periodogram of the time series ( )tx  can be defined 

based on the coefficients of the finite Fourier series:
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Moreover, the cumulative contribution of the frequencies 

in the range of 0 to ω  is defined by the periodogram as 
follows:
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The contribution of low frequencies is defined based on 

the cumulative contribution as follows:
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where 0ω  ranges from 0 to 0.5. 
In the final step, the signal trend is detected. The signal 

trend can be assumed to be the sum of the RCs for which 
the corresponding EOFs are low-frequency and smooth in 
comparison with the others. In other words, the signal trend 
can be defined as follows:
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where ( )tzi  for gi ,,1=  are RCs resulting from the 
SSA. The described technique for the signal trend detection 
is illustrated in Fig. 2. 

Based on the technique described in this section, smooth 
EOFs are detected, and the sum of the corresponding RCs is 
considered as the signal trend. The sifting process is iterated 
in the inner loop until no smooth EOF corresponding to a 
dominant eigenvalue is detected. Thus, the SSA-EMD has the 
following characteristics:

In the original sifting process, the trends needed in the 
inner loop of the EMD algorithm are detected by averaging 
the upper and lower envelopes of the investigated signal. The 
proposed method, however, employs the SSA for the trend 
detection.

The original sifting process halts after a pre-given number 
of iterations. On the contrary, the stopping criterion of the 
proposed sifting process is based on the detection of smooth 
components of the signal.

Theoretically, the SSA-EMD may outperform the original 
EMD due to the following advantages:

The SSA-EMD is a rigorously-defined version of EMD. 
This is due to the rigorous mathematical definition for SSA. 
Since both the trend detection method and the stopping 
criterion within the sifting process of the proposed method 
are modified by SSA, the SSA-EMD may theoretically 
outperform the original EMD.

The SSA-EMD is a direct rather than an envelope-based 
EMD algorithm. Therefore, drawbacks of the envelope-based 
method mentioned in Introduction Section may be resolved 
by the SSA-EMD.

Theoretically, the SSA-EMD takes advantage of both 
EMD and SSA: It has the frequency separation of EMD and 
the trend detection capability of SSA.

Despite the different sifting processes, the overall 
algorithm of EMD and SSA-EMD are identical as illustrated 
in Fig.1.Therefore, no significant modification is needed to 
update previous studies.

4- Verification
In this section, the conventional EMD and SSA-EMD are 

compared using some measures of the decomposition quality.

4- 1- The Measures of the Decomposition Quality
If the exact constituent components of a signal are 

known, it is straightforward to measure the decomposition 
quality of the EMD algorithm. This can be performed by 
computing the Mean Squared Error (MSE) between an 
IMF and its corresponding component. However, it is not 
the case for complex signals obtained from real systems. 
Since the components of a complex signal are not known, 
there is no absolute measure for the decomposition quality. 
The following properties of ideal IMFs may be used as the 
decomposition measures:

The orthogonality: In any iteration of EMD, the obtained 
IMF should isolate the highest frequency existing throughout 
the signal; therefore, the IMFs have dissimilar frequencies 
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at any specific instant. In other words, IMFs should be 
orthogonal together. Once an IMF is attained, it should be 
orthogonal to the remainder. Hence, the orthogonality may 
be utilized as a measure for the decomposition quality, as 
follows:
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The local zero mean: An IMF is an oscillatory component 

that is locally symmetrical about zero. This property can be 
approximated by a zero integral between any two successive 
extrema of an IMF. Therefore, one can use the summation of 
integrals between the successive extrema as a measure for the 
decomposition quality as follows:
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Energy conservation property: The preservation of the 

energy content before and after decomposition is an essential 
property of the EMD [‎10]. Therefore, one can use the 
difference between energies of the signal and its components 
as a measure for the decomposition quality, as follows:
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in which the energy of the signal ( )tx  can be defined as 

follows:

 

 

Fig. 2. The utilized technique for the signal trend detection 
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Fig. 2. The utilized technique for the signal trend detection
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In an ideal case, these measures are zero. For a 

decomposition using EMD, the measures are not necessarily 
zero. In that case, the lower the measures, the better the 
decomposition quality. 

4- 2- The Benchmark Signals
In this subsection, some benchmark signals presented in 

Ref. [‎21] are used for the performance comparison between 
the conventional EMD and the SSA-EMD. 

4- 2- 1- A Stationary Signal
Let us investigate the following stationary signal 

composed of two harmonic components:
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for [ ]2,0=t  in which 5=f . The signal is sampled at 

a frequency of 100 Hz. The signal and its components are 
illustrated in Fig. 3.

The decomposition is performed using the SSA-EMD 
method. The eigenvalues and the leading EOFs, PCs and 
RCs obtained by SSA for the first iteration of the inner loop 
of EMD are illustrated in Fig. 4. It should be noted that the 
first four eigenvalues are weightier than the others; therefore, 
only the corresponding EOFs, PCs and RCs are depicted. 
Additionally, it should be noted that the PCs are projections 

of the EOFs into a new coordinate system. Therefore, the 
x-axis label is not mentioned for the EOFs and PCs.

As can be demonstrated, the second EOF is smoother than 
the rest; therefore, its corresponding RC can be recognized as 
the (pseudo) trend. Moreover, it can be observed that the first 
four eigenvalues have the same amplitude. In other words, 
none of them dominates the others. Since the first, third and 
fourth RCs have similar frequencies and amplitudes, they 
are probably generated by a single mechanism, namely the 
high-frequency harmonic component. Hence, it is approved 
that SSA can separate low and high-frequency components. 
Finally, the pseudo-trend 1,1m  is obtained as depicted by Fig. 
5(a). In addition, the proto-IMF 1,1h  can be achieved by 
subtracting the pseudo-trend 1,1m  from the signal ( )tx  as 
illustrated by Fig. 5(b).

Once the (pseudo) trend 1,1m  can be obtained, it is 
subtracted from signal ( )ts . The remainder is similarly 
considered by the inner loop of the EMD algorithm. The 
eigenvalues and leading EOFs, PCs and RCs obtained by 
SSA for the second iteration of the inner loop of EMD are 
illustrated in Fig. 6.

Unlike the first iteration, the first two eigenvalues 
corresponding to the high-frequency component are dominant, 
while the third and fourth eigenvalues corresponding to 
the low-frequency component are less significant. This is 
essentially due to the elimination of the trend throughout 
the inner loop of EMD. Based on the technique described in 
Section 3, the third and fourth EOFs are smooth enough to 
be considered as contributions to the trend. The pseudo-trend 

2,1m  and the proto-IMF 2,1h  are illustrated by Fig. 7.
Only after two iterations of the inner loop of the EMD 

is the stopping criterion satisfied, and the first IMF 1c  is 
attained. In other words, no EOF is detected smooth enough 
to be considered as a contribution to the signal trend. A similar 

 

Fig. 3. The stationary signal and its components 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. The stationary signal and its components
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Fig. 4. (a) The eigenvalues, (b) the leading EOFs, (c) the leading PCs, (d) the leading RCs for the first iteration of 

the inner loop 
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Fig. 5. (a) The pseudo-trend 1,1m  and (b) the proto-IMF 1,1h  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. (a) The pseudo-trend 1,1m   and (b) the proto-IMF 1,1h   
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Fig. 6. (a) The eigenvalues, (b) the leading EOFs, (c) the leading PCs, (d) the leading RCs for the second iteration of 

the inner loop 
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Fig. 7. (a) the pseudo-trend 2,1m  and (b) the proto-IMF 2,1h  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. (a) the pseudo-trend 2,1m   and (b) the proto-IMF 2,1h    
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procedure is performed in the outer loop of EMD in order to 
extract the second IMF 2c .

The IMFs approximating the high and low-frequency 
harmonic components (i.e., 1c  and 2c  approximating 1s  
and 2s , respectively) obtained by the conventional EMD, 
SSA-EMD, and the method of Ref. [25] are illustrated by Fig. 
8. The measures of the decomposition quality for the methods 
in addition to the MSE between IMFs and their corresponding 
harmonic components are presented in Table 1. It can be 
observed that the EMD and SSA-EMD are comparable, while 
the method of Ref. [25] is obviously less effective. This is 
due to the fact that SSA-EMD preserves the EMD algorithm, 
but the method of Ref. [25] modifies it. The method of Ref. 
[25] and SSA-EMD method proposed by the current paper 
are essentially different from the following points of view:

The numerical method: It can be seen that SSA is 
employed after EMD in Ref. [25]. In the SSA-EMD method, 
however, SSA is utilized inside the EMD algorithm. 

The concept: Ref. [25] uses SSA as a post-processing of 
the EMD results while the SSA-EMD method tries to improve 
the EMD algorithm by using SSA inside the sifting process.

The aim: Ref. [25] aimed at the trend extraction, while 
the SSA-EMD method aimed at providing a noise-tolerant 
version of EMD. 

The details: Ref. [25] uses Lomb-Scargle spectral analysis, 
rounding and Mann-Kendall rank methods, while the SSA-
EMD method utilizes the periodogram of the time series.  

The details of the implementation of SSA-EMD are only 
presented for this benchmark problem to clarify the algorithm. 
To avoid lengthening the paper, the final results of EMD and 

Table 1. The measures of the decomposition quality for the EMD and SSA-EMD applied to the sta-
tionary signal 

The measures The component The EMD The SSA-EMD 
The method of 

Ref. [25] 

OI  21 , cc  0.0182 0.0037 0.0263 

II  
1c  0.0238 0.0207 0.0274 

2c  0.0117 0.0102 0.0358 

EI  21 , cc  0.0582 0.0145 0.1146 

MSE 
11 , sc  0.0067 0.0006 0.0993 

22 , sc  0.0073 0.0006 0.0142 

 

Table 1. The measures of the decomposition quality for the EMD and SSA-EMD applied to the stationary signal 
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Fig. 8. The IMFs attained by the EMD and SSA-EMD for (a) the high-frequency harmonic component and (b) the 

low-frequency harmonic component 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. The IMFs attained by the EMD and SSA-EMD for (a) the high-frequency harmonic component and (b) 
the low-frequency harmonic component
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SSA-EMD are presented hereafter.

4- 2- 2- A Non-Stationary Signal
Let us investigate the following signal composed from a 

harmonic component and a chirp component:
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for [ ]10,0=t . The signal is sampled at a frequency of 

100 Hz. The signal and its components are illustrated in Fig. 
9. The signal is decomposed by EMD, SSA-EMD, and the 
method of Ref. [25] as depicted in Fig. 10. Additionally, 
the measures of the decomposition quality, MSE, and the 
computation times of the methods are presented in Table 2. It 
can be demonstrated that the SSA-EMD can be successfully 

implemented on non-stationary signals as well as stationary 
signals. Moreover, the results of EMD and SSA-EMD are 
comparable in all aspects, while the method of Ref. [25] is 
obviously less effective. This is because SSA-EMD preserves 
the EMD algorithm, but the method of Ref. [25] modifies it.

4- 2- 3- A Noisy Signal
Suppose that noise is added to the previous stationary 

signal as follows:
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in which 5=f  and ( )tn  is a white noise signal with 

 

 

 

 

Fig. 9. The non-stationary signal 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. The non-stationary signal

 

 

 

  

(a) (b) 
Fig. 10. The IMFs attained by the EMD and SSA-EMD for (a) the non-stationary component and (b) the harmonic 

component 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. The IMFs attained by the EMD and SSA-EMD for (a) the non-stationary component and (b) the 
harmonic component
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a noise power spectral density (PSD) of 0.001. The signal 
is sampled at a frequency of 100 Hz (Fig. 11). The noisy 
stationary signal is decomposed by EMD and SSA-EMD. 
The obtained IMFs are depicted in Fig. 12. Additionally, 
IMF instantaneously frequencies and amplitudes obtained by 
EMD and SSA-EMD are presented in Figs. 13 and 14.

There are essential differences between the results of 
EMD and SSA-EMD:

The numbers of IMFs are dissimilar. EMD and SSA-
EMD generate 6 and 5 IMFs, respectively. In an ideal case, 
only three IMFs corresponding to ( )ts1 , ( )ts2  and ( )tn  
should exist. However, the EMD algorithms are not able 
to isolate noise in only one IMF. Based on the frequency 
contents depicted in Fig. 13, the first three IMFs obtained by 
EMD represent noise. However, two noisy IMFs are acquired 
for the SSA-EMD case,.

EMD results are highly degraded with noise, while SSA-
EMD is more resistant to noise. This can be approved by 
Figs. 13 and 14. Based on EMD results, the high-frequency 
component (i.e., ( )ts1 ) can be observed in both third and 
fourth IMFs (i.e., 3c  and 4c ), and the low-frequency (i.e., 
( )ts2 ) component can be observed in both fourth and fifth 

IMFs (i.e., 4c  and 5c ). On the contrary, SSA-EMD results 
are more compatible with the signal component so that the 
third and fourth IMFs (i.e., 3c  and 4c ) correspond to the 
high and low-frequency components (i.e., ( )ts1  and ( )ts2
), respectively. Based on Figs. 13 and 14, the instantaneous 
frequencies of 3c  and 4c  are almost equal to that of high- 
and low-frequency components, and their instantaneous 
amplitudes are almost equal to 1.

Some senseless IMFs are provided by EMD. For example, 
the sixth IMF (i.e., 6c ) is not physically significant. On 

 

 

Fig. 11. The noisy stationary signal 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. The noisy stationary signal

Table 2. The measures of the decomposition quality for the EMD and SSA-EMD applied to the non-
stationary signal

 

The measures The component The EMD The SSA-EMD 
The method of 

Ref. [25] 

OI  21 , cc  0.008 0.0056 0.0146 

II  
1c  0.1260 0.1093 0.1507 

2c  0.0101 0.0086 0.0880 

EI  21 , cc  0.0244 0.0166 0.1057 

MSE 
11 , sc  0.0056 2.5348e-4 0.0738 

zc ,2  0.0060 2.8860e-4 0.0369 

 

Table 2. The measures of the decomposition quality for the EMD and SSA-EMD applied to the non-stationary 

signal 
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(a) (b) 
Fig. 12. The noisy stationary signal decomposed by (a) the EMD and (b) SSA-EMD 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12. The noisy stationary signal decomposed by (a) the EMD and (b) SSA-EMD
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(a) (b) 
Fig. 13. The IMF instantaneously frequencies obtained by (a) the EMD and (b) SSA-EMD 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13. The IMF instantaneously frequencies obtained by (a) the EMD and (b) SSA-EMD
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the contrary, SSA-EMD results are more compatible. For 
example, the fifth IMF (i.e., 5c ) has small instantaneous 
amplitudes compared to the third and fourth IMFs. 

Based on these results, it can be concluded that SSA-
EMD outperforms EMD in handling noisy signals.

5- Nonlinear Aircraft System Identification Problem 
Using SSA-EMD
5- 1- The Aircraft

The Active Aeroelastic Wing (AAW) F-18A aircraft 
is examined in this study. The characteristics of the F/A-
18 aircraft are presented in Table 3. The data used in this 
paper is obtained from flight tests that were designed and 
implemented for the aircraft system identification in order 
to extract its stability and control derivatives [‎28]. Flight 
test data for some transonic and supersonic flight conditions 
are reported in Refs. [‎29-‎30]. Flight data were obtained by 
various sensors such as rate gyros, linear accelerometers, air 
data system, INS, GPS, and control surface sensors. 

Previous studies indicate that the F/A-18 aircraft is an 
aeroelastic aircraft and disregards the aeroelastic modes 
results in unacceptable predictions of the roll performance 
at transonic and supersonic regimes [‎28]. This may severely 
degrade the flying quality of the aircraft and even cause 
accidents. To investigate the roll performance of the aircraft 
with a reduced-stiffness wing, several flight tests were 
undertaken. Some flight test data of the aircraft at dissimilar 
flight conditions are presented in Ref. [‎30]. Since the aircraft 

had a control system generating Single-Surface Inputs 
(SSIs), the data is suitable for the investigation of the aircraft 
behaviors in presence of different control excitations. In 
this paper, only the aircraft behaviors excited by the aileron 
commands are studied. The time-histories of the lateral-
directional flight parameters (i.e., the roll rate p , the yaw 
rate r , the sideslip angle β  and the bank angle φ ) excited 
by the aileron command (i.e., Ad ) at the Mach number of 
0.85 and an altitude of 5000 ft (i.e., smu 288.75=  and 

50327Pa=q ) are illustrated in Fig. 15.

 

. . 

(a) (b) 
Fig. 14. The IMF instantaneous amplitudes obtained by (a) the EMD and (b) SSA-EMD 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14. The IMF instantaneous amplitudes obtained by (a) the EMD and (b) SSA-EMD

Table 3. The characteristics of the F/A-18 aircraft

Unit Value Parameter 

kg  15109 m  

2m  37.16 S  

m  11.40 b  
2.mkg  31183 xxI  
2.mkg  230414 zzI  

2.mkg  -4028 xzI  

 

Table 3. The characteristics of the F/A-18 aircraft 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



S. A. Bagherzadeh and H. Mohammadkarimi, AUT J. Model. Simul., 53(2) (2021) 153-178, DOI: 10.22060/miscj.2021.19742.5243

167

5- 2- The Gray-Box Nonlinear Aircraft Model 
In this paper, a novel gray-box approach is proposed for 

the aircraft system identification that extracts non-standard 
flight modes from flight test data by the improved SSA-EMD, 
and uses them for aircraft modeling. The proposed process 
for the aircraft system identification is illustrated in Fig. 16.

The characteristics of the proposed method for the aircraft 
system identification are described below:

IMFs of the flight parameters (i.e., 
( ) ( ) ( ) ( ) ( )[ ]tttrtptT φβ=x ) obtained by either EMD or 

SSA-EMD as well as the control command (i.e., ( )td A ), are 
used as the inputs of the system identification block.

The calculated force and moment coefficients 
[ ]nlY

T CCC=C  are used as the targets of the system 
identification block. The calculated force and moment 
coefficients can be obtained by Reverse Equations of Motion 
(REOM) as follows:
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A Hammerstein-Wiener (HW) model is selected for the 
aircraft system identification. The HW model represents 
the relationships between the inputs and outputs of the 
system by a dynamic linear transfer function and two static 
input and output nonlinear elements. The output of the 
HW model is the estimated force and moment coefficients 

[ ]nlY
T CCC ˆˆˆˆ =C . 
The proposed system identification method is aimed at 

minimizing the error between the calculated and estimated 
force and moment coefficients (i.e., TC  and TĈ ) by 
updating the HW model parameters. To that end, a learning 
rule is needed. The “Levenberg-Marquardt” training 
algorithm is employed in this paper.

Once the HW model parameters are fixed, the 
estimated rate of the flight parameters can be obtained (i.e., 

( ) ( ) ( ) ( ) ( )



= tttrtptT φβ 





ˆˆˆˆx̂ ) using the following Direct 
Equations Of Motion (DEOM):
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Fig. 15. The time-histories of the lateral-directional flight parameters excited by aileron doublets at Mach number of 

0.85 and an altitude of 5000ft. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 15. The time-histories of the lateral-directional flight parameters excited by aileron doublets at Mach number of 
0.85 and an altitude of 5000ft.
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Finally, it is easy to obtain the estimated flight parameters 
by considering the initial conditions ( )0x , as follows:
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5- 3- Results

The IMFs obtained by EMD and SSA-EMD methods for 
the roll rate p , yaw rate r , sideslip angle β , and the bank 
angle φ  as the inputs of the system identification block are 
illustrated in Figs. 17 and 18, respectively. It can be observed 
that EMD and SSA-EMD provide 7 and 5 IMFs, respectively. 
This is because the EMD performance is degraded due to the 
noisy flight parameters, while SSA-EMD is more resistant 
to noise. Unfortunately, the IMFs generated by EMD are 
not physically significant because the first three IMFs are 
contaminated with noise. This may cause illusive flight 
modes to be involved in the aircraft system identification.

Once the IMFs of the flight parameters are extracted, 
they are used as the input of the system identification block. 
Afterwards, the proposed process of the aircraft system 
identification can be used to estimate flight parameters. 
The estimated flight parameters identified based on the 
IMF extracted by EMD and SSA-EMD are illustrated in 
Fig. 19. Based on the results, the model identified by SSA-
EMD outperforms the one identified by EMD. SSA-EMD 
generates a smaller number of physically significant IMFs 
for every flight parameter while EMD provides several 
IMFs that are adversely affected by noise. For a quantitative 
comparison, the Root Mean Squared Errors (RMSEs) 
between the estimated and measured flight parameters as well 

as the fitness percentages of EMD and SSA-EMD models are 
calculated by the following definitions:
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where 

n

n

i
i∑

== 1
x

x . The RMSEs and fitness percentages 

of the models predicting the flight parameters are presented 
in Table 4. The results indicate that SSA-EMD outperforms 
EMD.

6- Conclusions
In this paper, a new EMD method called the SSA-EMD is 

introduced. The SSA-EMD has several advantages: Firstly, it 
is based on a direct approach in which the signal trend can be 
extracted without the need for the concept of the envelopes. 
Secondly, the original algorithm of EMD is preserved, and 
only the trend extraction technique of the inner loop is altered. 
Thirdly, the trend extraction is performed using SSA that has 
a rigorous mathematical definition. Finally, a new stopping 
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(a) 

 
(b) 

Fig. 17. The IMFs obtained by the EMD method for (a) p  , (b) r  , (c) β  and (d) φ  (Continude)
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(c) 

 
(d) 

Fig. 17. The IMFs obtained by the EMD method for (a) p , (b) r , (c)   and (d)   

 

 

 

 

 

Fig. 17. The IMFs obtained by the EMD method for (a) p  , (b) r  , (c) β  and (d) φ  
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(a) 

 
(b) 

Fig. 18. The IMFs obtained by the SSA-EMD method for (a) p  , (b) 

r  , (c) β  and (d) φ   (Continude)
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(c) 

 
(d) 

Fig. 18. The IMFs obtained by the SSA-EMD method for (a) p , (b) r , (c)   and (d)   

 

 

 

 

 

Fig. 18. The IMFs obtained by the SSA-EMD method for (a) p  , (b) 

r  , (c) β  and (d) φ   
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(a) 

 
(b) 

Fig. 19. The estimated  (a) p  , (b) r  , (c) β  and (d) φ   identified by the EMD and SSA-EMD 
(Continude)
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(c) 

 
(d) 

Fig. 19. The estimated (a) p , (b) r , (c)   and (d)   identified by the EMD and SSA-EMD 

 

 

 

 

 

Fig. 19. The estimated  (a) p  , (b) r  , (c) β  and (d) φ   identified by the EMD and SSA-EMD
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criterion is proposed that is directly connected to the trend 
extraction method.

In the proposed technique of the trend extraction, the EOFs 
of the signal are obtained by SSA, smooth EOFs are detected, 
and the summation of the corresponding RCs is considered 
as the signal trend. The details of the implementation of the 
SSA-EMD are described in the paper. SSA-EMD and the 
conventional EMD are applied to some benchmark signals 
and compared by the measures of the decomposition quality. 

Finally, EMD and SSA-EMD were used for analyzing 
noisy flight test data of the F/A-18 aircraft at the transonic 
regimes for the prediction of its aeroelastic behaviors. Based 
on the results, one can observe that SSA-EMD leads to better 
estimations of the flight parameters due to its noise rejection 
capability.

Further research is needed to investigate the noise-
rejection capability of the proposed SSA-EMD for different 
noise powers, using dissimilar benchmark signals. Moreover, 
the dynamic model of the aircraft can be improved by 
considering the longitudinal-lateral/directional couplings 
of the aircraft aerodynamic model. Furthermore, the 
performance of the proposed system identification method 
should be checked for different flight conditions, as well as 
various control commands. Finally, the nonlinearities can be 
considered when dealing with high angle of attack maneuvers. 
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Nomenclature
Abbreviations

Table 4. The RMSEs and fitness percentages of the EMD and SSA-EMD models predicting 
flight parameters

 

 

 EMD SSA-EMD 

 RMSE Fitness (%) RMSE Fitness (%) 
p  0.1752 38.1138 0.0484 82.9126 

r  5.3851 68.3473 1.8533 89.1066 

  0.2056 50.5966 0.0474 88.6071 

  1.6592 83.0068 0.6783 93.0530 

 

Table 4. The RMSEs and fitness percentages of the EMD and SSA-EMD models predicting flight 

parameters 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abbreviation Phrase 

AAW Active Aeroelastic Wing   

ADS Air Data System   

DEOM Direct Equations Of Motion   

EMD Empirical Mode Decomposition   

EOFs Empirical Orthogonal Functions   

FTIs Flight Test Instruments   

GPS Global Positioning System   

HW Hammerstein-Wiener   

IMFs Intrinsic Mode Functions   

INS Inertial Navigation System   

MSE Mean Squared Error   

PCs The Principal Components   

PSD power spectral density  

RCs Reconstructed Components   

REOM Reverse Equations Of Motion   

RMSEs Root Mean Squared Errors   

RNS Radio Navigation System   

SSA Singular Spectrum Analysis   

SSIs single-surface inputs   

SVD Singular Value Decomposition   
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Notations

Symbol Definition 

kk ba , the coefficients of finite Fourier series 

b the airplane span 

c the IMF 

 0,xC the contribution of low frequencies 

 nlY
T CCCC the force and moment coefficients 

d Xthe rank of the matrix  

Ad The aileron control command 

EI the energy index 

 th the high-frequency oscillation 

i the counter of the EMD process 

I the periodogram of the time series 

II the local zero mean index 

xzzzyyxx IIII ,,, the aircraft moments of inertia 

k the counter of the sifting process 

l the window length 

 tm the trend 

m the airplane mass 

OI the orthogonality index 
p eigenvector 
p the roll rate 

P Empirical Orthogonal Function 
q the Principal Components 
q the dynamic pressure 

r the yaw rate 

r the remainder of the EMD 

S the airplane reference area 

u the airspeed 

 tx the signal 

 txi the delayed time series 

X the trajectory matrix 

iX the elementary matrix 

          tttrtptT x the state vector 

Y TXXY  

 tzi the reconstructed component 

Z A group of elementary matrices 

 the sideslip angle 

 the bank angle 

 the eigenvalue 

 The eigen matrix 
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