@

AUT JOURNAL OF
MODELING AND
SIMULATION

AUT Journal of Modeling and Simulation

AUT J. Model. Simul., 53(2) (2021) 179-196
DOI: 10.22060/miscj.2021.19741.5244

Path Following of an Underactuated Autonomous Underwater Vehicle Using

Backstepping and Disturbance Observer-Based Sliding Mode Control
Z. Fereidan Esfahani', A.R. Vali”?, S. M. Hakimi', V. BehnamGol?, B. Abdi!

' Department of Electrical Engineering, Damavand Branch, Islamic Azad University, Damavand, Iran.
2 Department of Control Engineering, Malek Ashtar University of Technology, Tehran, Iran.

Review History:

Received: Mar. 13, 2021
Revised: Aug. 08, 2021
Accepted: Oct. 14,2021
Available Online: Mar. 10, 2022

ABSTRACT: In this paper, a new hierarchical robust nonlinear control scheme is designed for the
horizontal plane path following control problem of an underactuated autonomous underwater vehicle
in the presence of the model uncertainties and fast-time-varying external disturbances. First, the path
following error model is established based on the virtual guidance method. Afterwards, the controller
design starts at a kinematic level and evolves to a dynamic setting, building on the kinematic controller
derived, using backstepping technique and a disturbance observer-based sliding mode control,

respectively. A Lyapunov-based stability analysis proves that all the signals are ultimately bounded, Keywords:
and path following errors converge to an arbitrarily small neighborhood of the origin. Following ;o0 0a iy
achievements are highlighted in this paper: (I) in order to simplify the control design, the derivative )

path following

of the virtual control is estimated by the disturbance observer which avoids explosion of complexity

without common filtering techniques; (II) the proposed controller can be easily implemented with no backstepping

information of the bounds on the parameter uncertainties and external disturbances in a continuously ~sliding mode

changing environment. Furthermore, computer simulations have shown that the overall closed-loop disturbance observer

system achieves a good path following performance, which proves the feasibility and good robustness

of the proposed control law.

1- Introduction

Autonomous Underwater Vehicles (AUVs) have been
invaluable tools for researching on marine environment.
This class of underwater vehicles has proven its merit in a
wide range of applications such as inspection, exploration,
oceanography, biology, and so on [1]. The motion control
of AUVs is challenging due to the nonlinear coupled terms,
uncertain hydrodynamic parameters, and significant external
disturbances. In addition to these, due to the consideration
of weight, cost, and energy consumption, most AUVs are
underactuated (i.e., they have fewer actuators than the
number of degrees of freedom). Hence, one cannot control
every state variable directly and the effects of disturbances on
the uncontrollable variables are not easy to be compensated
either [2]. Therefore, due to the low maneuverability
character of underactuated AUVs, it is particularly important
to investigate path following control. In the path following
problem, the vehicle is regulated to follow a path in the
absence of the temporal specifications. Typically, smoother
convergence to a path can be achieved when path following
strategies are used instead of trajectory tracking controllers,
and the control inputs are less likely to reach saturation.

Backstepping Control (BSC) has provided a powerful
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tool to design controllers for underactuated AUVs by
setting candidate Lyapunov functions, and later producing
a stabilizing control law [3, 4]. However, there are some
problems with the traditional BSC. One is the so-called
“explosion of complexity”, which results from tedious
differential calculations of virtual controls, especially when
the system order grows. In recent years, novel strategies
introducing “command filters” have been used sometimes to
deal with this problem [5, 6].

Another problem of the traditional BSC is that its
robustness against the uncertainties requires further strength.
As a common solution, Disturbance Observer- based (DO)
controllers have been widely used for AUV control, where
DO plays a key role. In references [7-9], different types of
DOs were introduced to provide an adequate estimation
for the dynamic uncertainties and external disturbances. In
reference [10], a path following controller was designed
for an underactuated AUV with the dynamic and velocity
measurement uncertainties. The method consists of a DO-
based kinematic controller and a linear-parameter-varying-
based dynamic controller. In reference [11], an adaptive
Extended State Observer (ESO) was proposed to estimate
the unknown submarine velocity, parameter uncertainties
and external disturbances for an AUV trajectory tracking
problem. Guerrero et al. developed an adaptive DO based
on the generalized super-twisting algorithm through ESO
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technique [12]. The developed DO was introduced into
BSC and nonlinear proportional-derivative control laws.
Although the DO-based control methods have better control
performance, the design process is often more complicated,
and/or the control scheme needs the adjustment of many
controller gains, which can be time-consuming.

Compared to the conventional BSC, adaptive controllers
are considered to be better for the systems exposed to
uncertainties since they can enhance their performance with
little or no information of the bounds on uncertainties. For
instance, one can refer to [13], model-based output feedback
control [14], and adaptive output feedback control based
on the dynamic recurrent fuzzy neural network [15] for
underactuated AUVs. In reference [16], a neural network and
an adaptive compensator were used for the approximation of
the unknown dynamics, and the compensation of the unknown
effects like external disturbances and the reconstruction error
of the neural network, respectively. However, these adaptive
controllers impose intensive computational burden in the case
of higher order systems and are effective only for constant or
slowly-varying disturbances.

Unlike the above adaptive controllers, robust adaptive
control approaches have shown the special characteristics
in motion control of underactuated AUVs with uncertain
dynamics and environmental disturbances. In reference [17],
a robust adaptive controller was proposed by using Lyapunov
direct method, BSC, and parameter projection techniques. A
novel and adaptive dynamical SMC scheme was presented for
the trajectory tracking control problem of an underactuated
AUV in the presence of systematical uncertainty and
environmental disturbances [18], where the robustness of
the controller was enhanced by the combination of BSC
and SMC. It used a virtual velocity variable to represent the
attitude error in order to avoid the representation singularities
and simplify the analytical expression of the control law. In
reference [19], an adaptive robust path following controller
was presented by integrating BSC and SMC, and fuzzy logic
was used to deal with the problem of nonlinearity, uncertainties
and external disturbances. Wang et al. proposed a robust
adaptive controller based on the command filtered BSC for
path following task, where a neuro-adaptive technique was
employed to deal with the problem of parameter uncertainties
and external disturbances [5].

The SMC-based control strategies suffer from the
chattering phenomenon. As usual, this problem can be tackled
by approximating discontinuous function by continuous
terms [20], and by increasing the order of the sliding surfaces
[21, 22]. As an alternative way, one can use intelligent
control approaches like fuzzy logic and neural network
control to estimate uncertainty items online to reduce system
chattering [19, 23]. However, checking the stability of these
intelligent controllers has been found to be very difficult
[24]. In addition, the controllers based on neural networks
or fuzzy systems greatly depend on the number of the neural
network nodes or the number of the fuzzy rule bases, thereby
resulting in more computational burden and online learning
time. It should be mentioned that, in practice, a simpler
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controller with less computational burden is acceptable for its
implementation [25].

Motivated by aforementioned considerations, in this
paper a nonlinear robust control with a hierarchical structure
is proposed for path following of an underactuated AUV on
the horizontal plane exposed to the dynamic uncertainties and
fast-time-varying external disturbances. First, we establish the
path following error model based on the “virtual guidance”
method, then we design the control law using BSC and SMC
strategies with respect to the kinematic and dynamic models
of the system. The disturbances of the ocean currents can vary
considerably even on a small journey, making it difficult to
obtain the bounds on uncertainties. In order to overcome this
problem, a new DO is proposed in this paper that accurately
estimates the whole effects of the uncertainties and includes
the effects of them in the control inputs. Additionally, the
chattering problem can be obviated with the presence of
DO. Thus, the proposed controller can be designed without
knowing the exact parameters of the dynamic model and
the bounds on the uncertainties. Meanwhile, is relatively
easy to be applied. The stability of the proposed controller is
also discussed by Lyapunov stability criteria to demonstrate
the ultimate boundedness of all the path following errors.
Based on the stability analysis result, the characteristics of
the closed-loop system and tuning guidelines of the control
gains are addressed. The work presented here has several
advantages over many techniques available in the literature
such as [3, 5]. These advantages include easy derivation of
the control law and low computational burden. To illustrate
the effectiveness of the developed controller, simulation
results for path following problem of an underactuated AUV
on the horizontal plane are presented and discussed. The main
contributions of this paper are as follows:

Unlike the conventional SMC, no knowledge of bounds
on the parameter uncertainties and time-varying external
disturbances is required.

Unlike the other approaches based on BSC, there is no
need for analytical calculation or command filtering to obtain
the derivative of virtual control.

The proposed controller has a strong robustness against
the parameter uncertainties and time-varying external
disturbances, and has characteristics such as simplicity and
continuous control signals.

Stability of the overall system is proved.

The remainder of this paper is structured as follows. A
brief introduction to the AUV dynamics is presented in section
2. Section 3 details the design of the proposed method. In
section 4, the stability of the developed method is addressed
by Lyapunov sense. Simulation results and a brief discussion
of the proposed control system are presented in section 5 and
section 6, respectively. Finally, the conclusions are given in
section 7.

2- Problem Formulation
2- 1- Underactuated AUV Modelling

The motion equations of an underactuated AUV on
the horizontal X-Y plane are presented in this section.
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Fig. 1. Diagram of two-dimensional path following of the AUV.

The kinematic and dynamic equations for the AUV can be
developed using an earth-fixed coordinate frame {E } and
a body-fixed coordinate frame {B } , as depicted in Fig. 1.
By assuming that (I) is the Center of Mass (COM) of the
vehicle is coincident with the origin of {B } , (I) the mass
distribution is homogeneous, and (I1I) the hydrodynamic drag
terms of order higher than two are negligible, the AUV model
can be given as follows.
The AUV kinematic equations are [5]:

x =ucos(y, )-vsin (v, )
¥ =usin(y, )+vcos (v,) (1)
Yy =r

The AUV dynamic equations are [26]:

( my; - fi Ty Dy(t)
mqy mqy mqy mqy
m D, (t)
1'7=—iur—f—2v—v— )
ms, My, My,
[ my—my, f3 . D.(®)
kr = uv — _—
ms3 ms3 Mmsz3  Mgs3

where x and ) denote coordinates of the AUV in { E}
, and y, is the yaw angle that parameterizes the rotation
matrix from {B! to {E } u and v denote the surge
(forward) and sway (lateral) velocities expressed in {B }
, respectively. r denotes the angular velocity (yaw rate);

the variables 7, and 7, represent the control force along
the surge motion of the AUV, and the torque control that is
applied in order to produce angular motion around the z,
axis of {B}, respectively; D, (t),i =u,v,r represent the
external disturbances induced by ocean currents, waves
and wind; The constants £ >0, =123 and m,,i=1,2,3
represent the combined inertia and added mass terms. Note
that since there is no actuator

for direct controlling the lateral motion, the AUV model
is an underactuated dynamical system, and that # and » are
the kinematic system inputs.

2- 2- AUV Path Following Error Dynamics

The path following error model in the horizontal plane
is presented in this section [3] (See Fig. 1). In general, a
path following controller should compute: (I) the distance
between the COM of the vehicle Q , and the virtual guidance
point P , on the path, and (II) the angle between the total
velocity vector of the vehicle and the tangent to the path at
P, making both close to zero. This intuitive explanation
motivates the development of a kinematic model in terms of
the Serret-Frenet (SF) coordinate frame { F } that progresses
along the path; {F } plays the role of the body axis of the
virtual guidance vehicle that should be followed by AUV.
Using this set-up, the mentioned distance and angle form
the coordinates of the path following error space where the
control problem is formulated. Let y, =w, + 8 be the
angle of the total velocity vector, where = atan (v Ju ) is the
drift (side-slip) angle, with the assumption that fu|+v |0
. Thus, the path following error coordinates can be defined
as (x,,»,.¥, ), where (x,,y,) are the coordinates of the
vehicle in {F}, and y, =y, -y, where ¥, is the angle
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of the tangent to the path at P .

In the path following problem, the path is parameterized
by a scalar parameter § , which § may be defined as the
arc length from a given point. In order to describe the path
precisely, we define ¢ (s) as the path curvature at P .
Afterwards, the velocity of P is (dP/dt) =(s,0,0) in
{F }, and the angular velocity of { F} can be expressed as
u, =(0,0,c (S )s')T . It is also straightforward to compute the
velocity of O in { F} as:

+(d dP dl
R; (ﬁ =(zl *(zl Hoexd) o

where [ denotes the vector from P to Q
: (dl /dt), =(x,,y,,0) (dQ /dt), =(,5,0)
(z‘lpxl):(—c(s)s'ye,c(s s'xe,O), and RI is the rotation
matrix from {E£} to {F|:

cos(y,) sin(y,) 0
R; =|-sin(y,) cos(y,) O
0 0 1

Equation (3) can be rewritten as:

X s'(l—c(s)ye)+x'2
Ry |=| c(s)sx,+y, )
0 0

Let U, =+/u®+v? be the total velocity. Later, we rewrite
the kinematic Eq. (1) with respect to U, as:

x¥=U, COS((//;)
¥ =Uysin(y;) (5)
Gy =rp

Hence, the path following error dynamic model can be
obtained using Eq. (4) and Eq. (5) as:

X, =5(c(s)y, —1)+U, cos(y,)
Vv, =—c(s )s'xe +U, Sil’l(l//g) (6)
v, =r+ﬂ—c(s)§
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Remark 1: The term [ in the third relation of Eq. (6)
is the hiding acceleration (2 and V ) terms which can be
obtained by differentiating or direct measuring. The former
may accentuate high-frequency noises and the latter increases
the costs. Here, we obtain i/, in two steps to bypass these
issues: first by integrating the term » —¢ (s ) s , then by adding
[ to the integrated term.

2- 3- Control Objective

In this paper, the control objective can be expressed as
follows: Consider the vehicle’s model with the kinematic
and dynamic equations given by Eq. (1) and Eq. (2). Given
a path (parameterized in terms of its length) to be followed
and a desired profile for the forward velocity, ¢ <y, . Derive a
feedback control law for the thrusting force 7, , the heading
torque 7,, and the rate of progression s, of the virtual
guidance point P, along the path so the path following
error variables x,, ¥,, y,, and u —u, converge to a
neighborhood around the origin that can be made arbitrarily
small in the presence of the dynamic uncertainties and fast-
time-varying external disturbances,.

3- Path Following Controller Design

This section introduces a nonlinear robust double-
closed-loop strategy to steer the dynamic model of the AUV
described by Eq. (1) and Eq. (2) along a desired path. The
first step in the proposed scheme with a specific hierarchical
structure is related to the design of a virtual control input
using BSC technique in the outer closed-loop that ensures the
path following errors converge to zero. Afterwards, the true
control inputs are built on the virtual control derived using
the DO-based SMC approach in the inner closed-loop.

3- 1- Kinematic Control

First, by considering the path following error dynamics in
Eq. (6), the kinematic controller is designed to compute the
progression rate § of the virtual guidance point P , along
the path and the yaw rate r, as the virtual control inputs.
The kinematic control is synthesized using conventional
BSC. In the kinematic design, it is conventional to assume
that the actual surge velocity # is equal to the desired surge
velocity #, [3] in order to allow the system to be considered
as autonomous.

3- 1- 1- Position Control
Consider the candidate Lyapunov function V', as:

v, =%(xf+yf) )

Differentiating }/, with respect to time and using Eq. (6)
yields:
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/=, (U eosly) ) U)o

Consider the progression rate S of the virtual guidance
point P , along the path and the desired approach angle ¥,
as the virtual control values:

§=Uycos(y,)+K, x,

e -1
'//c(ye)z—/lym

2Kyye

9)
,0<A, <=
2

where K and K are the positive constants that will
be selected later. The desired approach angle, ¥/, , is useful
in shaping the transient response during the path approach
phase [3].

Let suppose that y, =y, since y y_ <0 forall y ,then
substituting Eq. (9) in Eq. (8) yields:

V,=-K x2- i el -1
1= X yeUB S /IYT <0 (10)
e +1

Therefore, the system can be asymptotically stabilized
using Eq. (9) if lim v, =y, -
>0

3- 1- 2- Attitude Control

By considering that {/, is not a true control, we have to
introduce the angular error variable 7 =y, —y_ and try to
stabilize it. Define the candidate Lyapunov function J, as:

V, = (11)

N | —

Differentiating J/, along with Eq. (6) yields:
Vo= (r+B—c(s)s—v.) (1)

By considering the yaw rate 7 as the virtual control input,
its desired value 7, can be given by:

r,==PB+c(s)s+y, —K @ (13)

where K v is a positive constant to be selected later. Later,

substituting Eq. (13) in Eq. (12) yields:
. o~
V==K, 7" +yr, (14)

where 7, =7 —7, . Therefore, it can be concluded that
the system asymptotically follows the desired approach angle
if limr =r, .
"Remark 2: Tt should be noticed that Eq. (13) appears in
a noncausal form. In fact, the term f contains acceleration
terms, and through them a loop are formed that makes »
dependent on itself. An approach is suggested by Lapierre
and Soetanto where the dynamic model is used to yield an
algebraic solution for  [3]. However, considering a dynamic
model to estimate system accelerations can be problematic in
the case of uncertain dynamics. Here, we obtain ,B by passing
 through a high-pass filter to avoid this problem, effectively
simplifying the expression of the kinematic control 7, .

3- 2- Dynamic Control

The feedback control laws in the first equation of Eq.
(9) and Eq. (13) are only applied to the kinematic model of
the vehicle. Here these control laws will be extended to deal
with the AUV’s dynamics. In the kinematic design, the total
velocity of the AUV was left free, but implicitly dependent
on the desired surge velocity #,, . In the dynamic design, the
surge velocity # will be explicitly taken into account. Notice
that the AUV’s yaw rate ¥ was supposed to be a true control
input. This assumption is removed here by considering the
dynamics of the AUV. In this section, the true control inputs
of the AUV will be derived so that # —u, and 7 —7, get
close to zero. Here SMC along with the DO is introduced for
the dynamic control law. The key idea of this section is to
estimate the whole uncertainties by DO, and to later use the
estimated values in the true control inputs to negate the effect
of the uncertainties.

3- 2- 1- Sliding Mode Control

In the sliding mode approach, suitable sliding surfaces of
the desired dynamics are defined, and the control laws are
derived that sliding conditions are always satisfied [19]. This
makes the system insensitive to uncertainties and to behave
according to the definition of the sliding surfaces. In this
section, the sliding surfaces are defined and the control law
is derived.

We define the sliding surfaces as:

S, =e, (t),i =u,r (15)

where e, =u —u,, e, =r —r, . Differentiating Eq. (15)
with respect to the time and using Eq. (2) yields:
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S, =a, +b, (ri -D, (¢t ))—a,., i=u,r (16)

where ¢, =u,, o, =7, ,and a,,b,,i =u,r are defined
to shorten the equations as:

a, = 22vr——fl u,b, =—
my, my my,
r (17)
m m
a, L2y 23 p p =—o
ms; ms; ms;

We rewrite Eq. (16) with respect to the known and
unknown components:

S, =d +b1, +d., i =u,r (18)
Where:
a, =a, +Aaq,

N , 1 =u,r (19)
b. =b. +Ab,

where a, ,I;i,i =u,r are the nominal constant values,
and Aq,,Ab,,i =u,r are the additive uncertainties with
unknown bounds in the dynamic equations. d,,i =u,r
are terms due to the uncertainties and external disturbances
(and also the acceleration commands) that will be named the
lumped uncertainties henceforth:

A

d, =Aa, +Ab, (r, -D, (t))—bl.Dl. (t)—a,i=u,r (20)

1

Remark 3: Notice that the acceleration command 7, is
incorporated in the lumped uncertainty term and so its effect
will be included in the true control input by DO, and thereby,
obviating the need for analytical operations or command
filtering.

The true control inputs to be designed are composed
of two components, 7/ and Tl.". The former is used for
compensating the known terms, and the latter is used for
compensating the lumped uncertainty term in the dynamics
of the sliding surfaces:

T, =1 +1, i =u,r 1)
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With:

. 1. .

Tiq =—bT(ai +KiSi)’ 1 =u,r (22)

7! 1 d.,i=u,r

P T T A4, L =U, 23
7 (23)

where d .»i =u,and r are the estimations of the lumped
uncertainty terms by DO, and K,,i =u,r are positive
constants to be selected later. The procedure to estimate
the lumped uncertainties by DO is described in the next
subsection. Substituting Eq. (21) and Eq. (22) in Eq. (18)
yields:

S. =-K.S, +b:.1,." +d,,i =u,r (24)

Equatign (24) will be used in designing of DO.

Let dl. Zdi —dl. ,I =u,r be estimation errors.
Afterwards, substituting Eq. (24) in Eq. (23) yields the
dynamics of the sliding surfaces excited by the estimation
errors:

S, =-K,S,+d,,i =u,r (25)

Equation (25) will be used in the stability analysis.

If DO behaves so that the estimation errors tend to zero,
the sliding surfaces will tend to zero, thereby the AUV
will be placed on the target path and will progress with the
desired surge velocity in spite of the parameter uncertainties
and external disturbances. Next, we will design the DO for
estimating the lumped uncertainties so that the estimation
errors tend to zero.

3- 2- 2- Disturbance Observer

The DO designed here is a modified version developed by
Chen et al. [27]. The estimations of the lumped uncertainties
can be expressed as:

Y

d, =y, (t)+p,(S,), i =u,r (26)

where p, (S ; ),i =u,r are linear or nonlinear scalar
functions of the sliding surfaces. Now, the auxiliary variables,
Z (t ),i =u,r , have to be updated in such a way that the
estimation errors, d,,i =u,r , tend to zero. Differentiating
Eq. (26) yields:
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di =7, (t)+%5[,i=u,r 27)

1

where Op, /0S,,i =u,r are called the DO gains. We
substitute Eq. (24) in Eq. (27) to yield:

7 ap[ A -
di=y, (t)+§(—KiSi +b,7, +dl.),z =u,r (28)

i

As mentioned, the auxiliary variables have to be updated
in such a way that the estimation error dynamics are stable.
Therefore, the update law for y, (¢),i =u,r canbe suggested
as:

71‘ (I)Z_%(_Kisi +bAtTin +ji)’i:uar (29)

i

Substituting Eq. (29) in Eq. (28) yields:

di (t)z%cfi,izu,r (30)

1

We subtract both sides of Eq. (30) from d ;L =u,r to
obtain the estimation error dynamics excited by the rates of
the lumped uncertainties:

d; (t)=—%a7i +d., i =u,r 31)

1

Equation (31) recommends that for stability of the
estimation errors, di ,i =u,r , the choice of P (Si )’,' =u,r
have to be so that op, /0S,,i =u,r are positive functions.
In addition, from this equation, it can be found that for the
estimation errors to be bounded, it is necessary to make the
following assumption.

Assumption 1: The values of the lumped uncertainties can

be arbitrarily large, but their rates are bounded:
‘d'l.‘<,ul. LI =u,r (32)

where g, ,i =u,r are positive constants.

4- Stability Analysis
In this section, the stability conditions are discussed and
the ultimate bounds on the relevant variables are obtained.

Consider candidate Lyapunov function ', as:

v, =—(Su2 +d 2)+l<Sr2 +d 2)+V2 (33)

Differentiating 7, along with Eq. (14), Eq. (25) and Eq.
(31) yields:

Vi—K,5 +S,d ~Ped?sdd
as,
(34)
“K,S>+Sd. —%Jf +dd, ~K 7 +S,y

r

By using Young’s inequality, 4p < l( A’+B 2) and Eq.
2

(32) we get:
v, S—(Ku _ljs,;_ P gy
2 oS, 2
ap, 1)5 ).
—(K,-1)S*—| Zr—=1d*~| K, —= [y* +
O e L L

To make ensure that the whole system is stable, the control
parameters and DO gains can always be selected as:

d, |4,

(35)
K,

d.

1 ap, 1
K —>0K —-1>0——-——>0,
"y r as, 2 (36)
P 1ok Loy
oS, 2 )

r

From Eq. (35), it can be concluded that the dynamics
of the estimation errors, d I =u,r, the sliding surfaces,
S,,i =u,r, and the angular error variable {/ are not
asymptotically stable but can be ultimately bounded in the
sense of Corless and Leitman [28], provided that the control
parameters are adopted appropriately by satisfying Eq. (36).
By avoiding the details of derivation, the ultimate bounds on
the mentioned variables can be given as:

7 H P

‘di‘ﬁapi /aSl s 1 u,r (37)
H; .

Sl<— ~ ;=

il EREI (38)
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Table 1. Simulation conditions for performance evaluation of the controllers.

Condition  Description Time period (s)

(1) no parametric uncertainties and external 0<r <60
disturbances

(2) 30% parametric uncertainties and constant 60<t <120
external disturbances

(3) 30% parametric uncertainties and time- 120<t <200

varying external disturbances

Table 2. The co

ntrol parameters.

K, =22 K,=11 K,=20 dp,/8S, =300
A =xl3 K,=1 K, =12  &p, /a8, =300
proposed controller, numerical simulation of the closed loop
| ~| < M, system is carried out under three different conditions as given
vi= (ap /68 ) K K (39) in Table (1), and a comparison of the controller is done with
r r r v

Additionally, it is straightforward to calculate the ultimate
bounds on the path following errors as:

2u
w,| < ' (40)
(op, /0S,)K K,
< H,
VG s ) AR KK @41
< lurUB ‘C (S )‘ (42)
‘" (op,/0S,)AK K K K,

Thus, we conclude that the above variables are ultimately
bounded and their ultimate bounds can be made arbitrarily
small by appropriately selecting the control parameters.

5- Simulation Results
In this section, to evaluate the control performance of the
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conventional BSC [3]. The model is represented in Eq. (1)
and Eq. (2), and the model parameters can be found in [26].
The planar target path is parameterized as:

where § is updated using Eq. (9). The desired surge
velocity is u, =lm /s, p.(S,)=(p, /3S,)S,.i =u,r,
and the controller design parameters are listed in Table (2).
The initial position, attitude angle, and the initial velocity of
AUV are given by:

(

(u (0),v (0),r(0))=(0.1m /s,0m /s,0rad /s)

x,(s)=50sin(s /50)
¥, (s)=50cos(s /50)

X (O),y (O),y/(O)) =(25m,25m,0rad)

We suppose there are inaccuracies of the order of 30%
in all the AUV’s hydrodynamic parameters. In addition, the
effect of the constant external disturbances is selected as
D, =50N,D, =50N ,D, =40Nm , and the fast-time-varying
external disturbances is considered as follows:
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50
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30F Initial Position
20 F of Virtual Vehicle
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— — —Target Path
Proposed

0 50

Fig. 2. Path following of the AUV in XY-plane.

D, (t)=35sin (O.4m‘ )N
D, (t)=35sin(0.47t )N
, () =20sin (0.27t )cos (0.17t ) Nm

The simulation results given by the conventional BSC and
the proposed controller schemes are shown in Fig. 2 to Fig. 6.
Fig. 2 and Fig. 3 show the path following performance under
all the condition described in Table 1. It can be seen that the
proposed controller succeeded in following the position and
orientation of the virtual vehicle under all the conditions,
although the conventional BSC can only exactly follow the
path under the ideal condition (condition (1)). However, under
the uncertain condition with constant external disturbances,
conventional BSC produces a slightly steady state error in
position and orientation following, whereas the performance
gets degraded greatly in the presence of fast-time-varying
external disturbances. The time history of the true control
inputs during path following control can be observed in Fig.
5.

As can be seen from the simulation results, under the
guidance of the proposed controller, the AUV can almost
accurately complete the planar path following in the presence
of the model perturbations and external disturbances. As
shown in Fig. 3 and Fig. 4, the path following errors, X,
. V. ¥, and the surge velocity error, # —u, eventually
converge to a small area around the origin under the proposed

controller. This is equivalent to state that: (I) the AUV’s
COM approaches the position of the virtual target, and (II)
the AUV moves with the desired forward velocity along the
path. Moreover, the control law developed is not sensitive to
the parameter uncertainties and external disturbances, which
indicates that the proposed controller offers strong robustness
to the uncertainties in hydrodynamic parameters and constant
as well as fast-time-varying external disturbances.

6- Discussion

Fig. 6 shows that under uncertain condition with constant
external disturbances (condition (2)) the estimation errors are
null (after the transient phases). This can be inferred from
Eq. (31) where the estimation error dynamics are excited
by the rate of the lumped uncertainties. This means in the
case of constant or slowly-varying disturbances (i.e. (d;, =0
)), the DO is able to estimate the lumped uncertainty almost
accurately and the path following errors asymptotically
converge to zero. The disturbances induced by the waves
and the wind are rarely constant, but the fast-varying
sinusoidal type is a common model to include the effects of
environmental disturbances in the motion control problems
of the AUVs [7, 29].

7- Conclusions

In this paper, a nonlinear robust controller using BSC and
a new DO-based SMC are proposed for the horizontal plane
path following of an underactuated AUV. The path following
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Fig. 4. Velocity response curves of the AUV: (a) surge velocity, (b) sway velocity and (c) yaw
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Fig. 6. Estimation errors.

error model of the AUV in SF coordinate frame is established
based on virtual guidance method. The control scheme is made
up of a double-looped structure: a kinematic controller and a
dynamic controller. First, a kinematic controller is designed
based on BSC to guarantee the position errors to go close to
zero. Afterwards, a dynamic controller is developed using the
DO-based SMC by considering the output of the kinematic
controller as a reference velocity command. By using the
designed kinematic and dynamic controllers, the stability
of the whole closed-loop cascaded system is proved by
Lyapunov stability criteria. The performance of the presented
control scheme is validated by the computer simulations under
different conditions and compared with conventional BSC.
The proposed controller greatly reduces the complexities of

192

the control law derivations in the approaches based on the
traditional BSC and meanwhile ensures rigorous robustness
of the scheme thanks to its simple and effective compensation
using the DO.

Future research will address the extension of these results
by designing a path following controller for three-dimensional
maneuvers.
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AUV Autonomous Underwater Vehicle
BSC Backstepping Control

COM Center of Mass

DO Disturbance Observer

ESO Extended State Observer

SMC Sliding Mode Control

{ B } body-fixed frame

{ E } earth-fixed frame

{ F} Serret-Frenet frame

uy surge and sway velocities in {B }
UB AUV’s net velocity

r AUV’s yaw rate

(x Y ) AUV’s coordinates in {E}

W, AUV’s yaw angle

fz (l‘ ),i 1,2,3 unknown nonlinear dynamics of the AUV
D, (t ),i =uy,r external disturbances

z,,T. control inputs

m, i 1,2,3 combined inertia and added mass
0 AUV’s center of mass

P virtual guidance point

(x.,».) AUV’s coordinates in {F }

v, yaw angular error

W desired angle

l//; Angle of the total velocity vector
yij drift angle

N arc length

c ( B ) path curvature at P

s update rate of P along the path
(o) angular velocity of {F }

) vector from P to Q

R rotation matrix from {E } to {F }
u, desired surge velocity
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Vi,V Lyapunov functions

v, desired approach angle

K. K,K,6K,K, control gains

A, positive design parameter

W angular error variable

7. desired yaw rate

r, yaw rate error

t time

S, i =u,r sliding surfaces

C;,l =u,r positive constants

a, bi dynamic terms

Q; J =u,r acceleration commands

di , [;l Jo=u,r nominal values of dynamic terms

Aa,,Ab, i =u,r additive uncertainties of dynamic terms

d.,i=u,r lumped uncertainties

ji J=u,r estimation of lumped uncertainties

ol i =u,r components of actual controls

~i J=u,r estimation errors

2 (t ),i u,r auxiliary variables

)2 (Si ),i =u,r functions of the sliding surfaces

Op, /0S,,i =u,r DO gains

M0 =u,r bounds of the lumped uncertainties’ rate
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