[1] A. Azushima, R. Kopp, A. Korhonen, D. Yang, F. Micari, G. Lahoti, P. Groche, J. Yanagimoto, N. Tsuji, A. Rosochowski, Severe plastic deformation (SPD) processes for metals, CIRP Annals, 57(2) (2008) 716-735.
[2] R. Valiev, N. Enikeev, M.Y. Murashkin, V. Kazykhanov, X. Sauvage, On the origin of the extremely high strength of ultrafine-grained Al alloys produced by severe plastic deformation, Scripta Materialia, 63(9) (2010) 949-952.
[3] M. Calcagnotto, D. Ponge, D. Raabe, Effect of grain refinement to 1 μm on strength and toughness of dual-phase steels, Materials Science and Engineering: A, 527(29-30) (2010) 7832-7840.
[4] M. Kawasaki, N. Balasubramanian, T.G. Langdon, Flow mechanisms in ultrafine-grained metals with an emphasis on superplasticity, Materials Science and Engineering: A, 528(21) (2011) 6624-6629.
[5] A.P. Zhilyaev, T.G. Langdon, Using high-pressure torsion for metal processing: Fundamentals and applications, Progress in Materials Science, 53(6) (2008) 893-979.
[6] Y. Saito, H. Utsunomiya, N. Tsuji, T. Sakai, Novel ultra-high straining process for bulk materials—development of the accumulative roll-bonding (ARB) process, Acta materialia, 47(2) (1999) 579-583.
[7] R.Z. Valiev, T.G. Langdon, Principles of equal-channel angular pressing as a processing tool for grain refinement, Progress in materials science, 51(7) (2006) 881-981.
[8] J. Lin, Q. Wang, L. Peng, H.J. Roven, Microstructure and high tensile ductility of ZK60 magnesium alloy processed by cyclic extrusion and compression, Journal of Alloys and Compounds, 476(1-2) (2009) 441-445.
[9] D.H. Shin, J.-J. Park, Y.-S. Kim, K.-T. Park, Constrained groove pressing and its application to grain refinement of aluminum, materials Science and Engineering: A, 328(1-2) (2002) 98-103.
[10] Y. Beygelzimer, D. Orlov, V. Varyukhin, A new severe plastic deformation method: twist extrusion, Ultrafine grained materials II, (2002) 297-304.
[11] A. Babaei, M. Mashhadi, H. Jafarzadeh, Tube cyclic expansion-extrusion (TCEE) as a novel severe plastic deformation method for cylindrical tubes, Journal of Materials Science, 49(8) (2014) 3158-3165.
[12] M. Ensafi, G. Faraji, H. Abdolvand, Cyclic extrusion compression angular pressing (CECAP) as a novel severe plastic deformation method for producing bulk ultrafine grained metals, Materials Letters, 197 (2017) 12-16.
[13] S. Sepahi-Boroujeni, F. Fereshteh-Saniee, Expansion equal channel angular extrusion, as a novel severe plastic deformation technique, Journal of materials science, 50(11) (2015) 3908-3919.
[14] F. Djavanroodi, M. Ebrahimi, Effect of die channel angle, friction and back pressure in the equal channel angular pressing using 3D finite element simulation, Materials Science and Engineering: A, 527(4-5) (2010) 1230-1235.
[15] I. Sabirov, M. Perez-Prado, M. Murashkin, J. Molina-Aldareguia, E. Bobruk, N. Yunusova, R. Valiev, Application of equal channel angular pressing with parallel channels for grain refinement in aluminium alloys and its effect on deformation behavior, International Journal of Material Forming, 3(1) (2010) 411-414.
[16] A. Ma, Y. Nishida, K. Suzuki, I. Shigematsu, N. Saito, Characteristics of plastic deformation by rotary-die equal-channel angular pressing, Scripta Materialia, 52(6) (2005) 433-437.
[17] L.S. Tóth, R. Lapovok, A. Hasani, C. Gu, Non-Equal Channel Angular Pressing of aluminum alloy, Scripta Materialia, 61(12) (2009) 1121-1124.
[18] A. Hasani, L.S. Toth, B. Beausir, Principles of nonequal channel angular pressing, Journal of Engineering Materials and Technology, 132 (2010) 031001.
[19] Y. F Xia, G. Z Quan, Jie Zhou, Effects of temperature and strain rate on critical damage value of AZ80 magnesium alloy, Transactions of Nonferrous Metals Society of China, 20 (2010) s580-s583.
[20] D. N Lee, An upper-bound solution of channel angular deformation, 43(2) (2000) 115-118.
[21] A.V. Nagasekhar, H.S. Kim, Analysis of T-shaped equal channel angular pressing using the finite element method, Metals and Materials International, 14 (2008), 565-568.
[22] A.V. Nagasekhar, H.S. Kim, Plastic deformation characteristics of cross-equal channel angular pressing, Computational Materials Science, 43(4) (2008) 1069-1073.
[23] F. Djavanroodi, M. Ebrahimi, Effect of die channel angle, friction and back pressure in the equal channel angular pressing using 3D finite element simulation, Materials Science and Engineering A, 527(4-5) (2010) 1230-1235.
[24] I.Balasundar, T.Raghu, Effect of friction model in numerical analysis of equal channel angular pressing process, Materials and Design, 31(1) (2010) 449-457.
[25] D. Li, A. Ghosh, Tensile deformation behavior of aluminum alloys at warm forming temperatures, Materials Science and Engineering: A, 352(1-2) (2003) 279-286.
[26] H.S. Kim, M.H. Seo, S.I. Hong, On the die corner gap formation in equal channel angular pressing, Materials Science and Engineering: A, 291(1-2) (2000) 86-90.
[27] V.P. Basavaraj, U. Chakkingal, T.P. Kumar, Study of channel angle influence on material flow and strain inhomogeneity in equal channel angular pressing using 3D finite element simulation, Journal of materials processing technology, 209(1) (2009) 89-95.
[28] R.B. Figueiredo, P.R. Cetlin, T.G. Langdon, The processing of difficult-to-work alloys by ECAP with an emphasis on magnesium alloys, Acta Materialia, 55(14) (2007) 4769-4779.
[29] R.B. Figueiredo, P.R. Cetlin, T.G. Langdon, The evolution of damage in perfect-plastic and strain hardening materials processed by equal-channel angular pressing, Materials Science and Engineering: A, 518(1-2) (2009) 124-131.