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ABSTRACT:  A novel smart vaccination method is proposed in this paper to distribute a limited 
number of vaccines among the people of a large community, such as a country, consisting of smaller 
communities like cities or provinces. The proposed method is comprised of two phases; A vaccine 
allocation phase and a targeted vaccination phase. In the first phase, the available vaccines are allocated 
to the communities based on demographics and the effectiveness of each type of vaccine. In the second 
phase, each community is modelled as a contact graph, and the vaccines available to the community 
are administered to the individuals whose vaccination has the greatest impact on breaking the chain of 
transmission. As a result of utilizing the Node2Vec graph embedding algorithm, the complexity of the 
proposed method increases linearly with the number of people in the community, as opposed to common 
centrality based methods, the complexities of which increase with the square or cube of the number of 
individuals. Furthermore, the proposed method can distribute multiple types of vaccines with different 
probabilities of effectiveness. The performance of the proposed method is comparable to the common 
centrality based vaccination methods, while its complexity is lower. The results of the simulation show 
a 20% decrease in the peak number of infected individuals.
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1- INTRODUCTION
The COVID-19 pandemic, first diagnosed in Wuhan, 

China in December 2019, spread rapidly around the world in a 
short period of time and seriously affected the health of many 
people in many countries. The World Health Organization 
(WHO) described the outbreak as a warning to the health of 
all human beings, and in March 2020 recognized the disease 
as a global epidemic [1]. The first case of COVID-19 disease 
in Iran was registered on February 19, 2020 [2].

Due to the high prevalence of COVID-19 and the 
destructive effects of the disease on communities, various 
countries and institutions are looking for solutions to reduce 
the destructive effects. One way to prevent the spread of this 
disease is vaccination, but since the rollout of the vaccine takes 
time, and as a result of limited resources, it is not possible to 
vaccinate everyone immediately. Smart vaccination methods 
can use limited vaccines most efficiently to disrupt the 
transmission of the COVID-19 infection.

In order to target individuals for vaccination effectively, it 
is required to obtain data about the conditions of people, and 
the contacts among them. The information obtained from this 
data can be used to determine the extent of involvement of 
each person in the transmission chain of the disease, and hence 
their vaccination priority. Wireless communications networks 
can be leveraged to obtain this information in a convenient 

and safe manner, e.g. by using smartphone applications. Other 
methods for gathering information and contact tracing, have 
been discussed in [3-11]. This information could also be used 
to manage the disease, announce warnings, and quarantine 
people who have been infected, or have been exposed to the 
infection and are at risk.

The community is divided into small groups in [12], and 
the individuals with higher vaccination priority are selected 
by analyzing these groups, without analyzing members 
themselves. In [13], the communication activities of people in 
the context of digital networks has been used to find people 
for targeted vaccinations. Information is gathered from 
sources such as contact records and Bluetooth measurements 
of peer-to-peer contacts. Finally, people are selected based on 
their distances and their contact activities.

The authors of [14, 15] identify priority individuals by 
gathering contact information in a school and using graph 
centrality metrics. They install a wireless contact tracing 
sensor system in a high school and give each student a mobile 
sensor to record contact information at all times. Finally, 
they model this information as a graph and use the centrality 
metrics to target higher priority individuals.

A new algorithm for describing nodes in communities is 
introduced in [16], which describes nodes in the community 
based on intra-central and inter-central metric. In [17], in 
order to minimize contamination of digital networks by 
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malware, several heuristic methods are proposed to distribute 
resources among network nodes. The authors of  [18] 
hypothesize that the transmission rate of a disease is variable 
and, considering a simple disease model, investigate the issue 
of targeted vaccination in scaleless artificial networks.

The equal graph segmentation method is utilized in 
[19], with resource constraints considerations, to secure the 
network. A model is suggested in [20] in which a network 
is initially divided into clusters and security packages are 
distributed to all or none of the members of a cluster to prevent 
or counter the effects of computer viruses. A combination of 
temporary and permanent methods are considered in [21] 
to prevent the has been considered to prevent the spread 
of malware on smartphones. The history of infected nodes 
are communicated with neighbors as a permanent method, 
and a quarantine is enforced as a temporary method. A 
vaccination method is proposed in [22] that requires only 
local information to select a subset of the community for 
targeted vaccination.

A two step vaccination method is presented in our 
previous work, [23, 24], comprising of a vaccine allocation 
phase, and a targeted vaccination phase. In the first step, 
vaccines are distributed among different communities in a 
society according to demographics, and in the second step, 
the contacts among people in each community are modelled 
as a graph, and the nodes with the highest priorities for 
vaccination are selected in the graph. A novel metric is 
introduced to prioritize the nodes for vaccination, taking the 
centrality of each node, as well as its probability of infection, 
and probability of infecting others in case of infection into 
account.

In this paper, we improve upon our previous work 
by including different types of vaccines with different 
probabilities of effectiveness in our model, and by improving 
the computational complexity of the second step of our 
method (the targeted vaccination phase), by leveraging the 
Node2Vec algorithm [25] to map the nodes of the graph into a 
vector space, where the nodes can be clustered and prioritized 
in a fraction of the time required to calculate the vaccination 
priorities of the nodes in the graph domain. In this method, 
the optimal effective vaccination fraction of each community 

is calculated in the vaccine allocation step, and the vaccines 
are allocated to the communities accordingly. In the targeted 
vaccination phase, the physical contacts among people is first 
modelled as a graph, which is then mapped into a vector space 
using the Node2Vec algorithm. The nodes are then clustered 
in the vector space, using the Gaussian mixture model 
(GMM), and the nodes closest to the centers of the clusters 
are selected for vaccination.

The remainder of the paper is organized as follows. The 
mathematical model for the transmission of the infection, and 
the system model for the proposed smart vaccination method 
are discussed in Section 2. The vaccine allocation phase of the 
proposed method is presented in Section 3, and the targeted 
vaccination phase in Section 4. Our simulations and results 
are provided and discussed in Section 5. Section 6 concludes 
the paper.

2- INFECTION TRANSMISSION MODEL
2-1- System Model

The block diagram of the proposed system for targeted 
vaccination can be seen in Fig.1. In this model, vaccines are 
first distributed among different communities (e.g. cities, 
states, provinces, etc.) based on demographics and pandemic 
parameters. Then, in each community, the physical contacts 
among people are obtained from wireless network data, and 
modelled as a graph. An unsupervised graph representation 
method, namely the Node2Vec algorithm [25], is then 
utilized to map this graph to a vector space. The people are 
then clustered in this vector space, and those closest to the 
center of their cluster are selected for vaccination, as they 
are the people with the largest number of contacts, and the 
highest probability of transmitting the disease.

2-2- Disease Spread Model
Mathematical modeling can predict the possible outcome 

of infections effectively. The SIR model is a well-known 
mathematical model of infection transmission that divides 
communities into three separate compartments called 
Susceptible, Infected and Recovered [26-29]. The sum of these 
compartments is equal to the population of the community at 
all times. Suppose that P  is a set of target communities, then 
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for each community j P∈ :

( ) ( ) ( )
j j js i r jN t N t N t N+ + =

�
(1)

Where ( ) ( ) ( ),   
j j js i rN t N t and N t  are the number of 

susceptible, infected and recovered persons at time t  in 
community j , and jN  is number of all person in community 
j .

In the SIR model, the susceptible people are transferred 
from the susceptible compartment to the infected 
compartment with a infection transmission rate β , and the 
infected people are transferred from the infected compartment 
to the recovered compartment with a recovery rate γ . In this 
model, it is assumed that the recovered people, i.e. those who 
recover from the infection or are vaccinated, are immune to 
the disease and will no longer be infected. The movements of 
the people between these compartments are modelled by the 
following differential equations [26-29]:

( )
( ) ( )j

j j j

ds t
s t i t

dt
β= −

�
(2a)

( )
( ) ( ) ( )j

j j j j j

di t
s t i t i t

dt
β γ= −

�
(2b)

( )
( )j

j j

dr t
i t

dt
γ=

�
(2c)

Where  ( ) ( ) ( ),   j j js t i t and r t  are the susceptible, infected and 
recovered fractions of community  j at time t .

3- VACCINE ALLOCATION
In this section, the vaccine allocation step among 

different communities is discussed. In this step, the goal is 
to allocate (distribute) the available vaccines among different 
communities according to the number of people and the 
disease conditions.

3-1- Vaccination and Mass Immunity
Vaccination is an important measure that can be taken 

to prevent infectious and contagious pandemics effectively. 
Vaccination assists in controlling and mitigating the 
pandemic in two ways. Firstly (which is obvious), people 
who receive the vaccine become immune to the disease after 
producing antibodies in their bodies. On the other hand, in 
the second way, when a significant fraction of the community 
is vaccinated, the person who has not yet been vaccinated 
(and is susceptible to the disease) is less likely to get the 
disease because most of the people they come in contact with 
have been vaccinated (and do not transmit the disease). In 
fact, in a community where the vast majority of people have 
immunity (either due to vaccination or due to recovery from 
the infection), such people have no share in the spread of 
the disease, and the chains of infection are disrupted. This 
indirect effect of vaccination is called mass immunity. 

Assume that P  is a set of different communities that we 
want to distribute the available vaccines among them. The 
number of various type of available vaccines is considered 
to be K . It is also assumed that vaccines do not surely cause 
immunity and that a vaccinated person may not be immune 
to the disease. Now suppose at time τ  a fraction of the 
community j P∈  is vaccinated. This fraction is denoted by 

jf  that 1 2 K
j j j jf f f f= + +…+ . In this relation, k

jf  represents 
a fraction of the community j  that has been vaccinated by 
the k th type of vaccine that 1 k K≤ ≤ . Also, kp  represents 
the probability of the k th vaccine immunity, that is clear 
0 1kp< ≤ . 

At time τ , before vaccination, the state of community j  
is ( ) ( ) ( )( ), ,j j js i rτ τ τ . Immediately after vaccination, the state 
of the community j  alters to ( ) ( ) ( )( ), ,, ,j j eff j j j effs f i r fτ τ τ− +
, where ,j efff  represents the effective vaccination fraction, 
defined as 1 1 2 2

,
K K

j eff j j jf p f p f p f= + +…+ .
In Fig. 2, the values of susceptible persons fraction, 

infected persons fraction, and recovered persons fraction 
in the with and without vaccination case, assuming the 
availability of two different types of vaccines, are shown. In 
this figure, the dashed lines indicate the without vaccination 
case, and the solid lines indicate the vaccination case. In 
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Fig. 2. The value of the fraction of susceptible, infected, and recovered people in community 𝑗𝑗. Solid lines represented the 
vaccinated situation, and dashed lines express the unvaccinated situation. It is assumed that  𝛽𝛽𝑗𝑗 = 4, 𝛾𝛾𝑗𝑗 = 2. 
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Fig 2a, as can be seen, with vaccination, the summit of the 
infected persons fraction decreased. On the other hand, the 
number of persons who did not become infected (the final 
fraction of susceptible persons) increased. Fig 2b shows that 
as the vaccination fraction 1

jf  and 2
jf  increase, compared 

with Fig 2a, the peak of the infected persons fraction further 
decreases, and the disease mitigates much faster. On the other 
hand, in Fig 2c, while the probability of vaccine immunity is 
reduced, as expected with comparing to Fig 2a, the peak of 
the infected persons fraction is less reduced, and more time is 
needed for the disease to eradicating.

The final susceptible persons fraction is a beneficial 
measure of the severity of the pandemic because it represents 
individuals who have not been infected during the pandemic 
period. As described, this value actually represents the 
quantity amount of indirect way of controlling the disease, 
so the mass immunity function ( )1 2 1 2; , , , , , , ,K K

j j j jH f f f p p pτ … …  
for the community j  is defined as follows:

1 2 1 2 1 2 1 2( , , ,..., , , ,..., ) lim ( , ; , ,..., , , ,..., )K K K K
j j j j j j j j

t
H f f f p p p s t f f f p p pτ τ

→∞
=

�
(3)

1 2 1 2 1 2 1 2( , , ,..., , , ,..., ) lim ( , ; , ,..., , , ,..., )K K K K
j j j j j j j j

t
H f f f p p p s t f f f p p pτ τ

→∞
=

Where  0τ ≥ , , 0  1, ,k k
j jf p k K≥ ∀ = …  and ( )1 2 K

j j j jf f f s τ+ +…+ <

. Note that the value of the mass immunity function depends 
on the time of vaccination, vaccination fractions, and their 
probability of immunity. For convenience, we show the mass 
immunity function as ( )1 2 1 2, , , , , , ,K K

j j j jH f f f p p p… …   for fixed 
vaccination time and  ( )jH τ  for fixed vaccination fractions.

Fig. 3 illustrates the mass immunity function with its 
contour plot for community 
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increasing and then decreasing. Further, for a constant 𝑓𝑓𝑗𝑗,𝑒𝑒𝑒𝑒𝑒𝑒, the mass immunity always reducing 

respect to 𝜏𝜏. 
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Fig. 3. The mass immunity function of community 𝑗𝑗 

To facilitate further investigation, the mass immunity function curves for fixed vaccination fractions 

and different 𝛽𝛽𝑗𝑗 and 𝛾𝛾𝑗𝑗 values are presented in Fig. 4a, and the mass immunity function curves for fixed 

vaccination time and different 𝛽𝛽𝑗𝑗 and 𝛾𝛾𝑗𝑗 values are presented in Fig 4b. Fig. 4a shows that the mass 

immunity function is unimodal with respect to  𝑓𝑓𝑗𝑗,𝑒𝑒𝑒𝑒𝑒𝑒, and is equal to zero at 𝑓𝑓𝑗𝑗,𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑠𝑠𝑗𝑗(𝜏𝜏). Also, for 

small 𝑓𝑓, as the disease transmission rate increases more people become infected and mass immunity 

decreases. On the other hand, while the recovery rate increases mass immunity increases for small   

𝑓𝑓𝑗𝑗,𝑒𝑒𝑒𝑒𝑒𝑒, since more people become immune. The general structure of the mass immunity function is 

similar for different values of 𝛽𝛽𝑗𝑗 and 𝛾𝛾𝑗𝑗 . Note that it follows from this figure that injecting more vaccines 

does not necessarily result in an increase in mass immunity. Fig. 4b shows the mass immunity function 

is strictly decreasing after 𝜏𝜏. It can be concluded that if vaccination is done sooner, mass immunity 

increases. 
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 the mass 
immunity first increasing and then decreasing. Further, for a 
constant ,j efff , the mass immunity always reducing respect to 
τ .

To facilitate further investigation, the mass immunity 

function curves for fixed vaccination fractions and different jβ  
and jγ  values are presented in Fig. 4a, and the mass immunity 
function curves for fixed vaccination time and different jβ  
and jγ  values are presented in Fig 4b. Fig. 4a shows that the 
mass immunity function is unimodal with respect to  ,j efff
, and is equal to zero at ( ),j eff jf s τ= . Also, for small f , as 
the disease transmission rate increases more people become 
infected and mass immunity decreases. On the other hand, 
while the recovery rate increases mass immunity increases 
for small   ,j efff , since more people become immune. The 
general structure of the mass immunity function is similar for 
different values ​​of jβ  and jγ . Note that it follows from this 
figure that injecting more vaccines does not necessarily result 
in an increase in mass immunity. Fig. 4b shows the mass 
immunity function is strictly decreasing after τ . It can be 
concluded that if vaccination is done sooner, mass immunity 
increases.

3-2- VACCINE ALLOCATION FORMULATION 
Assuming the existence of a single community, called 

community j , the goal of vaccine allocation is to maximize 
the number individuals who are immunized as a direct or 
indirect result of vaccination. This goal can be formulated as 
the following optimization problem:

1 1 2 2 1 2 1 2

1 2

max ( ... ) ( , ,..., , , ,..., )

. . , 1, 2,..., ,

0, 1, 2,...,

... ( )

K K K K
j j j j j j j j j

k k
j j

k
j

K
j j j j

N p f p f p f N H f f f p p p

s t N f V k K

f k K

f f f s τ

+ + + +

≤ =

≥ =

+ + + ≤

jf ( 4 a )
� (4b)
� (4c)
� (4d)

Where kV  is the available number vaccines of type k  
available, and 1 2[ , ,..., ]K

j j jf f f=jf is the vector of vaccination 
fractions for community j . The first term in the objective 
function is equal to the number of people in community j  
who are immunized directly by vaccination, and the second 
term is equal to the number of people in community j  who 
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Fig. 3. The mass immunity function of community j



71

S. Jamshidiha et al., AUT J. Model. Simul., 53(1) (2020) 67-78, DOI: 10.22060/miscj.2021.20177.5251

are immunized indirectly by being surrounded by immune 
people (mass immunity). Inequality (4b) indicates a limit on 
the number of available vaccines. Inequality (4c) states that 
the vaccination fractions must be non-negative. Since vaccines 
are only administered to the susceptible individuals, the sum 
of vaccination fractions should be less than the susceptible 
fraction at the time of vaccination (Inequality (4d)).

Now assume the existence of multiple communities. In this 
scenario, the aim is to maximize the sum total of the people 
immunized as a direct or indirect result of vaccination in all 
communities. By defining the vaccination fraction matrix as 

T
1 2 |P|F = [f ,f , ..., f ]  and the vaccine immunity probability vector 

as 1 2[ ], ,..., Kp p p=jp  for all { }1,2 , j P∈ … , the vaccine allocation 
optimization problem is formulated as follows:

1 1 1 2 1 2 1 2

1 2

max ( ... ) ( , ,..., , , ,..., )

. . , 1, 2,...,

0, , 1, 2,...,

... ( ), .

K K K K
j j j j j j j j j j j j j j j

j P j P

k k
j j

j P

k
j

K
j j j j

N p f p f p f N H f f f p p p

s t N f V k K

f j P k K

f f f s j Pτ

∈ ∈

∈

+ + + +

≤ =

∀ ∈ =

+ + + ≤ ∀ ∈

≥

∑ ∑

∑
F (5a)

� (5b)
� (5c)
� (5d)

Which can be written in the vector form: 

max ( ) ( , )

. . , 1, 2,...,

0,

( ), .

j

T
j j j j

j P j P

k k
j j

j P

j

j j

N N H

s t N f V k K

j P

s j Pτ

∈ ∈

∈

+

≤ =

∀ ∈

≤ ∀ ∈

∑ ∑

∑
F

T

pf f p

f

1 f



� (6a)
�

(6b)�

(6c)
�

(6d)

Similar to (4), the first term in the objective function 
is equal to the sum of people from all communities who 

have been vaccinated and immunized against the disease, 
and the second term is equal to the sum of people from all 
communities who are not vaccinated but are immune as a 
result of being surrounded by immune individuals. Inequality 
(5b) states that the number of distributed vaccines of each 
type cannot be greater than the number of available vaccines 
of that type. The other two constraints are similar to (4c) and 
(4d).

To solve this optimization problem, the objective function 
is examined first. As mentioned earlier, vaccination increases 
immunity to the disease in two ways (direct and indirect). 
Function F , which indicates the total effect of vaccination 
on community j , ( )1 2 K

j j j jf f f s τ+ +…+ < , is defined as follows:

1 2 1 2

1 2 1 2

1 1 2 2

( , ,..., , , ,..., )

( , ,..., , , ,..., )

( ... )

K K
j j j j

K K
j j j j

K K
j j j

F f f f p p p

H f f f p p p

p f p f p f

=

+

+ + +
�

(7)

This function depends on the vaccination fractions in 
community j , and the effectiveness of the available vaccines  
(their immunity probabilities). The first and the second terms 
on the right of equality indicate the indirect and the direct 
effects of vaccination, respectively. Note that the objective 
function of the optimization problem (6) differs from the 
total effect of vaccination by a constant coefficient (number 
of persons in community, jN ) only. There is no closed form 
expression for the mass immunity function, and it must be 
evaluated numerically, as a result, there is no closed form 
expression for the total effect of vaccination either. As 
proven in  [23, 30], the function representing the total effect 
of vaccination is concave and monotonically increasing. 
An example plot of this function (related to the ( ),j effH f  of 
Fig. 4b for 4jβ =  and 2jγ = ) is given in Fig. 5. In this figure, 

, ,j max efff  is the maximum effective vaccination fraction and 
is equal to the susceptible fraction of community j  at the 
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vaccination time. Obviously, by increasing vaccination 
fraction, immunity always increases, and as a result, it is 
best to set the vaccination fraction equal to jf  , which, of 
course, is not possible in practice due to the limited number 
of vaccines (constraint (5b)).

As mentioned, the objective function of the optimization 
problem (5) can be written in terms of the weighted sum of 
the total effect of the vaccination functions. Each community 
has an increasing and concave total effect of the vaccination 
function, so the objective function will also be increasing 
and concave. The constraints are also linear with respect to 
vaccination fractions, so the optimization problem is convex. 
To solve this optimization for two community, inspired by 
the gradient descent method and the algorithm presented in 
[23], Algorithm (1) is proposed. In this algorithm, first the 
fractions ,j efff  are obtained for each community and then 
the jf  vectors are determined from them. To solve a problem 
for more number of community, ratio of effective vaccination 
fraction can found for any two communities applying 
Algorithm 1 and eventually distribute the vaccines based on 
these ratios.

4- TARGETED VACCINATION
In this section, the physical contact graph is introduced, 

and a targeted vaccination algorithm is presented that maps 
the graph into a vector space, and selects target individuals for 
vaccination by clustering them in that vector space.

4-1- Physical Contact Graph
In order to model the interactions among the people in 

each community effectively, a graphical model ( ),G V E=  is 
utilized, where the set of vertices { }1 2, , ..., 

VNV v v v=  is comprised 
of the people in the community, and each edge ie  in the set of 
edges { }1 2, , ..., 

ENE e e e=  signifies contact among the two people 
represented by the node that are linked by the edge ie , and 

VN  and EN  represent the number of people in the community 

and the number of contacts between them, respectively. Since 
(physical) contact among people can transmit the disease in 
both directions, the graph is undirected. 

4-2- Graph Embedding
The goal of graph embedding is to find the following 

mapping in such a way that similarity in the graph domain 
results in similarity in the vector space domain:

:     d
i if v G z∈ → ∈ � (8)

Where iz  is a vector representation assigned to the node 
iv . In order to find such a mapping, similarity measures must 

be defined for both the graph domain, and the vector space.
A common definition of similarity in the graph domain 

is having identical neighbors. Measures of similarity in the 
vector space domain include Euclidean distance and dot 
product.

Random walk based methods of graph embedding are 
one of the most widely used families of methods in this fields. 
In these methods, a label is assigned to each node, and then 
strings of nodes are produced in the following manner. A 
node is first selected. Then, one of its neighbors is selected at 
random, followed by one of the neighbors of the second node, 
and so on. The selection of the next node in each step could 
follow a uniform or non-uniform distribution, depending on 
the specific algorithm.

In these methods, the frequency of the co-occurrence of 
nodes in different random walks on the graph is defined as a 
measure of similarity of the nodes in the graph domain, and 
the dot product of the vectors assigned to them is defined as 
the measure of similarity in the vector space.

It has been observed [31] that the probability distribution 
of the occurrence of the nodes in the strings obtained by 
performing random walks on graphs is very similar to the 
distribution of the occurrence of words in text. Motivated 
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by this observation, random walk based methods utilize the 
Word2Vec transform [32] which is widely used in the natural 
language processing literature, to map the nodes to a vector 
space. This mapping is obtained by leveraging a shallow 
neural network.

In this paper, we have utilized the Node2Vec algorithm 
[25] to map the nodes to a vector space. This algorithm 
performs a biased random walk on the graph to be able to 
model both local and global structures of the graph effectively 
[25].

In order to visualize the graph embedding process, a 
randomly generated graph is depicted in Fig. 6. This graph 
is mapped to a two dimensional embedding space using the 
Node2Vec algorithm, resulting in the vector space presented 
in Fig. 7.

Since the similarity measure in the vector space is defined 
as the dot product of the vectors assigned to the nodes, 
there are only two completely distinctive clusters of nodes 
possible in a two dimensional embedding space, and as it 
can be seen in Fig. 7, the nodes are mapped to an arc, and 
the users are differentiated by the angle between their vector 

representations.
Since the users might be grouped into more than two 

clusters in practice, the embedding space utilized must have 
higher dimensionality. Furthermore, in order to change the 
similarity measure from dot product to Euclidean distance, 
we utilize kernel principle component analysis (PCA), with 
cosine kernel, and keep the output dimensionality same as the 
input dimensionality.

Fig 8. presents a two dimensional embedding space 
obtained by applying Kernel PCA to a ten dimensional 
Node2Vec representation and keeping the first two basis 
vectors. As mentioned earlier, all basis vectors are kept in 
practice, and this two dimensional representation is only 
intended for visualization.

4-3- Clustering
In order to target the individuals for vaccination effectively, 

we cluster the people in the representation domain to obtain 
smaller communities of tightly-knit groups of people. Then, 
in these small communities, we vaccinate the people who are 
closest to the center of their cluster. This way, we can ensure 
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that the people who are in contact with most of the other 
people of their group will be vaccinated.

In this paper, the Gaussian mixture model (GMM) has 
been used to cluster the people in the representation domain. 
. The problem of clustering using GMM can be formulated as 
follows:
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where 𝒛𝒛𝒊𝒊 is the vector representation of node 𝑖𝑖, obtained by applying kernel PCA to the Node2Vec 

embedding space, 𝑐𝑐𝑖𝑖 is the cluster to which node 𝑖𝑖 belongs, 𝑁𝑁(𝝁𝝁𝒌𝒌, 𝝈𝝈𝒌𝒌) is a multi-dimensional normal 

(Gaussian) distribution with mean 𝝁𝝁𝒌𝒌 and standard deviation 𝝈𝝈𝒌𝒌 for cluster 𝑘𝑘, 𝜋𝜋𝑘𝑘 is the weight 

associated to cluster 𝑘𝑘 in the GMM, and 𝑁𝑁𝑐𝑐 is the number of clusters in the GMM. 

It is also worth mentioning that since the complexity of the Node2Vec algorithm is linear in the number 

of nodes [25], the complexity of the GMM is linear in the number of datapoints, and the proposed 

targeted vaccination requires 𝑁𝑁𝑣𝑣 ∗ 𝑁𝑁𝑐𝑐 comparisons, the overal complexity of the proposed targeted 

vaccination method is linear in the number of nodes in the graph. In comparison, the complexities of 

the degree-based methods employed in the literature [14, 15, 23] are usually 𝑂𝑂(𝑁𝑁2) or higher. 

5. Simulation and Results 

The pandemic has been simulated using the ‘‘Primary school - cumulated networks’’ dataset [8], which 

is a database of daily contacts among 242 individuals in a primary school. It is assumed that 1% of the 

nodes of the graph are infected on the first day of the simulation, and all other nodes are susceptible to 

the infection. Then, the disease starts to spread in the graph, infected more people as time goes on. 

When the number of infected people reaches the threshold 𝛼𝛼𝑁𝑁𝑣𝑣, where 𝛼𝛼 is a tuning parameter and 𝑁𝑁𝑣𝑣 

is the number of nodes in the graph, 𝑓𝑓𝑁𝑁𝑣𝑣  vaccines are distributed in the graph, where 𝑓𝑓 is the vaccination 

fraction. The simulation continues until the eradication of the disease. 

Fig. 9 presents the course of the pandemic, following three scenarios: no vaccination (Fig. 9a), 

vaccinating 𝑓𝑓𝑁𝑁𝑣𝑣 individuals randomly (Fig. 9b), and targeted vaccination using the proposed method 

(Fig. 9c). The blue, red, and green curves represent the susceptible, infected, and recovered fractions, 

respectively. As expected, the peak number of infected people is reduced from around 0.6 in the no 

vaccination scenario to around 0.5 in the random vaccination scenario, and to around 0.4 in the targeted 

vaccination scenario (the proposed method). 
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where iz  is the vector representation of node i , obtained 
by applying kernel PCA to the Node2Vec embedding space, 

ic  is the cluster to which node i  belongs, 
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where 𝒛𝒛𝒊𝒊 is the vector representation of node 𝑖𝑖, obtained by applying kernel PCA to the Node2Vec 
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The pandemic has been simulated using the ‘‘Primary school - cumulated networks’’ dataset [8], which 

is a database of daily contacts among 242 individuals in a primary school. It is assumed that 1% of the 

nodes of the graph are infected on the first day of the simulation, and all other nodes are susceptible to 

the infection. Then, the disease starts to spread in the graph, infected more people as time goes on. 

When the number of infected people reaches the threshold 𝛼𝛼𝑁𝑁𝑣𝑣, where 𝛼𝛼 is a tuning parameter and 𝑁𝑁𝑣𝑣 

is the number of nodes in the graph, 𝑓𝑓𝑁𝑁𝑣𝑣  vaccines are distributed in the graph, where 𝑓𝑓 is the vaccination 

fraction. The simulation continues until the eradication of the disease. 

Fig. 9 presents the course of the pandemic, following three scenarios: no vaccination (Fig. 9a), 

vaccinating 𝑓𝑓𝑁𝑁𝑣𝑣 individuals randomly (Fig. 9b), and targeted vaccination using the proposed method 

(Fig. 9c). The blue, red, and green curves represent the susceptible, infected, and recovered fractions, 

respectively. As expected, the peak number of infected people is reduced from around 0.6 in the no 

vaccination scenario to around 0.5 in the random vaccination scenario, and to around 0.4 in the targeted 

vaccination scenario (the proposed method). 
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where 𝒛𝒛𝒊𝒊 is the vector representation of node 𝑖𝑖, obtained by applying kernel PCA to the Node2Vec 
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5. Simulation and Results 

The pandemic has been simulated using the ‘‘Primary school - cumulated networks’’ dataset [8], which 

is a database of daily contacts among 242 individuals in a primary school. It is assumed that 1% of the 

nodes of the graph are infected on the first day of the simulation, and all other nodes are susceptible to 

the infection. Then, the disease starts to spread in the graph, infected more people as time goes on. 

When the number of infected people reaches the threshold 𝛼𝛼𝑁𝑁𝑣𝑣, where 𝛼𝛼 is a tuning parameter and 𝑁𝑁𝑣𝑣 

is the number of nodes in the graph, 𝑓𝑓𝑁𝑁𝑣𝑣  vaccines are distributed in the graph, where 𝑓𝑓 is the vaccination 

fraction. The simulation continues until the eradication of the disease. 

Fig. 9 presents the course of the pandemic, following three scenarios: no vaccination (Fig. 9a), 

vaccinating 𝑓𝑓𝑁𝑁𝑣𝑣 individuals randomly (Fig. 9b), and targeted vaccination using the proposed method 

(Fig. 9c). The blue, red, and green curves represent the susceptible, infected, and recovered fractions, 

respectively. As expected, the peak number of infected people is reduced from around 0.6 in the no 

vaccination scenario to around 0.5 in the random vaccination scenario, and to around 0.4 in the targeted 

vaccination scenario (the proposed method). 
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 for cluster k , kπ  is 
the weight associated to cluster k  in the GMM, and cN  is 
the number of clusters in the GMM.

It is also worth mentioning that since the complexity of 
the Node2Vec algorithm is linear in the number of nodes 
[25], the complexity of the GMM is linear in the number of 
datapoints, and the proposed targeted vaccination requires 

*v cN N  comparisons, the overal complexity of the proposed 
targeted vaccination method is linear in the number of nodes 
in the graph. In comparison, the complexities of the degree-
based methods employed in the literature [14, 15, 23] are 
usually ( )2O N  or higher.

5- SIMULATION AND RESULTS
The pandemic has been simulated using the ‘‘Primary 

school - cumulated networks’’ dataset [8], which is a database 

of daily contacts among 242 individuals in a primary school. 
It is assumed that 1% of the nodes of the graph are infected 
on the first day of the simulation, and all other nodes are 
susceptible to the infection. Then, the disease starts to spread 
in the graph, infected more people as time goes on. When the 
number of infected people reaches the threshold vNα , where 
α  is a tuning parameter and vN  is the number of nodes in 
the graph, vfN

 vaccines are distributed in the graph, where f  
is the vaccination fraction. The simulation continues until the 
eradication of the disease.

Fig. 9 presents the course of the pandemic, following 
three scenarios: no vaccination (Fig. 9a), vaccinating vfN  
individuals randomly (Fig. 9b), and targeted vaccination using 
the proposed method (Fig. 9c). The blue, red, and green curves 
represent the susceptible, infected, and recovered fractions, 
respectively. As expected, the peak number of infected people 
is reduced from around 0.6 in the no vaccination scenario 
to around 0.5 in the random vaccination scenario, and to 
around 0.4 in the targeted vaccination scenario (the proposed 
method).
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Fig 10. presents the simulated course of the pandemic with 
targeted vaccination using the proposed method, following 
two scenarios where   0.2f =  (Fig. 10a), and   0.2f =  (Fig. 10b). 
As expected, more vaccines result in a lower infection peak, 
and faster eradication of the infection.

The rates of the spread of the infection in the scenarios 
presented in Fig. 10, can be seen in Fig. 11. These rates are 
defined as  ( )id t

dt
, normalized over β . The higher these rates are, 

the faster the infection spreads in the community. Negative 
values indicate that the rate of recovery exceeds the rate of 
infection. As evident in the figure, larger values of f  result 
in a sharper decline of the rate of the spread of the infection 
immediately after vaccination.

The proposed method has been compared to various 
degree based methods for targeted vaccination in Fig. 12. As 
it can be seen, the proposed method results in the sharpest 

  

a) 𝑓𝑓 = 𝛼𝛼 = 0.2 b) 𝑓𝑓 = 0.4, 𝛼𝛼 = 0.2 

Fig. 10. Susceptible, Infected and Recovered fractions with 𝑓𝑓 = 0.4 and  𝑓𝑓 =  0.2 

  

Fig. 10. Susceptible, Infected and Recovered fractions with  0.4=f  and     0.2=f

 

Fig. 11. The Rates of the Spread of the Infection 
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decline in the rate of the spread of the disease upon the 
administration of the vaccines.

6- CONCLUSION
The proposed smart vaccination method comprised of a 

vaccine allocation phase, and a targeted vaccination phase. 
In the vaccine allocation phase, multiple vaccine types with 
multiple effectiveness probabilities are distributed among 
multiple communities, and in the targeted vaccination phase, 
the contacts among people are modeled as a graph, which is 
mapped to a vector space, where the individuals are clustered 
and the closest people to the cluster centers (in the vector 
space domain) are vaccinated. The proposed method lowers 
the peak number of infected people by 20% compared to 
random vaccination. The complexity of the proposed method 
is linear in the number of people in the community, which is 
an improvement upon the commonly used  centrality based 
methods.
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