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Design and Modeling of an In-pipe Inspection Robot with Repairing Capability 
Equipped with a Manipulator
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ABSTRACT:  In this paper, an in-pipe inspection robot is designed and modeled with a manipulator 
to provide the manipulation ability. However, most of such robots are limited to perform inspecting 
operations. In order to design an in-pipe inspection robot capable of performing an operational task 
within the pipes, the robot is redesigned by adding a two-linkage serial manipulator with two extra 
DOFs on the main body of the moving robot. In this way, the robot will be a system with three degrees of 
freedom. The robot’s kinematic and dynamic models are obtained using Denavit-Hartenberg convention 
and Euler-Lagrange relations, respectively. Also, the system is controlled using inverse dynamics. 
Formulas verification, as well as analysis of its results, has been done by MATLAB software. The 
correctness of the model and the efficiency of the proposed manipulation are investigated by comparing 
the actual and desired paths. The proposed mechanism is efficient regarding ease and cost reduction. It 
will be seen that the mechanism is fully applicable for this robot to cover the operational tasks. 
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1- INTRODUCTION
All over the world, pipelines widely exist in various 

industrial structures, which require thorough inspections 
about every seven years. Since there are different conditions 
for the pipelines such as their environmental conditions, the 
fluid type which flows inside the pipeline, the pipe diameter, 
and so on, there is not always the possibility for the human 
entrance to do inspections. Applying robots here can be 
useful to reduce danger to humans and have more accurate 
performance. Therefore, in-pipe inspection robots are highly 
noticed in recent years, and different types of them have been 
introduced to deal with various challenges in these systems.

An important point in applying in-pipe robots is that 
they are supposed to perform manipulating operations in 
addition to inspections. Therefore, to fulfill the expectations, 
different structures have been introduced with appropriate 
control methods. The most renowned types of in-pipe robots 
are the caterpillar type, the wheeled type, the legged type, 
the inchworm type, the snake type, the screw type, and the 
PIG type. Among the mentioned categories, wheeled type 
in-pipe robots are the most applicable systems since they 
can provide the highest maneuverability. A wheeled type in-
pipe robot has a high level of stability since the pipe wall in 
these robots tolerates an additional force except the robot’s 
weight, which significantly affects the stability of such robots 
during the manipulation operation. Moreover, the wheeled 

type in-pipe robots are categorized in two ways. In the first 
one, these robots are Caterpillar wall-pressed type or wheeled 
wall-pressed type. Also, the second classification includes the 
simple type and the screw one[1]. 

In the research history of in-pipe robots, it can be observed 
that Fukuda et al. proposed an inchworm-type in-pipe 
inspection robot[2], while Roman and Pellegrino introduced 
a caterpillar type of this robot[3]. Due to the better stability of 
wall-pressed robots, Iwashina et al. proposed a wall-pressed 
in-pipe inspection robot that is capable of moving through 
sloped pipelines[4]. The kinematic modeling of this type 
was noticed by Kwon and Yi, who introduced the kinematic 
model of an in-pipe inspection robot with three caterpillar 
wheel chains[5]. Also, Zhang and Yan developed an in-pipe 
robot that is adaptable to different sizes of pipe diameter and 
automatically adjusts the tractive force. The proposed robot 
in this study can be applied in the long distances of pipelines 
with different diameter series[6]. 

Control of in-pipe inspection robots is the problem in 
which the research history is still poor. Kwon et al. studied the 
motion planning of a two-module indoor pipeline inspection 
robot [7]. Zhang and Chen applied the fuzzy algorithm 
to control a mobile pipeline robot [8]. Also, Gregory et al. 
used the optimal control method to plan the optimal path 
of a system with holonomic constraints[9]. Despite the 
extensive research that has been done on in-pipe inspection 
robot systems, a lack of research work on proposing a proper 
mechanism of end-effector and its appropriate controller 



H. Tourajizadeh et al., AUT J. Model. Simul., 53(1) (2020) 39-48, DOI: 10.22060/miscj.2021.19033.5229

40

to do repairs is perceived. As mentioned, the introduced 
systems are only capable of inspecting pipelines and are 
not able to do operations such as repairing. Therefore, in 
this paper, the proper mechanism of a wall-pressed in-pipe 
robot is proposed, which is equipped with a manipulator 
to make it capable of doing the required operations. The 
kinematic model in the proposed robot system is extracted 
by the Denavit-Hartenburg method. Moreover, its dynamic 
model and the related motion equations are derived using 
the Euler-Lagrange formulation[10]. In order to verify the 
extracted kinematic and dynamic models, the simulations 
are considered in both forward and inverse approaches. By 
determining the values of required parameters and analysis 
by MATLAB, the simulation results are presented.

The current study consists of 5 main sections. Modeling 
of the system is extracted in the next section. Here, both the 
kinematic and dynamic models of the system are extracted. In 
the third section, an appropriate control method is employed 
to provide the required robustness of the system for tracking 
purpose. In the Simulation section, first, some MATLAB 
simulations are conducted to verify the extracted models. 
Then, the efficiency of the proposed controller is studied in a 
similar way. Finally, in the conclusion section, the analytical 
results and the comprehensive explanation regarding the 
extracted model of the system are delivered. It is shown that 
by the aid of the proposed robot and the designed controller, 
the mentioned inspectional and operational tasks are possible 
to be performed successfully within a pipeline.  

2- MODELING
Figure 1 shows a schematic view of the robot and its 

position in a pipeline. In this section, both the kinematic 
and kinetic models are introduced based on the following 
assumptions: 

Assumption 1: In the proposed mechanism, the length of 
each wheeled link can be adjusted according to the pipeline 
diameter. Therefore, the proposed inspection robot can be 
applicable in pipes with different diameters. However, the 
related diameter should be constant all over the pipeline.

Assumption 2: As shown in Fig. 1, the angle between every 
two legs is 120° , and the legs are entirely along the pipe axis. 
Therefore, the robot does not rotate about the mentioned axis.

Assumption 3: The pipeline is considered to be a straight 

line, and so, the wheels rotate equally.
Assumption 4: In order to calculate the potential energy of 

the system, the pipe axle is assumed to be the reference level.
Assumption 5: It is supposed that the static friction is 

enough to prevent slippage.
Assumption 6: The pipeline is supposed to be empty, and 

thus, no drag force is involved.

2-1-Kinematics
In this section, the kinematic model of the robot is 

extracted, considering forward and inverse approaches. In the 
forward approach, the end-effector position in its workspace 
can be calculated according to the joint space variables. 
Also, through the inverse approach of the kinematic model, 
the position of each joint space variable can be calculated 
according to the workspace variables. 

Considering the forward approach in the kinematic model, 
it is supposed to calculate the workspace path according to 
the joint space variables. To do so, the Denavit-Hartenburg 
method is applied as follows [10]. By using the D-H method, 
the translation in every link includes four consecutive 
transfers, two of which are translational, and the two others 
are rotational. The mentioned transfer matrix between every 
two links is defined as:
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(1)

Here, C  and S  are the cosine and sine symbols, respectively. 
a  and d  are the linear transfers of the coordinate in meters, 
θ  and α  are the rotational transfers in radians and the index 
i  refers to the link number. As mentioned, the robot system 
should be equalized to some links. Considering 1β  to be the 
initial rotation angle about the pipe axle ( 0z  axis), in radians, 
and also considering that the robot moves along the pip-line 
as the linear transfer along the 0z  axis, the distance between 
the robot and the global coordinate system is the first link 
whose length is equal to rθ , in meters, and is rotated by 1β . In 
fact, 1β  is the angle, in radians, by which the robot takes place 

 
Fig. 1 The schematic view of the proposed robot 

   

Fig. 1. The schematic view of the proposed robot
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inside the pipeline. D-H parameters are mentioned in Table 
1. The robot’s first link is considered to be the second link in 
the D-H transfer, and the robot’s second link is considered 
to be the third link in it, similarly. The end-effector position 
according to the third local coordinate system is denoted 
by 3p . Figure 2 shows a schematic view of equalizing the 
proposed robot with serial robots by which the information 
required in the D-H table can be derived.  

[ ]3 0 0    0 1 Tp =
 

(2)

In Eq. (2), 3p  denotes the position of the end-effector 
according to the third local coordinate system, as mentioned. 
Using the parameters shown in Fig. 2, the D-H table can 
be formed to extract the kinematic model. The values of 
mentioned parameters are gathered in table 1. 

Therefore, we have:
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(3-a)

where 1a  and 2a  are the length of the first and second 
link, in meters, relatively. 1β  is the robot’s initial rotate angle 
about 0z  axis, 2β  is the rotate angle of the first and second link 
about 0z  axis, both in radians, r  is the radius of each wheel, 
in meters, and θ  denotes the rotation angle of each wheel, in 
radians. iA  is the transfer matrix related to the link i  , and 

3_ 0P  denotes the position of the end-effector according to 
the global coordinate system. Therefore, the forward position 
kinematic model can be shown as equation (3-a) in which the 
joint space variables vector and the workspace variables one 
are introduced as follows:
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In order to analyze the kinematic relations between 
velocity vectors in the joint space and the workspace, the 
Jacobian matrix should be calculated using Eq. (4). 
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Finally, the workspace velocity vector can be calculated 
using Eq. (5):
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(5)

where p  and q  are the velocity vectors in the workspace 
and joint space of the robot, respectively. 2a  is the rate of the 
second link’s length variation, in meters per second and θ  is 
the angular velocity of the wheels, in radians per second. The 
rest of the parameters in Eq. (5) have already been introduced 
in the former explanations. In order to have the inverse 
kinematic model, the joint space variables vector should 
be calculated according to the workspace variables using 
equation (3-a). Thus, we have:
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(6)

Table 1 D-H parameters 

Link number 𝑎𝑎𝑖𝑖 𝛼𝛼𝑖𝑖 𝑑𝑑𝑖𝑖 𝜃𝜃𝑖𝑖  
1 0 0 𝑟𝑟𝜃𝜃∗ 𝛽𝛽1 
2 0 0 𝑎𝑎1 𝛽𝛽2∗ 
3 𝑎𝑎2∗  0 0 0 

Table 1. D-H parameters

 
 

Fig. 2 D-H coordinate systems 

 

 

   

   

Fig. 2. D-H coordinate systems



H. Tourajizadeh et al., AUT J. Model. Simul., 53(1) (2020) 39-48, DOI: 10.22060/miscj.2021.19033.5229

42

where x , y , and z  , in meters, are the three components 
of the end-effector position vector, according to the global 
coordinate system. Other parameters in Eq. (6) have already 
been explained. 

Using the Jacobian matrix, the inverse model of the 
velocity can be written as follows: 

1q J p−=   (7)

where q  and p  are the joint space and the workspace 
velocity vectors, relatively. Also, J  is the Jacobian matrix of 
the system, which is calculated in Eq. (4).

2-2-Dynamics
Extracting motion equations of the system is one of the 

most important parts of this paper. Using motion equations, 
the robot’s motion can be understood well. Additionally, 
these equations are used to design an appropriate controller 
for the system. Analysis of the dynamic model is considered 
here in both the forward and inverse approaches, similar to 
the kinematic model. In the inverse approach, the required 
amounts of forces and torques are calculated by which a 
specific path in each joint space variable can be tracked. 
Moreover, through the forward approach, joint space paths 
are calculated considering the implementation of specific 
values as the input torques and forces. Therefore, the two 
mentioned approaches are discussed separately. 

In order to conduct a dynamic analysis of the system 
through the inverse approach and calculate motion equations 
by the Lagrange method, firstly, it is required to calculate the 
Lagrangian of the system using the kinetic and the potential 
energies [10]. The total kinetic energy of the system is 
calculated in Eq. (8):
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(8)

where totalK  is the total kinetic energy of the system, 1K  is 
the translational kinetic energy of the robot body, 2K  is the 
kinetic energy related to the wheels’ rotation, 3K  is the kinetic 
energy resultant of the prismatic motion in the second link, 

4K  is the kinetic energy related to the translational motion of 
the center of mass in the second link resultant of its rotation 
about the first link axle, 5K  is the rotational kinetic energy 
of the second link and 6K  is the first link’s rotational kinetic 
energy. All the mentioned energy amounts are calculated in 
Joules. Moreover, wm  is the wheel’s mass, bm  is the mass of 
the robot body, 1m  is the first link’s mass, and 2m  is the second 
one’s, all in kilograms. 1r  is the radius of the first link’s cross-
section, in meters, and finally, 2β  is the angular velocity of the 
first and second link about the 0z  axis, in radians per second. 

As mentioned before, the pipe axle is assumed to be the 
reference level to calculate the potential energy of the system. 

Thus, the only part of the robot which has a noticeable amount 
of potential energy is its second link. The y  component in the 
global coordinate system is related to the second link’s center 
of mass. Therefore, by multiplying the transfer matrix in the 
center of mass coordinate, the mentioned component can be 
calculated according to the global coordinate system. 
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(9)

Here, 
2aCm  is the second link’s center of mass coordinate 

according to the global coordinate system. Also, 2 0A −  is the 
transfer matrix between the local coordinate systems of 2 
and 0, and 2p  is the end-effector position according to the 
2nd local coordinate system. By Simplifying Eq. (2) and 
considering the component related to the height, we have:

2 1 220.5 ah a Sβ β+=
 

(10)

where, 
2ah  denotes the height of the second link’s center 

of mass, in meters, according to the reference potential level. 
Therefore, the total potential energy of the system is as follows:

2 2 2 1 2total 20.5 a a aP m gh m ga Sβ β+= =  
(11)

where g  is the gravitational acceleration. The Lagrangian 
of the system is as Eq. (12):
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Therefore, the motion equations of the system can be 
extracted as follows:

i
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d La La
dt q q

τ
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Finally, dynamic equations of the robot can be written as 
Eq. (14):
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Here, θτ  is the total torque amount of three wheels, and 

2β
τ  is the required torque of the first link, both in Newton-
meters. Also, 

2af  is the prismatic force of the second link, 
in Newtons. Since the inverse dynamic model of the system 
is now available, the required input values can be extracted 
according to the desired paths for joint space variables.

To extract the forward dynamic model as well, the motion 
equations should be rewritten in the following form: 

( ) ( )
¨

,M q q CG q qτ = + 

 
(15)

where q , q  and ¨
q  are the position, velocity, and 

acceleration of the joint space vector, respectively, according 
to the global coordinate system. Also, the matrices that are 
mentioned in this equation are as follows:
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Here, ( )M q  is the inertia matrix, and ( ),CG q q  includes 
the Coriolis terms and gravitation. As it is shown, ( ),CG q q
is a function of both the position and  derivation of the joint 
variables. Therefore, the joint space acceleration vector can be 
written according to the rest of the parameters:
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As explained before, the forward dynamic model is the 
system response to the implementation of specific values of 
input torques and forces. Thus, it is necessary to calculate 
the acceleration vector of joint space variables according to 

the determined vector pf torques and forces. Afterward, the 
position vector of joint space variables can be derived by 
solving the resultant differential equations. Thus, we have:
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Eq. (21) shows the joint space acceleration resultant of 
a specific vector of input torques and forces. Solving this 
equation results in getting the joint space vector path, which 
has been done in MATLAB, and the results are presented in 
the following sections.

3- CONTROL
In this section, a proper controller is designed to control 

the position of the robot and the accuracy of its performance, 
considering that the kinematic and dynamic models have 
already been extracted. An open-loop control method is 
noticed here using the inverse dynamic model. The total 
amount of input vector which should be applied to the robot 
system consists of the following types:

First, the required inverse dynamic input by which 
the joint space variables track the desired trajectory in the 
absence of external force. This type of input is denoted by dynτ  
and is calculated in Eq. (22). The second one is resτ  in Eq. (22), 
which is the resultant torque and force on the joints due to the 
presence of external force during the repairment operations. 
The third type of input vector is the controller reaction to 
the position error of the end-effector. Its value is calculated 
according to the error between the actual and desired paths 
of joint variables. In other words, calculating contτ  in Eq. (22), 
requires the error and its rate to be measured during the 
simulation time. In ideal circumstances, the error value and 
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its rate are both equal to zero, and consequently, contτ  also 
equals 0. Summation of the three mentioned type of inputs is 
considered the total amount of control input and is shown as 

totτ  in Eq. (22).

tot dyn res contτ τ τ τ= + +
 

(22)

Where:

res 2 2

2 2
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(23)

In Eq. (23), µ  is the coefficient of friction between the 
inner surface of the pipeline and the robot wheels. f  is the 
normal force, in Newtons, implemented on the robot from 
the pipe surface. It is among parameters determined in Table 
2, and can be set according to the required frictional force. 
The less is the coefficient of friction, the more normal force 
value should be implemented on the inner surface of the 
pipe, which can be adjusted by setting thelength of the robot 
leg. Therefore, the value of f  is assumed with respect to the 
friction force, and then, it is  projected on the other two axes 
on the tangent surface of the pipe. Assuming the robot wheels 
to role without slippage, the formulation of rolling friction is 
applicable here, which is shown in Eq. (23). Also, ( ), ,x y z    is 
the velocity vector of the end-effector in its workspace, and 
in Newton-meters as well as the other values of torques. 
Moreover, contτ  in Eq. (22) is:

cont Ke Leτ = + 

 (24)

where K  and L  are the proportional and derivative 
coefficients of the controller, respectively. Also, e  and e  are 

respectively the position error and the velocity error of the 
joint space vector, which are calculated by Eq. (25).

  ;  d a d ae X X e X X= − = − 

  (25)

In Eq. (25), dX  is the desired vector of joint space position, 
and aX  is the actual one in meters. To show the robustness of 
the designed controller, a sample disturbance is applied to the 
system to check the performance of the robot. The considered 
disturbance is a harmonic function with 0.1 amplitude of the 
inverse dynamic torque and the frequency of an ordinary 
vibrational mechanical system. This function is applied to the 
joints of the system as a disturbing torque.  Therefore, we have:

in tot (1 0.2sin80 )tτ τ= +
 (26)

where totτ  is the total amount of force and torque vector 
calculated in Eq. (22), and inτ  is the control input applied to 
the system. Figure 3 shows the overall view of the presented 
control method.

In this paper, the summation of two controlling signals 
is employed, consisting of impedance control accompanied 
by computed torque method. With the aid of the computed 
torque method, the desired path can be tracked while the 
robustness of the system in presence of disturbances can 
be compensated by the added PD controller. Using the 
impedance controller, the applied external forces on the end-
effector can be neutralized. It is proved in [11] that these two 
controlling strategies are stable. 

4- SIMULATION
All the required parameters to run the simulations are 

given in table 2, and the simulation results are presented in 
the relevant parts. Then, the results can be analyzed to reach a 
comprehensive conclusion.  

Moreover, the matrix K  (the proportional coefficient 
matrix) and L  (the derivative coefficient matrix) are 
considered as follows:

1.5 0 0
0 0.5 0
0 0 0.5

K
 
 =  
  

 ;  
1 0 0
0 1 0
0 0 1

L
 
 =  
  

Table 2 Simulation parameters 
 
 

symbol value unit 
𝑟𝑟 0.12 m 
𝑟𝑟1 0.05 m 
𝛽𝛽1 0 rad 
g 9.81 m/s2 
𝑚𝑚𝑏𝑏 0.5 kg 
𝑚𝑚𝑤𝑤 0.1 kg 
𝑚𝑚1 0.2 kg 
𝑚𝑚2 0.2 kg 
𝑎𝑎1 0.2 m 
𝑓𝑓 2 N 
𝜇𝜇 0.1 - 

Table 2.  Simulation parameters
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4-1-Kinematics
Assuming the desired trajectory of Eq. (27) for workspace 

variables, the according joint space paths can be derived by the 
inverse kinematic model presented in Eq. (7). Figure 4 shows 
the joint space paths according to the desired workspace 
paths of Eq. (27):

0.19cos
4

0.19sin
4

0.38
4

t

x
ty

z
t

  
     

    =            
  

    

(27)

Considering the output of the inverse model to be the 
input of the forward model, the results can be compared to 
investigate the correctness of the kinematic model. As Fig. 
5 shows, the input paths of the inverse kinematic model 
conform to output paths of the forward case, reasonably. 
Therefore, it can be concluded that the extracted kinematic 
model is correct. 

4-2-Dynamics

In order to verify the extracted dynamic model, the same 
procedure of kinematic verification is considered. First, the 
required input force and torque vector is calculated by the 
inverse dynamic model, according to a specific desired path 
of the joint space vector. Then, the calculated input vector 
is implemented on the system, and it is supposed to see the 
system response in accordance with the original desired path. 
In other words, the two inverse and forward dynamic models 
are coupled with each other, and the results are compared. 
Equation (28) presents the considered desired path of the 
joint space vector according to time (in seconds), which is 
supposed to be compared in the inverse and forward dynamic 
models. 

2

2

0.12
0.3
0.19

t
q t

a

θ
β
   
   = =   
        

(28)

Figure 6 shows the calculated input amounts, which are 
derived from the inverse dynamic model.

Applying the calculated input values of Fig. 6 to the 
forward dynamic model of the system, the actual paths of joint 
space variables are extracted. Figure 7 shows the comparison 

 
Fig. 3 The proposed control method diagram 

   

Fig. 3. The proposed control method diagram

 
Fig. 4 The inverse kinematic response according to the desired workspace path 

   

Fig. 4. The inverse kinematic response according to the desired workspace path
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between the desired and actual paths of joint space variables. 
As expected, the conformance of joint space paths in the 
inverse and forward approaches shows the correctness of the 
extracted dynamic model.  

4-3-Control
In this section, the desired path for the joint space vector 

is considered to be as Eq. (29) shows: 

( )

2

2

15sin 0.1

5cos
15

0.4

d

d d

d

t
tq

a

θ
β

 
   

    = =          
  

 

(29)

 
Fig. 5 Comparison of the workspace paths in the inverse and forward kinematic models 

   

 
Fig. 6 The inverse dynamic response to the desired path of the joint space vector 

   

Fig. 5. Comparison of the workspace paths in the inverse and forward kinematic models

Fig. 6. The inverse dynamic response to the desired path of the joint space vector

 
Fig. 7 Comparison between the joint space paths in the inverse and forward dynamic models 

   

Fig. 7. Comparison between the joint space paths in the inverse and forward dynamic models
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Moreover, the control input vector is calculated by Eq. 
(26), as Fig. 8 shows:

The mentioned control input is applied to the system, and 
the actual response of the system is extracted. According to 
the presence of the mentioned harmonic disturbance, the 
oscillating torque is required to neutralize the disturbance. 
Thus, the robot will not fail in real scenarios, and its stability 
will be provided since the required torque to neutralize the 
applied harmonic disturbance is calculated and applied to 
the robot. Indeed, the summation of the torque of this figure 
together with the applied disturbance results in the required 
inverse dynamic torque of the robot to track the desired path. 

Figure 9 shows the comparison between the desired and 
actual paths of the workspace variables.  

As can be seen in Fig. 9, the actual paths are conformed 
with the desired ones by an acceptable accuracy, which proves 
the efficiency of the proposed controller in the presence of 
external forces.  

5- CONCLUSION
In this paper, the necessity of using in-pipe inspection 

robots was mentioned firstly, and different types of such systems 
were introduced based on their structure and performance. 
By investigating the research history more precisely, the 

importance of presenting a new mechanism was understood 
by which the robot not only can inspect inside the pipeline, 
but also is capable of performing some operations such as 
doing the required repairments. Therefore, a new mechanism 
with repair abilities was proposed in the current study. The 
kinematic and dynamic models of the proposed robot were 
supposed to be extracted as the main steps of research 
advancement. To do so, the kinematic model was investigated 
using the Denavit-Hartenburg method, and its dynamic 
equations were extracted by Euler-Lagrange formulation. 
Afterward, the extracted models were verified by the analysis 
of some simulation results in MATLAB software. In these 
simulations, the forward and inverse models are coupled, and 
as was expected, the conformity between the results implies 
the correctness of the extracted models. Figure 5 properly 
shows this conformity in the kinematic model, as well as 
Fig. 7 about the extracted dynamic model. Furthermore, the 
studied robot was controlled to track the desired trajectory in 
the presence of the external force vector resultant of repairing 
operations, and also some disturbing noises. According to the 
extracted results and its analysis, it can be concluded that the 
proposed mechanism of the in-pipe robot is efficient enough 
for two expected capabilities, inspection, and performance of 
operations such as repairments.

 
Fig. 8 Control input 

   

 
Fig. 9 Comparison between the desired and actual paths of the workspace variables 

 

Fig. 8. Control input

Fig. 9. Comparison between the desired and actual paths of the workspace variables
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