Flight Mechanics and Control of Tilt Rotor/Tilt Wing Unmanned Aerial Vehicles: A Review

Document Type : Review Article

Authors

1 Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran

2 Master of Science, Department of Aerospace Engineering, K. N. Toosi University of Technology, Tehran, Iran

3 Assistant Professor, Department of Aerospace Engineering, Amirkabir University of Technology, Tehran, Iran

Abstract

A literature review of the Tilt Rotor/Tilt Wing (TR/TW) Unmanned Aerial Vehicles (UAVs) is presented in this paper from the flight mechanics and control points of view. Firstly, the advantages as well as the challenges of the TR/TW UAVs are studied, from the design, aerodynamic, flight dynamic and control viewpoints. Next, a chronicle of the most important researches conducted about the TR/TW UAVs is reported. Then, these TR/TW UAVs are categorized based on the overall configurations, rotor arrangements, engine/rotor positions, and engine/rotor types. Next, a comprehensive flight dynamic modeling of the TR/TW aircraft is introduced that may provide a complete and consistent set of the dynamic equations for any type of the TR/TW regardless of the configurations and rotor arrangements. Afterwards, a survey is carried out about the trim and stability of the TR/TW within the hover and transition phases of flight. Finally, different control methods and control strategies utilized for the attitude and altitude control of the TR/TW UAVs are categorized based on their pros and cons. Since this paper covers the flight mechanics and control of the TR/TW UAVs, it may assist designers in making decisions about the most critical aspects of a new design based on the previous studies.

Keywords

Main Subjects


  1. Kahvecioglu AC, Alemdaroglu N. Optimal design of a miniature quad tilt rotor uav. In2015 International Conference on Unmanned Aircraft Systems (ICUAS) 2015 Jun 9 (pp. 1118-1127). IEEE. DOI: 10.1109/ ICUAS.2015.7152404
  1. Hernandez-Garcia RG, Rodriguez-Cortes H. Transition flight control of a cyclic tiltrotor UAV based on the gainscheduling strategy. In2015 International Conference on Unmanned Aircraft Systems (ICUAS) 2015 Jun 9 (pp. 951-956). IEEE. DOI: 10.1109/ICUAS.2015.7152383
  2. Muraoka K, Hirabayashi D, Sato M, Aoki Y. Research on the Quad Tilt Wing Future Civil VTOL Transport. SAE Technical Paper; 2016 Sep 20. DOI: 10.4271/2016-01-2055
  1. Walker DJ, Perfect P. Longitudinal Stability and Control of Large Tilt-Rotor Aircraft. IFAC Proceedings Volumes. 2007 Jan 1;40(7):413-8. DOI: 10.3182/20070625-5-FR-2916.00071
  1. Park S, Bae J, Kim Y, Kim S. Fault tolerant flight control system for the tilt-rotor UAV. Journal of the Franklin Institute. 2013 Nov 1;350(9):2535-59. DOI: 10.1016/j. jfranklin.2013.01.014
  2. Flores GR, Escareño J, Lozano R, Salazar S. Quad-tilting rotor convertible mav: Modeling and real-time hover flight control. Journal of intelligent & robotic systems.Jan 1;65(1-4):457-71. DOI: 10.1007/s10846-011-9589-x
  1. Partovi AR, Xinhua W, Lum KY, Hai L. Modeling and Control of a Small-Scale Hybrid Aircraft. IFAC Proceedings Volumes. 2011 Jan 1;44(1):10385-90. DOI: 10.3182/20110828-6-IT-1002.03784
  2. Fang X, Lin Q, Wang Y, Zheng L. Control strategy design for the transitional mode of tiltrotor UAV. InIEEE 10th International Conference on Industrial Informatics Jul 25 (pp. 248-253). IEEE. DOI: 10.1109/INDIN.2012.6300840
  3. Zhao W, Underwood C. Robust transition control of a Martian coaxial tiltrotor aerobot. Acta Astronautica. 2014 Jun 1;99:111-29. DOI: 10.1016/j.actaastro.2014.02.020
  4. Yuksek B, Vuruskan A, Ozdemir U, Yukselen MA, Inalhan G. Transition flight modeling of a fixed-wing VTOL UAV. Journal of Intelligent & Robotic Systems.2016 Dec 1;84(1-4):83-105. DOI: 10.1007/s10846-015-0325-9
  1. Liu Z, Theilliol D, Yang L, He Y, Han J. Transition control of tilt rotor unmanned aerial vehicle based on multi-model adaptive method. In2017 International Conference on Unmanned Aircraft Systems (ICUAS) 2017 Jun 13 (pp. 560-566). IEEE. DOI: 10.1109/ICUAS.2017.7991339
  2. Wang X. Takeoff/landing control based on acceleration measurements for VTOL aircraft. Journal of the Franklin Institute. 2013 Dec 1;350(10):3045-63. DOI: 10.1016/j. jfranklin.2013.06.020
  3. Totoki H, Ochi Y, Sato M, Muraoka K. Flight Testing of a Gain-Scheduled Stability and Control Augmentation System for a Quad-Tilt-Wing UAV. InAIAA Guidance, Navigation, and Control Conference 2016 (p. 0084). DOI: 10.2514/6.2016-0084
  4. Hartmann P, Schütt M, Moormann D. Control of departure and approach maneuvers of tiltwing VTOL aircraft. InAIAA Guidance, Navigation, and Control Conference 2017 (p. 1914). DOI: 10.2514/6.2017-1914
  5. Bustamante JM, Herrera CA, Espinoza ES, Escalante CA, Salazar S, Lozano R. Design and construction of a UAV VTOL in ducted-fan and tilt-rotor configuration. In2019 16th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE) 2019 Sep 11 (pp. 1-6). IEEE. DOI: 10.1109/ ICEEE.2019.8884533
  1. Maisel MD. The history of the XV-15 tilt rotor research aircraft: from concept to flight. National Aeronautics and Space Administration, Office of Policy and Plans, NASA History Division; 2000.
  2. Wang C, Zhou Z, Wang R. Research on Dynamic Modeling and Transition Flight Strategy of VTOL UAV. Applied Sciences. 2019 Jan;9(22):4937. DOI: 3390/ app9224937
  3. Wang X, Liu J, Cai KY. Tracking control for a velocitysensorless VTOL aircraft with delayed outputs.Automatica. 2009 Dec 1;45(12):2876-82. DOI: 10.1016/j. automatica.2009.09.003:
  1. Rago C, Mehra KR. Analysis of a Failure Detection and Identification Scheme for the Eagle-Eye Unmanned Air Vehicle. IFAC Proceedings Volumes. 2000 Jun 1;33(11):873-8. DOI: 10.1016/S1474-6670(17)37471-2
  2. Okan A, Tekinalp O, Kavsaoglu M, Armutcuoglu O, Tulunay E. Flight mechanics analysis of a tilt-rotor UAV. In24th Atmospheric Flight Mechanics Conference 1999 Aug (p. 4255). DOI: 10.2514/6.1999-4255
  3. Tekinalp O, Unlu T, Yavrucuk I. Simulation and flight control of a tilt duct uav. In AIAA Modeling and Simulation Technologies Conference 2009 Aug (p. 6138). DOI: 10.2514/6.2009-6138
  4. Lee MK, Lee I. Performance enhancement of tilt-rotor unmanned aerial vehicle using nacelle-fixed auxiliary wing. Journal of aircraft. 2013 Jan;50(1):319-24. DOI: 10.2514/1.C031896
  5. Lee J, Yoo C, Park YS, Park B, Lee SJ, Gweon DG, Chang PH. An experimental study on time delay control of actuation system of tilt rotor unmanned aerial vehicle.Mechatronics. 2012 Mar 1;22(2):184-94. DOI: 10.1016/j. mechatronics.2012.01.005
  1. Yoo CS, Ryu SD, Park BJ, Kang YS, Jung SB. Actuator controller based on fuzzy sliding mode control of tilt rotor unmanned aerial vehicle. International Journal of Control, Automation and Systems. 2014 Dec 1;12(6):1257-65. DOI: 10.1007/s12555-013-0009-9
  2. Lee JH, Min BM, Kim ET. Autopilot design of tilt-rotor UAV using particle swarm optimization method. In2007 International Conference on Control, Automation and Systems 2007 Oct 17 (pp. 1629-1633). IEEE. DOI: 10.1109/ICCAS.2007.4406594
  3. Min BM, Tahk MJ, Kim BS, Shin HS. Guidance law for automatic landing of tilt-rotor aircraft. InAIAA Guidance, Navigation, and Control Conference and Exhibit 2005 Aug (p. 6353). DOI: 10.2514/6.2005-6353
  4. Kang Y, Park B, Yoo C, Kim Y, Koo S. Flight test results of automatic tilt control for small scaled tilt rotor aircraft. In2008 International Conference on Control, Automation and Systems 2008 Oct 14 (pp. 47-51). IEEE. DOI: 10.1109/ICCAS.2008.4694527
  1. Choi S, Kang Y, Chang S, Koo S, Kim JM. Development and conversion flight test of a small tiltrotor unmanned aerial vehicle. Journal of Aircraft. 2010 Mar;47(2):730-2. DOI: 10.2514/1.46180
  2. Kendoul F, Fantoni I, Lozano R. Modeling and control of a small autonomous aircraft having two tilting rotors. IEEE Transactions on Robotics. 2006 Dec 4;22(6):1297-DOI: 10.1109/TRO.2006.882956.
  3. Yanguo S, Huanjin W. Design of flight control system for a small unmanned tilt rotor aircraft. Chinese Journal of Aeronautics. 2009 Jun 1;22(3):250-6. DOI: 10.1016/ S1000-9361(08)60095-3.
  4. Chowdhury AB, Kulhare A, Raina G. A generalized control method for a Tilt-rotor UAV stabilization. In2012 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER) May 27 (pp. 309-314). IEEE. DOI: 10.1109/CYBER.2012.6392571
  1. Ta DA, Fantoni I, Lozano R. Modeling and control of a tilt tri-rotor airplane. In2012 American control conference (ACC) 2012 Jun 27 (pp. 131-136). IEEE. DOI: 10.1109/ ACC.2012.6315155
  1. Papachristos C, Alexis K, Tzes A. Towards a high-end unmanned tri-tiltrotor: Design, modeling and hover control. In2012 20th Mediterranean Conference on Control & Automation (MED) 2012 Jul 3 (pp. 1579-1584). IEEE. DOI: 10.1109/MED.2012.6265864
  1. Papachristos C, Alexis K, Tzes A. Hybrid model predictive flight mode conversion control of unmanned quadtiltrotors. In2013 European Control Conference (ECC) 2013 Jul 17 (pp. 1793-1798). IEEE. DOI: 10.23919/ ECC.2013.6669816
  1. Cetinsoy E, Dikyar S, Hançer C, Oner KT, Sirimoglu E, Unel M, Aksit MF. Design and construction of a novel quad tilt-wing UAV. Mechatronics. 2012 Sep 1;22(6):723-DOI: 10.1016/j.mechatronics.2012.03.003.
  2. Öner KT, Çetinsoy E, SIRIMOĞLU E, Hançer C, Ünel M, Akşit MF, Gülez K, Kandemir I. Mathematical modeling and vertical flight control of a tilt-wing UAV. Turkish Journal of Electrical Engineering & Computer Sciences. 2012 Jan 30;20(1):149-57. DOI: 10.3906/elk-1007-624.
  3. Vuruskan A, Yuksek B, Ozdemir U, Yukselen A, Inalhan G. Dynamic modeling of a fixed-wing VTOL UAV. In2014 International Conference on Unmanned Aircraft Systems (ICUAS) 2014 May 27 (pp. 483-491). IEEE. DOI: 10.1109/ICUAS.2014.6842289
  4. Di Francesco G, Mattei M, D’Amato E. Incremental nonlinear dynamic inversion and control allocation for a tilt rotor UAV. InAIAA Guidance, Navigation, and Control Conference 2014 (p. 0963). DOI: 10.2514/6.2014-0963
  5. Flores G, Lugo I, Lozano R. 6-dof hovering controller design of the quad tiltrotor aircraft: Simulations and experiments. In53rd IEEE Conference on Decision and Control 2014 Dec 15 (pp. 6123-6128). IEEE. DOI: 10.1109/CDC.2014.7040348
  1. Lin Q, Cai Z, Yang J, Sang Y, Wang Y. Trajectory tracking control for hovering and acceleration maneuver of quad tilt rotor uav. InProceedings of the 33rd Chinese Control Conference 2014 Jul 28 (pp. 2052-2057). IEEE. DOI: 10.1109/ChiCC.2014.6896946
  2. Cetinsoy E. Design and control of a gas-electric hybrid quad tilt-rotor UAV with morphing wing. In2015 International Conference on Unmanned Aircraft Systems (ICUAS) 2015 Jun 9 (pp. 82-91). IEEE. DOI: 10.1109/ ICUAS.2015.7152278
  1. Jeong J, Yoon S, Kim SK, Suk J. Dynamic modeling and analysis of a single tilt-wing unmanned aerial vehicle. InAIAA Modeling and Simulation Technologies Conference 2015 (p. 1804). DOI: 10.2514/6.2015-1804
  2. Onen AS, Cevher L, Senipek M, Mutlu T, Gungor O, Uzunlar IO, Kurtulus DF, Tekinalp O. Modeling and controller design of a VTOL UAV. In2015 International Conference on Unmanned Aircraft Systems (ICUAS) 2015 Jun 9 (pp. 329-337). IEEE. DOI: 10.1109/ ICUAS.2015.7152307
  1. Yildiz Y, Unel M, Demirel AE. Adaptive nonlinear hierarchical control of a quad tilt-wing UAV. In2015 European Control Conference (ECC) 2015 Jul 15 (pp. 3623-3628). IEEE. DOI: 10.1109/ECC.2015.7331093
  2. Mikami T, Uchiyama K. Design of flight control system for quad tilt-wing UAV. In2015 International Conference on Unmanned Aircraft Systems (ICUAS) 2015 Jun 9 (pp. 801-805). IEEE. DOI: 10.1109/ICUAS.2015.7152364
  3. Şenkul AF, Altuğ E. System design of a novel tilt-roll rotor quadrotor UAV. Journal of Intelligent & Robotic Systems. 2016 Dec 1;84(1-4):575-99. DOI: 10.1007/s10846-015-0301-4
  1. D’Amato E, Di Francesco G, Notaro I, Tartaglione G, Mattei M. Nonlinear dynamic inversion and neural networks for a tilt tri-rotor UAV. IFAC-PapersOnLine. 2015 Jan 1;48(9):162-7. DOI: 10.1016/j.ifacol.2015.08.077
  2. Gregory IM, Ackerman K, Snyder S, Rothhaar P. Adaptive control for tilt-wing VTOL UAV. In2015 American Control Conference (ACC) 2015 Jul 1 (pp. 2535-2535). IEEE. DOI: 10.1109/ACC.2015.7171114
  3. Lindqvist A, Fresk E, Nikolakopoulos G. Optimal design and modeling of a tilt wing aircraft. In2015 23rd Mediterranean Conference on Control and Automation (MED) 2015 Jun 16 (pp. 701-708). IEEE. DOI: 10.1109/ MED.2015.7158828
  1. Wang X, Cai L. Mathematical modeling and control of a tilt-rotor aircraft. Aerospace Science and Technology. 2015 Dec 1;47:473-92. DOI: 10.1016/j.ast.2015.10.012
  2. Murphy PC, Landman D. Experiment design for complex VTOL aircraft with distributed propulsion and tilt wing. InAIAA Atmospheric Flight Mechanics Conference 2015 (p. 0017). DOI: 10.2514/6.2015-0017
  3. Cardoso DN, Raffo GV, Esteban S. A robust adaptive mixing control for improved forward flight of a tilt-rotor UAV. In2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC) 2016 Nov 1 (pp. 1432-1437). IEEE. DOI: 10.1109/ITSC.2016.7795745
  4. Chao D, Huihui B, Jianping Z. Nonlinear stabilization control of tilt rotor UAV during transition flight based on HOSVD. In2016 IEEE Chinese Guidance, Navigation and Control Conference (CGNCC) 2016 Aug 12 (pp. 154-159). IEEE. DOI: 10.1109/CGNCC.2016.7828775 54.
  5. Kang Y, Park BJ, Cho A, Yoo CS, Koo SO, Tahk MJ. Development of flight control system and troubleshooting on flight test of a tilt-rotor unmanned aerial vehicle. International Journal of Aeronautical and Space   Sciences.      2016      Mar;17(1):120-31.       DOI:10.5139/ IJASS.2016.17.1.120
  1. Kim JH, Gadsden SA, Wilkerson SA. Adaptive integral sliding mode controller for longitudinal rotation control of a tilt-rotor aircraft. In2016 24th Mediterranean Conference on Control and Automation (MED) 2016 Jun 21 (pp. 820- 825). IEEE. DOI: 10.1109/MED.2016.7536004
  1. Saharudin MF. Development of tilt-rotor unmanned aerial vehicle (UAV): material selection and structural analysis on wing design. InIOP Conference Series: Materials Science and Engineering 2016 Oct (Vol. 152,No. 1, p. 012017). IOP Publishing. DOI: 10.1088/1757-899X/152/1/012017
  1. Yih CC. Flight control of a tilt-rotor quadcopter via sliding mode. In2016 International Automatic Control Conference (CACS) 2016 Nov 9 (pp. 65-70). IEEE. DOI: 10.1109/CACS.2016.7973885
  2. Zou JT, Zheng-Yan P. The development of tilt-rotor unmanned aerial vehicle. Transactions of the Canadian Society for Mechanical Engineering. 2016;40(5):909-21. DOI: 10.1139/tcsme-2016-0075
  3. Ansari A, Prach A, Bernstein DS. Adaptive trim and trajectory following for a tilt-rotor tricopter. In2017 American Control Conference (ACC) 2017 May 24 (pp. 1109-1114). IEEE. DOI: 10.23919/ACC.2017.7963101
  4. Lin H, Fu R, Zeng J. Extended state observer based sliding mode control for a tilt rotor UAV. In2017 36th Chinese Control Conference (CCC) 2017 Jul 26 (pp. 3771-3775). IEEE. DOI: 10.23919/ChiCC.2017.8027947
  5. Lu W, Zhang D, Zhang J, Li T, Hu T. Design and implementation of a gasoline-electric hybrid propulsion system for a micro triple tilt-rotor VTOL UAV. In2017 6th Data Driven Control and Learning Systems (DDCLS) May 26 (pp. 433-438). IEEE. DOI: 10.1109/DDCLS.2017.8068112
  6. Santos MA, Cardoso DN, Rego BS, Raffo GV, Esteban S. A discrete robust adaptive control of a tilt-rotor UAV for an enlarged flight envelope. In2017 IEEE 56th Annual Conference on Decision and Control (CDC) Dec 12 (pp. 5208-5214). IEEE. DOI: 10.1109/CDC.2017.8264431
  7. Takeuchi R, Watanabe K, Nagai I. Development and control of tilt-wings for a tilt-type quadrotor. In2017 IEEE International Conference on Mechatronics and Automation (ICMA) 2017 Aug 6 (pp. 501-506). IEEE. DOI: 10.1109/ICMA.2017.8015868
  8. Tielin M, Chuanguang Y, Wenbiao G, Zihan X, Qinling Z, Xiaoou Z. Analysis of technical characteristics of fixedwing VTOL UAV. In2017 IEEE International Conference on Unmanned Systems (ICUS) 2017 Oct 27 (pp. 293- 297). IEEE. DOI: 10.1109/ICUS.2017.8278357.
  9. Zhang J, Bhardwaj P, Raab SA, Saboo S, Holzapfel F. Control Allocation Framework for a Tilt-rotor Vertical Take-off and Landing Transition Aircraft Configuration. In2018 Applied Aerodynamics Conference 2018 (p. 3480). DOI: 10.2514/6.2018-3480
  1. Öznalbant Z, Kavsaoğlu MŞ. Flight control and flight experiments of a tilt-propeller VTOL UAV. Transactions of the Institute of Measurement and Control. 2018 May;40(8):2454-65. DOI: 10.1177/0142331218754618
  2. Ansari AA, Zhang N, Bernstein D. Retrospective cost adaptive PID control of quadcopter/fixed-wing mode transition in a VTOL aircraft. In2018 AIAA Guidance, Navigation, and Control Conference 2018 (p. 1838). DOI: 10.2514/6.2018-1838
  3. Apkarian J. Attitude control of pitch-decoupled vtol fixed wing tiltrotor. In2018 International Conference on Unmanned Aircraft Systems (ICUAS) 2018 Jun 12 (pp. 195-201). IEEE. DOI: 10.1109/ICUAS.2018.8453473
  4. Masuda K, Uchiyama K. Robust control design for quad tilt-wing UAV. Aerospace. 2018 Mar;5(1):17. DOI: 10.3390/aerospace5010017
  5. Panza S, Sato M, Lovera M, Muraoka K. Robust Attitude Control Design of Quad-Tilt-Wing UAV: A Structured $\mu $-Synthesis Approach. In2018 IEEE Conference on Control Technology and Applications (CCTA) Aug 21 (pp. 781-786). IEEE. DOI: 10.1109/CCTA.2018.8511407
  6. Yu L, He G, Zhao S, Wang X. Dynamic Inversion-Based Sliding Mode Control of a Tilt Tri-Rotor UAV. In2019 12th Asian Control Conference (ASCC) 2019 Jun 9 (pp. 1637-1642). IEEE.
  7. Govdeli Y, Tran AT, Kayacan E. Multiple Modeling and Fuzzy Switching Control of Fixed-Wing VTOL Tilt-Rotor UAV. In International Fuzzy Systems Association World Congress 2019 Jun 18 (pp. 270-284). Springer, Cham. DOI: 10.1007/978-3-030-21920-8_25
  8. Stahl P, Roessler C, Hornung M. Performance and Life Cycle Cost Comparison of Optimized Fixed-Wing VTOL UAV Configurations. InDeutscher Luft-und Raumfahrtkongress 2019 2020. DOI: 10.25967/490207
  9. Bhardwaj P, Raab SA, Zhang J, Holzapfel F. Thrust command based Integrated Reference Model with Envelope Protections for Tilt-rotor VTOL Transition UAV. InAIAA Aviation 2019 Forum 2019 (p. 3266). DOI: 10.2514/6.2019-3266
  10. Binz F, Islam T, Moormann D. Attitude control of tiltwing aircraft using a wing-fixed coordinate system and incremental nonlinear dynamic inversion. International Journal of Micro Air Vehicles. 2019 Jul;11:1756829319861370. DOI: 10.1177/1756829319861370
  11. Cardoso DN, Esteban S, Raffo GV. A Nonlinear W∞ Controller of a Tilt-rotor UAV for trajectory tracking. In2019 18th European Control Conference (ECC) Jun 25 (pp. 928-934). IEEE. DOI: 10.23919/ECC.2019.8795894
  1. Chauhan SS, Martins JR. Tilt-wing eVTOL takeoff trajectory optimization. Journal of Aircraft. 2020 Jan;57(1):93-112. DOI: 10.2514/1.C035476
  2. Chen K, Shi Z, Tong S, Dong Y, Chen J. Aerodynamic interference test of quad tilt rotor aircraft in wind tunnel. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering. 2019 Dec;233(15):5553-66. DOI: 10.1177/0954410019852827
  1. Chiappinelli R, Cohen M, Doff-Sotta M, Nahon M, Forbes JR, Apkarian J. Modeling and Control of a Passively-Coupled Tilt-Rotor Vertical Takeoff and Landing Aircraft. In2019 International Conference on Robotics and Automation (ICRA) 2019 May 20 (pp. 4141-4147). IEEE. DOI: 10.1109/ICRA.2019.8793606
  2. Govdeli Y, Muzaffar SM, Raj R, Elhadidi B, Kayacan E. Learning Control of Tandem-Wing Tilt-Rotor UAV with Unsteady Aerodynamic Model. In2019 IEEE International Conference on Fuzzy Systems (FUZZIEEE) 2019 Jun 23 (pp. 1-6). IEEE. DOI: 10.1109/FUZZ- IEEE.2019.8859023
  1. Hegde NT, George VI, Nayak CG. Modelling and Transition flight control of Vertical Take-Off and Landing unmanned Tri-Tilting Rotor Aerial Vehicle. In2019 3rd International conference on Electronics, Communication and Aerospace Technology (ICECA) 2019 Jun 12 (pp. 590-594). IEEE. DOI: 10.1109/ICECA.2019.8821804
  1. Masuda K, Uchiyama K. Flight Controller Design Using μ-synthesis for Quad Tilt-Wing UAV. InAIAA Scitech 2019 Forum 2019 (p. 1918). DOI: 10.2514/6.2019-1918 83. Nami C, Oka K, Sato M, Harada A, Muraoka K. Control-Based Robust CAS Design for QTW-UAV via the Multiple-Model Approach with Particle Swarm Optimization. International Journal of Aerospace Engineering. 2019;2019. DOI: 10.1155/2019/9267059
  2. Rohr D, Stastny T, Verling S, Siegwart R. Attitude and Cruise Control of a VTOL Tiltwing UAV. IEEE Robotics and Automation Letters. 2019 May 1;4(3):2683-90. DOI: 10.1109/LRA.2019.2914340
  3. Sánchez-Rivera LM, Lozano R, Arias-Montano A. Pitching moment analysis and adjustment for tilt-wing UAV in VTOL mode. In2019 International Conference on Unmanned Aircraft Systems (ICUAS) 2019 Jun 11 (pp. 1445-1450). IEEE. DOI: 10.1109/ICUAS.2019.8797952
  4. Wang Z, Li J, Duan D. Manipulation strategy of tilt quad rotor based on active disturbance rejection control. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering. 2020 Mar;234(3):573-84. DOI: 10.1177/0954410019875534
  5. Warren M, Kozel FK, Li E, Hall C, German B. Design and Control Evaluation of a Novel Subscale QuadTiltrotor. InAIAA Scitech 2019 Forum 2019 (p. 0529). DOI: 10.2514/6.2019-0529
  6. Kusznir T, Smoczek J. Sliding Mode-Based Control of a UAV Quadrotor for Suppressing the Cable-Suspended Payload Vibration. Journal of Control Science and Engineering. 2020;2020. DOI: 10.1155/2020/5058039
  7. Yayla M, Kutay AT, Senipek M, Gungor O. An Adaptive Flight Controller Design for a Tilt-Prop Fixed Wing UAV for All Flight Modes. InAIAA Scitech 2020 Forum 2020 (p. 0593). DOI: 10.2514/6.2020-0593
  8. Yeo H, Johnson W. Performance and design investigation of heavy lift tilt-rotor with aerodynamic interference effects. Journal of Aircraft. 2009 Jul;46(4):1231-9. DOI: 10.2514/1.40102
  9. Oosedo A, Abiko S, Narasaki S, Kuno A, Konno A, Uchiyama M. Flight control systems of a quad tilt rotor unmanned aerial vehicle for a large attitude change. In2015 IEEE International Conference on Robotics and Automation (ICRA) 2015 May 26 (pp. 2326-2331). IEEE. DOI: 10.1109/ICRA.2015.7139508
  10. Song S, Wang W, Lu K, Sun L. Nonlinear attitude control using extended state observer for tilt-rotor aircraft. In The 27th Chinese Control and Decision Conference (2015 CCDC) 2015 May 23 (pp. 852-857). IEEE. DOI: 10.1109/CCDC.2015.7162038
  11. Wu D, Li H, Li S. Flight dynamics study of a small tilt rotor UAV with tail propeller. In16th AIAA Aviation Technology, Integration, and Operations Conference 2016 (p. 3450). DOI: 10.2514/6.2016-3450
  12. Öznalbant Z, Kavsaoğlu MS, Cavcar M. Design, flight mechanics and flight demonstration of a tiltable propeller VTOL UAV. In16th AIAA Aviation Technology, Integration, and Operations Conference 2016 (p. 3446). DOI: 10.2514/6.2016-3446
  13. Acree CW. Aerodynamic Limits on Large Civil Tiltrotor Sizing and Efficiency. In: 5th Decennial AHS Aeromechanics Specialists’’ Conference; January 22-24, 2014; San Francisco, CA; United States.
  14. Li F, Xu W, Shi Y, Cai M, Zhang X. Multi-body dynamic modeling, simulation and control strategy design of a Y6 tilt rotor UAV. In2017 2nd International Conference on Advanced Robotics and Mechatronics (ICARM) 2017 Aug 27 (pp. 373-379). IEEE. DOI: 10.1109/ ICARM.2017.8273191
  1. Benkhoud K, Bouallègue S. Dynamics modeling and advanced metaheuristics based LQG controller design for a Quad Tilt Wing UAV. International Journal of Dynamics and Control. 2018 Jun 1;6(2):630-51. DOI: 10.1007/ s40435-017-0325-7
  2. Bangura M, Mahony R. Nonlinear dynamic modeling for high performance control of a quadrotor. In: Proceedings of Australasian Conference on Robotics and Automation, 3-5 Dec 2012, Victoria University of Wellington, New Zealand
  3. Chen C, Zhang J, Zhang D, Shen L. Control and flight test of a tilt-rotor unmanned aerial vehicle. International Journal of Advanced Robotic Systems. 2017 Jan 11;14(1):1729881416678141. DOI: 10.1177/1729881416678141 
  4. Sato M, Muraoka K. Flight controller design and demonstration of quad-tilt-wing unmanned aerial vehicle. Journal of guidance, control, and dynamics. 2015 Jun;38(6):1071-82. DOI: 10.2514/1.G000263 
  5. Rysdyk R, Calise A, Chen R, Rysdyk R, Calise A, Chen R. Nonlinear adaptive control of tiltrotor aircraft using neural networks. In1997 World Aviation Congress 1997 Oct (p. 5613). DOI: 10.2514/6.1997-5613 
  6. Gu H, Lyu X, Li Z, Shen S, Zhang F. Development and experimental verification of a hybrid vertical takeoff and landing (VTOL) unmanned aerial vehicle (UAV). In2017 International Conference on Unmanned Aircraft Systems (ICUAS) 2017 Jun 13 (pp. 160-169). IEEE. DOI: 10.1109/ICUAS.2017.7991420 .
  7. Yuan L, Zhang W, Wen X. Study on Model and Simulation of the Tilt Rotor Aircraft in Transition Mode. InInternational Conference on Advances in Mechanical Engineering and Industrial Informatics (AMEII, 2015) Zhengzhou, Henan, China 2015 Apr (pp. 11-12).
  1. Small E, Fresk E, Andrikopoulos G, Nikolakopoulos G. Modelling and control of a tilt-wing unmanned aerial vehicle. In2016 24th Mediterranean Conference on Control and Automation (MED) 2016 Jun 21 (pp. 1254-1259). IEEE. DOI: 10.1109/MED.2016.7536050
  1. Yeo YT, Liu HH. Transition Control of a Tilt-Rotor VTOL UAV. In2018 AIAA Guidance, Navigation, and Control Conference 2018 (p. 1848). DOI: 10.2514/6.2018-1848
  1. Yu L, Zhang D, Zhang J, Pan C. Modeling and attitude control of a tilt tri-rotor UAV. In2017 36th Chinese Control Conference (CCC) 2017 Jul 26 (pp. 1103-1108). IEEE. DOI: 10.23919/ChiCC.2017.8027494
  2. Tran AT, Sakamoto N, Sato M, Muraoka K. Control augmentation system design for quad-tilt-wing unmanned aerial vehicle via robust output regulation method. IEEE Transactions on Aerospace and Electronic Systems. 2017 Jan 16;53(1):357-69. DOI: 10.1109/TAES.2017.2650618
  1. Alam M, Celikovsky S, Walker D. Robust hover mode control of a tiltrotor using nonlinear control technique. InAIAA Guidance, Navigation, and Control Conference 2016 (p. 0359). DOI: 10.2514/6.2016-0359.
  2. Yin Y, Niu H, Liu X. Adaptive neural network sliding mode control for quad tilt rotor aircraft. Complexity. 2017;2017.  DOI: 10.1155/2017/7104708