[1]Rajabi, M., & Khaloozadeh, H. (2018, May). Investigation and Comparison of the Performance of Multi-Objective Evolutionary Algorithms Based on Decomposition and Dominance in Portfolio Optimization. In Electrical Engineering (ICEE), Iranian Conference on (pp. 923-929). IEEE.
[2]Wang, J. Z., Wang, J. J., Zhang, Z. G., & Guo, S. P. (2011). Forecasting stock indices with back propagation neural network. Expert Systems with Applications, 38(11), 14346-14355.
[3]Shah, D., Isah, H., & Zulkernine, F. (2019). Stock Market Analysis: A Review and Taxonomy of Prediction Techniques. International Journal of Financial Studies, 7(2), 26.
[4]Martinez, L. C., da Hora, D. N., Palotti, J. R. D. M., Meira, W., & Pappa, G. L. (2009, June). From an artificial neural network to a stock market day-trading system: A case study on the bm&f bovespa. In 2009 International Joint Conference on Neural Networks (pp. 2006-2013). IEEE.
[5]Chen, J. (2010, October). SVM application of financial time series forecasting using empirical technical indicators. In 2010 International Conference on Information, Networking and Automation (ICINA) (Vol. 1, pp. V1-77). IEEE.
[6]Barak, S., Arjmand, A., & Ortobelli, S. (2017). Fusion of multiple diverse predictors in stock market. Information Fusion, 36, 90-102.
[7]Krauss, C., Do, X. A., & Huck, N. (2017). Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500. European Journal of Operational Research, 259(2), 689-702.
[8]Gheyas, I. A., & Smith, L. S. (2011). A novel neural network ensemble architecture for time series forecasting. Neurocomputing, 74(18), 3855-3864.
[9]Kourentzes, N., Barrow, D. K., & Crone, S. F. (2014). Neural network ensemble operators for time series forecasting. Expert Systems with Applications, 41(9), 4235-4244.
[10]Zhu, B., & Chevallier, J. (2017). Carbon price forecasting with a hybrid Arima and least squares support vector machines methodology. In Pricing and Forecasting Carbon Markets (pp. 87-107). Springer, Cham.
[11]Nayak, R. K., Mishra, D., & Rath, A. K. (2015). A Naïve SVM-KNN based stock market trend reversal analysis for Indian benchmark indices. Applied Soft Computing, 35, 670-680.
[12]Iqbal, Z., Ilyas, R., Shahzad, W., Mahmood, Z., & Anjum, J. (2013). Efficient machine learning techniques for stock market prediction. International Journal of Engineering Research and Applications, 3(6), 855-867.
[13]Bengio, Y., Courville, A., & Vincent, P. (2013). Representation learning: A review and new perspectives. IEEE transactions on pattern analysis and machine intelligence, 35(8), 1798-1828.
[14]Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. science, 313(5786), 504-507.
[15]Arel, I., Rose, D. C., & Karnowski, T. P. (2010). Deep machine learning-a new frontier in artificial intelligence research. IEEE computational intelligence magazine, 5(4), 13-18.
[16]LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521(7553), 436.
[17]Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems (pp. 1097-1105).
[18]Hinton, G. E., Osindero, S., & Teh, Y. W. (2006). A fast learning algorithm for deep belief nets. Neural computation, 18(7), 1527-1554.
[19]Vincent, P., Larochelle, H., Bengio, Y., & Manzagol, P. A. (2008, July). Extracting and composing robust features with denoising autoencoders. In Proceedings of the 25th international conference on Machine learning (pp. 1096-1103). ACM.
[20]Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural networks, 61, 85-117.
[21]Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780.
[22] Khaloozadeh, H., & Sedigh, A. K. (2001, July). Long term prediction of Tehran price index (TEPIX) using neural networks. In Proceedings Joint 9th IFSA World Congress and 20th NAFIPS International Conference (Cat. No. 01TH8569) (Vol. 1, pp. 563-567). IEEE.
[23]Siami-Namini, S., & Namin, A. S. (2018). Forecasting economics and financial time series: Arima vs. lstm. arXiv preprint arXiv:1803.06386.
[24]Nelson, D. M., Pereira, A. C., & de Oliveira, R. A. (2017, May). Stock market's price movement prediction with LSTM neural networks. In 2017 International Joint Conference on Neural Networks (IJCNN) (pp. 1419-1426). IEEE.
[25] Althelaya, K. A., El-Alfy, E. S. M., & Mohammed, S. (2018, April). Evaluation of bidirectional lstm for short-and long-term stock market prediction. In 2018 9th international conference on information and communication systems (ICICS) (pp. 151-156). IEEE.
[26]Singh, R., & Srivastava, S. (2017). Stock prediction using deep learning. Multimedia Tools and Applications, 76(18), 18569-18584.
[27]Shen, F., Chao, J., & Zhao, J. (2015). Forecasting exchange rate using deep belief networks and conjugate gradient method. Neurocomputing, 167, 243-253.
[28]Kuremoto, T., Kimura, S., Kobayashi, K., & Obayashi, M. (2014). Time series forecasting using a deep belief network with restricted Boltzmann machines. Neurocomputing, 137, 47-56.
[29]Takeuchi, L., & Lee, Y. Y. A. (2013). Applying deep learning to enhance momentum trading strategies in stocks. In Technical Report. Stanford University.
[30]Li, X., Peng, L., Yao, X., Cui, S., Hu, Y., You, C., & Chi, T. (2017). Long short-term memory neural network for air pollutant concentration predictions: Method development and evaluation. Environmental pollution, 231, 997-1004.
[31] Lei, J., Liu, C., & Jiang, D. (2019). Fault diagnosis of wind turbine based on Long Short-term memory networks. Renewable energy, 133, 422-432.
[32]Yuan, C., Xiu, T., & Lou, T. (2019, April). Probabilistic Long-term Load Forecasting Based on Stacked LSTM. In Proceedings of the 2019 4th International Conference on Mathematics and Artificial Intelligence (pp. 80-84).
[33]Wang, Y., Liu, M., Bao, Z., & Zhang, S. (2018). Short-term load forecasting with multi-source data using gated recurrent unit neural networks. Energies, 11(5), 1138.
[34]Farnaghi, M & Rahimi, H. (2017). Spatio-Temporal Prediction of Monthly Rainfall using Deep Neural Network: A Case Study in North-west Iran. JGST. 6(4), 123-142. (in Persian)
[35]Hochreiter, S. (1991). Untersuchungen zu dynamischen neuronalen Netzen. Diploma, Technische Universität München, 91(1).
[36]Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term dependencies with gradient descent is difficult. IEEE transactions on neural networks, 5(2), 157-166.
[37]Luu, Q., Nguyen, S., & Pham, U. (2020). Time series prediction: A combination of Long Short-Term Memory and structural time series models. Science & Technology Development Journal-Economics-Law and Management, 4(1), 500-515.
[38]Yuan, X., Li, L., & Wang, Y. (2019). Nonlinear dynamic soft sensor modeling with supervised long short-term memory network. IEEE Transactions on Industrial Informatics.
[39]Quigley, L., & Ramsey, D. (2008). Statistical analysis of the log returns of financial assets. Financial mathematic, University of Limerick, 32.
[40]Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv: 1412.6980.