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ABSTRACT: In this paper the generalizations of the Burgers-Korteweg-de Vries model with small
parameter derived by Kudryshov et al[ N.A. Kudryashov, D.I. Sinelshchikov. Extended models of non-
linear waves in liquid with gas bubbles, International Journal of Non-Linear Mechanics 63 (2014) 31-
38] is studied. A comprehensive study on the approximate symmetry analysis of the waves models
is presented. First, we obtain approximate symmetry for the equation. Subsequently, in a physical
application, using the first-order approximate symmetries, corresponding approximate invariant

solutions to the perturbed non-linear models are obtained.
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1. Introduction

In this paper, we investigate approximate symmetries and
approximate solutions for the generalizations of the Burgers-
Korteweg-de Vries equation given by

v + VU + fUrgr — HUzz +

el (6af — P2 + 38X + 68A1 — 2aA3) VU0 "
1
(208 — B1 4+ 3BA2) Vg, + %(2/\1 -+ /\2)1)2?,':,- —

(2u\ + pa + v)v2
2 DY, 22
W Vgpa -+ (1’ - 33/"‘)T-'.J':I:.t‘::: HE 25 Vezaazx| = 0

Here a,3,8,,8,,4-¥:,A ,A,and A, are constants and is small
parameter. This equation has been obtained by Kudryashov
and Sinelshchikov in [1] for the first time. This equation
describes non-linear waves in a bubbly liquid. In the purely
dispersive case y = v =y =0, Eq. (1) is the generalization of
the Korteweg-de Vries equation.

Recentely, in paper [2] by using Painlev e test, it is shown
that the perturbed Burgers-Korteweg-de Vries equation is
not Painlev’e integrable.

The outline of the paper is arranged as follows. In Section
2, we present the first-order approximate symmetry analysis
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of the equation for two cases. Subsequently, in Section 3, the
approximate symmetries will be used to obtain the the first-
order approximate invariant solutions of the equation of study.
The last section is a conclusion of our results.

We use symbolic software package ASP [3] for all
approximate symmetries and approximate invariant solutions
computations.

*Approximate symmetry analysis for the non-linear waves
equations with small parameter

First, we recall some principles associated with approximate
symmetry approach proposed by Baikov et al [4, 5].

The approximate symmetry of the model (1) is of the
form

X = X0.peq!
= (ro(t, z,v) + en(t, z,v))0; + (&(t, z,v) +

€1 (t, 2, v))dy + (nolt, z,v) + eny (L, 2,v))d,,

(2)

We know that Eq. (1) is approximately invariant under
the approximate transformation group generated by (2) if and
only if

XOFy () +e(X Fo(2) + X°Fi(2)] | | = o(e)

’

with
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XOFo() + (X Fo(z) + X°Fa(2)]| | = ole)
Fo(z) = (v 4 avvg + Bupes — ),
Fi(z) = (6afB— B2 +38A2+68M —

2a03)V V50 + (28 — B1 + 3BA2) VU
+%(2)\1 —|— /\2)?)21!,.,,. — (2pM + pa+ V}'Uf: —

(‘2,‘.1‘,/\2 + jeted + V)?J'U:r,ﬂ:

By solving

[Xw%wﬂhMbozo 3)

’

and determining equation for deformations

+H=0 4)

’

{XIFO(Z)} lFU(z)=0

where H is the auxiliary function

1
H s i X(] F F z
E[ (Fo(z) + €Fi(2)) Fn(:)+<F|(ZJ=0], ®

the operators X°and X" are obtained. We refer to [4, 5, 6, 7,
8] for further details.

Now we study approximate symmetry groups and Lie
algebras associated with the extended model for two different
cases:

Case 1. o,3.8,,8,,u %A ,A, and A, are arbitrary.

Here we solve Eq. (3) for the exact symmetries X° of the
equation

v+avy + By —uv =0.(6)

By solving Eq. (3), we find the system of overdetermined:

70, = 70,x = 70,v = £0,x = £0,v = %0,t = 10,x = n0,v = 0,£0,¢
= an0.

So we have

7,=B, §,=Bat+B, 1,= B,(7)

with B,B,and B, arbitrary constants. Hence,

X°=B0,+ (Bat + B,)d_+ B,0..

Therefore, we get a three-dimensional Lie algebra for Eq.
(6) from

X ? = 0.

X(z) = atd, + Oy, X_-(}) =0y,

(8)

By substituting X°into Eq. (5) we obtain
H = B2((aA2 + 2ad1)vvx— (2uAz + au + V)vex +
(3BAZ + Zaﬁ - Bl)Vxxx).

Now Eq. (4) has the form

X! (v avve + BV — Wea ) (6) +B: ( (A2 +2aA; ) VU — )

(2uAatapt+v) v, +(38A2+2a8—B1 ) vzez) =0,
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where X'is the third prolongation of the operator
X1 =110t + &10x + nlov.
By calculating the terms in (9) we have

Tix=TLv= fl,xx = fl,v = Nut=Nix = NLw =
0, B(t1e— 3&1x) + B2(2af + 3BA2- B1) =0,
Bo(au + 222 + V) + p(tie — 2&1x) = 0,

a(2A1B2 + A2B2 — &1,x + 11,t)v + anl — &1,£ = 0. So we get

v 208
Bl = ({)5 = I—“ — Tl)Bgf +Cl-\
4 B
&H = (O*ﬁ*?Jr)\g)BQI#»CQfoJrC:; (10)
f
2 15}
m = (Ti/*?)\lJr%)BzUJrCz-,

with C,,C,and C, arbitrary constants. Hence

oo Bnesc
16)'
((a = ;_: o ?1 + Xo)Box + Coat + C:a)a:.; =+
[
2 3
((Tf ~24 + 5B + 3o

Substituting (10) and (7) into (2), we get the following
approximate symmetries for Eq. (1):

X1 = o,
X~1:‘c0’;:

X = ft(afl—tf?)aﬁr (11)

X2 = a’;;s X?) — Faf,:
X-5 — F((—tta,l: + 0’1!),~

Now, we have the following table of commutators.

So the vector fields (11) generate a six-parameter
approximate transformations group. Note that the operators
X, X, X form approximate Lie algebra in the first-order of
precision [7, 9].

From equations (11) one can easily see that all symmetries
(8) of Eq. (6) are stable. What we come to the corresponding
conclusions about the stability of the symmetries is that the
perturbed model (1) inherits the symmetries of Eq. (6).

Case2.uy=v=y=0.

From these assumptions we obtain

Uy + vty + PUgrs + € [(60;3 — Ba + 38X +68A —
2(*)\3)'”.::1"1'.7: +(2(1’.5 - 31 + 3.{3/\2)7)1’.1::1::1: + (12)

%(2)\1 + /\2)7"'2?/'.1; + 2621/'.1,':1;.1,':1;:1'] =0

Model (12) was introduced in [1, 10]. Special solutions for
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Table 1: Approximate commutators

[] X1 Xo X3 Xy X5 X

X] 0 0 0 0 (IX4 O.’XQ+(C¥—B_1[L_1[31/5+2ﬁ1p])X3

o 0 0 0 0 (a+ Ao — B u~ B + Bip]) Xy

X; 0 0  ofe) aXy + ole)

X4 0 0 o(e)

X5 0 ()(f)

X 0

Table 2: Approximate commutators

(] X1 Xo X3 Xa X; X6 X7
X] 0 0 0 0 QX4 X4 = 13_](2Qﬁ+35)\2 —61)X3 3(2(1}94—36)\2 — BI)XH;
s 0o 0 0 0 0 (208 + 38X2 — 51) X3
X3 0 0  ofe) aXy + o(e) ole)
Xy 0 0 0 o(e)
X5 0 o(e) o(€)
X(; 0 —2(2(1)6 + 3,13')\2 = 51) X',
Xy 0

canonical form of this model were obtained in there.
Here we solve Eq. (3) for the exact symmetries X° of the
equation

v+avy +Bv =0 (13)

From Eq. (3), we find the system of overdetermined:
Tox = To,0 = €00 = N0t = Mo,z = Noww = 0,

3n v Mo,
Top =~ £y s = —ofvon — ), Eop= —
2 2.

So we have

To=3Bit+ B2, & =Bsat+Bix+Bsy, 1no=B3- 2B, (14)

with B,B,,B, and B, arbitrary constants. Hence,
X0= (3Bit + B2)0t+ (Bsat + Bix + B4)0x+ (-2B1v + B3)0v.

Therefore, we obtain a four-dimensional Lie algebra for
Eq. (13) from

XV = 319, 4+ 28, — 200,, X =20,

(15)
Xé' = atdy + 0,, X_.? =0,

By substituting X°into Eq. (5) we have

H = Bsa(2A1 + A2)vvx = Bia(2A1 + A2)v2vx -
2B1f(2a + 3A2)vvi =2B1(2a(3f + A3) +

3B(2A1 + A2))vxvix + B3(B(2a + 312) -
B1)Viee +2B1B1vvix + 2B1B2vxvxx — 4B1f2vinee,

The determining deformations equation yields that B, =
0. So, we find
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T1x=TLv= fl,xx: fl,v: Nue=Nix=NLw= 0,
Brie— 3B&Lx+ B3(2aB + 3128 - f1) =0,

avtie— avéix— e+ ani+ aB3(A2 + 2A1)v=0.

So we have
2 3A2) B3 + Cy)x + 3aCist) 3 — B3z
§si=Ci+ Al e l(:.’]-j-l- ") 2 1P~ 1 =Cit+C: (16)
((2a — 6 ) By — 20, ) v — Bafv

m=Cs+ 33

with C,C,,C, and C, arbitrary constants. Substituting (16)
and (14) into (2), we get

X Oy, Xo=10y, Xzg=eby, Xy=c¢ed,, Xz=celatd,+0,),

g /oo, g 5 . Bi 4
Xe = ('l(g 20 3)\2) O + ald; (l Fev(2a — 2X; + 2A2 F))O’ (17)
X: = €(208 438\ — 51)(3t0: + 20, — 2v0,).

There for, we have the following table of commutators.

We see that the vector fields (17) generate a seven-
parameter approximate transformations group. We note that
the operators X ,X,~X_ form an approximate Lie algebra in
the first-order of precision.

From equations (17) we arrive to the fact that not all
generators (15) of Eq. (13) are stable. In fact, the vector field

X0 = 310, + 28, — 200,

from (15) is unstable. So, the perturbed model (12) does
not inherit the symmetries of Eq. (13).

2. Approximately Invariant Solutions for the non-linear
waves equations

Now, by using the approximate symmetries obtained in
the previous section, we construct the first-ordr approximate
invariant solutions for the non-linear model [7, 8, 11].
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Case 1. Invariance underX = (1 + eat)d,, + €0,

Here, we investigate the solutions invariant under the
operator X of the Lie algebra (11). Solving the characteristic
equations for the invariants of X, we find :

€r

w(r) = u(t.J;') ~ S I

r=1.
So, the reduced equation is

(rae 4+ 1)%w, + [%(2)\1 + o) (rae + Du? +

(roe +a)w — e (o + 221 + u)]r =0 (18)
From Eq.(18) we obtain
i) = P 2C%(R) — Iy(R)

€(2A1 + A2) 2CYi(R) — J1(R)

’

where R = (=2a '3 (aer + 1) Hap + 2A 1 + v) (20 + X2))V2, C
is arbitrary constant, J (R), J,(R) are the Bessel functions of
the first kind, and Y (R), Y (R) are the Bessel functions of the
second kind. So we obtain:

ve R 2CYa(R) — Io(R)
act+1  e@h t Va1 20%(R) - L(R) (19

v(t,x) =

where R, I (R), I,(R) are the Bessel functions of the first
kind, and Y (R), Y (R) are the Bessel functions of the second
kind. By substituting this solution into the left side of equation
(1) we have

Uy F OV + PUgey — [0z + €| (68 — Ba + 38X + 68X — 200X3) 0,05,
) a. 2
+(2a8 — 1 + 3BA2) V030 + 5(2)\1 + Ao, — (2pA; + pro 4 )P

(2udg + pa + V)00zz + P2 Vsza + (7 — 38U Vazza + 287 Vag w] =o(c"}

Therefore solution (19) is a approximate invariant solution
for the generalization of the Burgers-Korteweg-de Vries
model with small parameter (1).

Case 2. Invariance under?.

Now, we invastigate solutions invariant under the operator
X of the Lie algebra (17). For the operator X we obtain two
invariants:

€X
aet + 17

w(r)=v
So, the reduced equation is
(20ver + 2)w, + ea 2+ (20 + M)w)w =0, (20)

From (20) we find

2

ulF) = e(2Car — 20 — X2) + 2C

where C is constant. So

Ex(2Cat — 20 — ) + 2e(Ca + at) + 2

v(t,x) = (e(2Cat — 2X — A2) + 2C) (ot + 1)

(21)
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Fig. 1: Approximate invariant solution associated with
a=2,2=3X=4C=4e=10""

By substituting (21) into the left side of equation (12) we
have

Ve + A0V + Buzge 4 c[(eaﬁ Ba + 362 + 681 — 2003 ) VaVag

FH2a — B + 3B8A2)00pps 1 g(?)\l b A2)vies | 2.52'0;,»;.;1,”]

Thus solution (21) is a approximate invariant solution for
the generalization of the Korteweg-de Vries model with small
parameter (12). A plot of solution (21) is shown in Fig. (1).
For a physical meaning of the solution, we explain that this
solution represent a two-crest wave.

We have presented waves with two crests in a bubbly
liquid for the first time.

3. Conclusions

By the approximate symmetry approach proposed by
Baikov, Gazizov and Ibragimov, we have studied the first-
order approximate symmetries for the generalizations
of the Burgers-Korteweg-de Vries equation with small
parameter. We have used the approximate symmetry
method for finding approximate invariant solutions of the
non-linear model. We have shown waves with two crests in
a bubbly liquid.
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