[1] Aayani R, Shahidian A, Ghassemi M, Numerical Investigation of Non-Newtonian Blood Effect on Acoustic Streaming, J APPL FLUID MECH, 2016;9.
[2] Yousefi M, Pourmehran O, Gorji-Bandpy M, Inthavong K, Yeo L, Tu J. CFD simulation of aerosol delivery to a human lung via surface acoustic wave nebulization, Biomech Model Mechanobiol, 2017;16:2035-50.
[3] López-Haro S, Gutiérrez M, Vera A, Leija L, Modeling the thermo-acoustic effects of thermal-dependent speed of sound and acoustic absorption of biological tissues during focused ultrasound hyperthermia, J MED ULTRASON, 2015;42:489-98.
[4] Zohdi T, Krone R, Estimates for the acoustical stimulation and heating of multiphase biotissue, Biomech Model Mechanobiol, 2018;17:717-25.
[5] Mohammadalibeigi F, Shirani M, Seyed-Salehi H, Afzali L, Biochemical urinalysis of healthy kidney and stone-generating kidney in unilateral urolithiasis, J Renal Inj Prev, 2019;8.
[6] Zeng J, Wang S, Zhong L, Huang Z, Zeng Y, Zheng D, et al, A Retrospective Study of Kidney Stone Recurrence in Adults, J Clin Med Res, 2019;11:208.
[7] Eliahou R, Hidas G, Duvdevani M, Sosna J, Determination of renal stone composition with dual-energy computed tomography: an emerging application, Seminars in Ultrasound, CT and MRI: Elsevier, 2010. p. 315-20.
[8] Dai JC, Bailey MR, Sorensen MD, Harper JD, Innovations in Ultrasound Technology in the Management of Kidney Stones, Urologic Clinics, 2019.
[9] Wess OJ, Mayer J, Fragmentation of brittle material by shock wave lithotripsy, Momentum transfer and inertia: a novel view on fragmentation mechanisms, Urolithiasis, 2018:1-13.
[10] Lawler AC, Ghiraldi EM, Tong C, Friedlander JI, Extracorporeal shock wave therapy: current perspectives and future directions, Current urology reports, 2017;18:25.
[11] Zwaschka TA, Ahn JS, Cunitz BW, Bailey MR, Dunmire B, Sorensen MD, et al, Combined burst wave lithotripsy and ultrasonic propulsion for improved urinary stone fragmentation, Journal of endourology, 2018;32:344-9.
[12] Maxwell AD, Cunitz BW, Kreider W, Sapozhnikov OA, Hsi RS, Harper JD, et al, Fragmentation of urinary calculi in vitro by burst wave lithotripsy, J Urol, 2015;193:338-44.
[13] Ghorbani M, Oral O, Ekici S, Gozuacik D, Koşar A, Review on lithotripsy and cavitation in urinary stone therapy, IEEE reviews in biomedical engineering, 2016;9:264-83.
[14] Wang KG, Multiphase fluid‐solid coupled analysis of shock‐bubble‐stone interaction in shockwave lithotripsy, INT J NUMER METH BIO, 2017;33:e2855.
[15] Maeda K, Colonius T, Kreider W, Maxwell A, Bailey M, Modeling and experimental analysis of acoustic cavitation bubble clouds for burst-wave lithotripsy, J Acoust Soc Am, 2016;140:3307-.
[16] Maeda K, Maxwell AD, Kreider W, Colonius T, Bailey MR, Investigation of the energy shielding of kidney stones by cavitation bubble clouds during burst wave lithotripsy, arXiv preprint arXiv:180106901. 2018.
[17] Xi X, Zhong P, Dynamic photoelastic study of the transient stress field in solids during shock wave lithotripsy, J Acoust Soc Am, 2001;109:1226-39.
[18] Dahake G, Gracewski S, Finite difference predictions of P-SV wave propagation inside submerged solids. II. Effect of geometry, J Acoust Soc Am, 1997;102:2138-45.
[19] Dahake G, Gracewski S, Finite difference predictions of P-SV wave propagation inside submerged solids. I. Liquid–solid interface conditions, J Acoust Soc Am, 1997;102:2125-37.
[20] Cleveland RO, Sapozhnikov OA, Modeling elastic wave propagation in kidney stones with application to shock wave lithotripsy, J Acoust Soc Am, 2005;118:2667-76.
[21] Weinberg K, Ortiz M, Kidney damage in extracorporeal shock wave lithotripsy: a numerical approach for different shock profiles, Biomech Model Mechanobiol, 2009;8:285.
[22] Moghimnezhad M, Shahidian A, Andayesh M, Multiphysics Analysis of Ultrasonic Shock Wave Lithotripsy and Side Effects on Surrounding Tissues, Journal of Biomedical Physics and Engineering, 2020.
[23] Ikeda T, Yoshizawa S, Koizumi N, Mitsuishi M, Matsumoto Y, Focused ultrasound and Lithotripsy, Therapeutic Ultrasound: Springer, 2016. p. 113-29.
[24] Bailey M, Khokhlova V, Sapozhnikov O, Kargl S, Crum L, Physical mechanisms of the therapeutic effect of ultrasound (a review), Acoustical Physics, 2003;49:369-88.
[25] Li W, Zhang J, Tse F, Handbook of LC-MS bioanalysis, New Jersey: Jonh Wiley and Sons, 2013.
[26] Ueberle F, Application of shock waves and pressure pulses in medicine, Springer Handbook of Medical Technology: Springer, 2011. p. 641-75.
[27] Warty Y, Haryanto F, Fitri LA, Haekal M, Herman H, A Spatial Distribution Analysis on the Deposition Mechanism Complexity of the Organic Material of Kidney Stone, Journal of Biomedical Physics and Engineering, 2019.
[28] Haddadi S, Ahmadian MT, Numerical and Experimental Evaluation of High‐Intensity Focused Ultrasound–Induced Lesions in Liver Tissue Ex Vivo, J Ultrasound Med, 2018;37:1481-91.
[29] Suomi V, Jaros J, Treeby B, Cleveland RO, Full modeling of high-intensity focused ultrasound and thermal heating in the kidney using realistic patient models, IEEE Transactions on Biomedical Engineering, 2018;65:969-79.
[30] Kyriakou A, Multi-physics computational modeling of focused ultrasound therapies: ETH Zurich, 2015.
[31] Nyame YA, De S, Sarkissian C, Brown R, Kartha G, Babbar P, et al, Kidney stone models for in vitro lithotripsy research: A comprehensive review, Journal of endourology, 2015;29:1106-9.
[32] Steinbach P, Wörle K, Seidl M, Seitz R, Hofstädter F, Effekte hochenergetischer Ultraschallstoßwellen auf Tumorzellen in vitro und humane Endothelzellen. Stoßwellenlithotripsie, Aspekte und Prognosen Attempt Tübingen S, 1995:104-9.
[33] Miller DL, Thomas RM, Thresholds for hemorrhages in mouse skin and intestine induced by lithotripter shock waves, Ultrasound Med Biol, 1995;21:249-57.
[34] Van Rhoon GC, Samaras T, Yarmolenko PS, Dewhirst MW, Neufeld E, Kuster N, CEM43° C thermal dose thresholds: a potential guide for magnetic resonance radiofrequency exposure levels? European radiology, 2013;23:2215-27.