[1] A. Aranda, A.J.M.L. Valencia, A.A.I.J. Vol, Study on cerebral aneurysms: Rupture risk prediction using geometrical parameters and wall shear stress with cfd and machine learning tools, 5 (2018).
[2] A. Aranda, A.J.J.o.M.i.M. Valencia, Biology, Computational study on the rupture risk in real cerebral aneurysms with geometrical and fluid-mechanical parameters using FSI simulations and machine learning algorithms, 19(03) (2019) 1950014.
[3] X. Bai-Nan, W. Fu-Yu, L. Lei, Z. Xiao-Jun, J.J.N.r. HaiYue, Hemodynamics model of fluid–solid interaction in internal carotid artery aneurysms, 34(1) (2011) 39-47.
[4] H.-J. Bungartz, M. Schäfer, Fluid-structure interaction: modelling, simulation, optimisation, Springer Science & Business Media, 2006.
[5] ] A. Can, R.J.N. Du, Association of hemodynamic factors with intracranial aneurysm formation and rupture: systematic review and meta-analysis, 78(4) (2016) 510520.
[6] J.R. Cebral, F. Mut, J. Weir, C.J.A.J.o.N. Putman, Quantitative characterization of the hemodynamic environment in ruptured and unruptured brain aneurysms, 32(1) (2011) 145-151.
[7] I. Chatziprodromou, A. Tricoli, D. Poulikakos, Y.J.J.o.b. Ventikos, Haemodynamics and wall remodelling of a growing cerebral aneurysm: a computational model, 40(2) (2007) 412-426.
[8] Y.I. Cho, K.R.J.B. Kensey, Effects of the non-Newtonian viscosity of blood on flows in a diseased arterial vessel. Part 1: Steady flows, 28(3-4) (1991) 241-262.
[9] V. Costalat, M. Sanchez, D. Ambard, L. Thines, N. Lonjon, F. Nicoud, H. Brunel, J.P. Lejeune, H. Dufour, P.J.J.o.b. Bouillot, Biomechanical wall properties of human intracranial aneurysms resected following surgical clipping (IRRAs Project), 44(15) (2011) 2685-2691.
[10] K.D. Dennis, D.F. Kallmes, D.J.J.o.b. DragomirDaescu, Cerebral aneurysm blood flow simulations are sensitive to basic solver settings, 57 (2017) 46-53.
[11]K. Fukazawa, F. Ishida, Y. Umeda, Y. Miura, S. Shimosaka, S. Matsushima, W. Taki, H.J.W.n. Suzuki, Using computational fluid dynamics analysis to characterize local hemodynamic features of middle cerebral artery aneurysm rupture points, 83(1) (2015) 8086.
[12] R.J. Guzman, K. Abe, C.K.J.S. Zarins, Flow-induced arterial enlargement is inhibited by suppression of nitric oxide synthase activity in vivo, 122(2) (1997) 273-280.
[13] T. Hassan, E.V. Timofeev, T. Saito, H. Shimizu, M. Ezura, T. Tominaga, A. Takahashi, K.J.A.j.o.n. Takayama, Computational replicas: anatomic reconstructions of cerebral vessels as volume numerical grids at threedimensional angiography, 25(8) (2004) 1356-1365.
[14] B. Hillen, T. Gaasbeek, H.W.J.J.o.b. Hoogstraten, A mathematical model of the flow in the posterior communicating arteries, 15(6) (1982) 441-448.
[15] H.A. Himburg, D.M. Grzybowski, A.L. Hazel, J.A. LaMack, X.-M. Li, M.H.J.A.J.o.P.-H. Friedman, C. Physiology, Spatial comparison between wall shear stress measures and porcine arterial endothelial permeability, 286(5) (2004) H1916-H1922.
[16] J.G. Isaksen, Y. Bazilevs, T. Kvamsdal, Y. Zhang, J.H. Kaspersen, K. Waterloo, B. Romner, T.J.S. Ingebrigtsen, Determination of wall tension in cerebral artery aneurysms by numerical simulation, 39(12) (2008) 31723178.
[17] J. Janela, A. Moura, A.J.J.o.C. Sequeira, a. Mathematics, A 3D non-Newtonian fluid–structure interaction model for blood flow in arteries, 234(9) (2010) 2783-2791.
[18] S. Kondo, N. Hashimoto, H. Kikuchi, F. Hazama, I. Nagata, H.J.S. Kataoka, Cerebral aneurysms arising at nonbranching sites: an experimental study, 28(2) (1997) 398-404.
[19] J. Kuroda, M. Kinoshita, H. Tanaka, T. Nishida, H. Nakamura, Y. Watanabe, N. Tomiyama, T. Fujinaka, T.J.S. Yoshimine, Cardiac cycle-related volume change in unruptured cerebral aneurysms: a detailed volume quantification study using 4-dimensional CT angiography, 43(1) (2012) 61-66.
[20] G. Lu, L. Huang, X. Zhang, S. Wang, Y. Hong, Z. Hu, D.J.A.J.o.N. Geng, Influence of hemodynamic factors on rupture of intracranial aneurysms: patient-specific 3D mirror aneurysms model computational fluid dynamics simulation, 32(7) (2011) 1255-1261.
[21] H. Meng, V. Tutino, J. Xiang, A.J.A.J.o.N. Siddiqui, High WSS or low WSS? Complex interactions of hemodynamics with intracranial aneurysm initiation, growth, and rupture: toward a unifying hypothesis, 35(7) (2014) 1254-1262.
[22] Y. Murayama, S. Fujimura, T. Suzuki, H.J.N.f. Takao, Computational fluid dynamics as a risk assessment tool
for aneurysm rupture, 47(1) (2019) E12.
[23] A. Nader-Sepahi, M. Casimiro, J. Sen, N.D.J.N.
Kitchen, Is aspect ratio a reliable predictor of intracranial aneurysm rupture?, 54(6) (2004) 1343-1348.
[24] M. Ohta, S.G. Wetzel, P. Dantan, C. Bachelet, K.O. Lovblad, H. Yilmaz, P. Flaud, D.A.J.C. Rüfenacht, i. radiology, Rheological changes after stenting of a cerebral aneurysm: a finite element modeling approach, 28(6) (2005) 768-772.
[25] S. Omodaka, S.-i. Sugiyama, T. Inoue, K. Funamoto, M. Fujimura, H. Shimizu, T. Hayase, A. Takahashi, T.J.C.D. Tominaga, Local hemodynamics at the rupture point of cerebral aneurysms determined by computational fluid dynamics analysis, 34(2) (2012) 121-129.
[26] L. Pentimalli, A. Modesti, A. Vignati, E. Marchese, A. Albanese, F. Di Rocco, A. Coletti, P. Di Nardo, C. Fantini, B.J.J.o.n. Tirpakova, Role of apoptosis in intracranial aneurysm rupture, 101(6) (2004) 1018-1025.
[27] A. Robertson, P. Watton, Computational fluid dynamics in aneurysm research: critical reflections, future directions, in, Am Soc Neuroradiology, 2012.
[28] J. Schneiders, H. Marquering, R. Van den Berg, E. VanBavel, B. Velthuis, G. Rinkel, C.J.A.J.o.N. Majoie, Rupture-associated changes of cerebral aneurysm geometry: high-resolution 3D imaging before and after rupture, 35(7) (2014) 1358-1362.
[29] A. Shamloo, M.A. Nejad, M.J.J.o.t.m.b.o.b.m. Saeedi, Fluid–structure interaction simulation of a cerebral aneurysm: Effects of endovascular coiling treatment and aneurysm wall thickening, 74 (2017) 72-83.
[30] M. Shojima, M. Oshima, K. Takagi, R. Torii, M. Hayakawa, K. Katada, A. Morita, T.J.S. Kirino, Magnitude and role of wall shear stress on cerebral aneurysm: computational fluid dynamic study of 20 middle cerebral artery aneurysms, 35(11) (2004) 25002505.
[31] A. Swillens, M. De Witte, H. Nordgaard, L. Løvstakken, Van Loo, B. Trachet, J. Vierendeels, P.J.M. Segers, b. engineering, computing, Effect of the degree of LAD stenosis on “competitive flow” and flow field characteristics in LIMA-to-LAD bypass surgery, 50(8) (2012) 839-849.
[32] R. Torii, M. Oshima, T. Kobayashi, K. Takagi, T.E.J.C.M. Tezduyar, Fluid–structure interaction modeling of aneurysmal conditions with high and normal blood pressures, 38(4) (2006) 482-490.
[33] A. Valencia, F.J.I.C.i.H. Baeza, M. Transfer, Numerical simulation of fluid–structure interaction in stenotic arteries considering two layer nonlinear anisotropic structural model, 36(2) (2009) 137-142.
[34] A. Valencia, P. Burdiles, M. Ignat, J. Mura, E. Bravo, R. Rivera, J.J.C. Sordo, m.m.i. medicine, Fluid structural analysis of human cerebral aneurysm using their own wall mechanical properties, 2013 (2013).
[35] A. Valencia, D. Ledermann, R. Rivera, E. Bravo, M.J.I.J.f.n.m.i.f. Galvez, Blood flow dynamics and fluid–structure interaction in patient-specific bifurcating cerebral aneurysms, 58(10) (2008) 1081-1100.
[36] Y. Wang, X. Leng, X. Zhou, W. Li, A.H. Siddiqui, J.J.W.n. Xiang, Hemodynamics in a middle cerebral artery aneurysm before its growth and fatal rupture: Case study and review of the literature, 119 (2018) e395-e402.
[37] G.K. Wong, W.J.J.o.C.N. Poon, Current status of computational fluid dynamics for cerebral aneurysms:
the clinician’s perspective, 18(10) (2011) 1285-1288.
[38] J. Xiang, S.K. Natarajan, M. Tremmel, D. Ma, J. Mocco, L.N. Hopkins, A.H. Siddiqui, E.I. Levy, H.J.S. Meng, Hemodynamic–morphologic discriminants for intracranial aneurysm rupture, 42(1) (2011) 144-152.
[39] A. Ziegler, U.J.B.J.J.o.M.M.i.B. Grömping, The generalised estimating equations: A comparison of procedures available in commercial statistical software packages, 40(3) (1998) 245-260.
[40] K.M.J.P.o.t.I.o.M.E. Saqr, Part H: Journal of Engineering in Medicine, Computational fluid dynamics simulations of cerebral aneurysm using Newtonian, power-law and quasi-mechanistic blood viscosity models, 234(7) (2020) 711-719.
[41] M. Saeedi, A. Shamloo, A.J.J.o.v.r. Mohammadi, FluidStructure Interaction Simulation of Blood Flow and Cerebral Aneurysm: Effect of Partly Blocked Vessel, 56(6) (2019) 296-307.