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A numerical approach to non-Fourier heat transfer in liver tumor during laser irradiation 
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ABSTRACT:  Thermal therapy is a type of cancer treatment that uses heat to kill cancer cells, but it 
also may harm healthy tissue. Numerical simulations can help to accurately analyze the thermal damage 
of the tissue during heat exposure. The target of this study is to investigate the effect of time lags on 
the thermal response of the biological tissue during laser irradiation to the tumoral tissue. The classical 
Fourier, single phase lag (SPL) and dual phase lag (DPL) models of bio-heat transfer are implemented 
and compared. The numerical solution based on the finite volume method (FVM) is applied to solve 
the bio-heat transfer equations. Beer-Lambert’s law is applied to determine the heat source distribution 
caused by the laser irradiation. The thermal damage caused by the laser exposure for the three models 
is discussed. Results show that the DPL model predicts a significantly different thermal damage from 
the classical Fourier and the SPL models. It is observed that the DPL model predicts the maximum 
temperature 4.1 ˚C and 5.7 ˚C less than the Fourier and the SPL models, respectively. The deviation 
between the maximum temperatures obtained by the three models can be attributed to the finite speed of 
thermal wave propagation in the non-Fourier models.
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1- INTRODUCTION
The thermal therapy is regarded as a type of the cancer 

treatment in which the biological tissue is exposed to a heat 
source with a high temperature [1], and it is often combined 
with other types of cancer treatment methods to Improve 
the efficiency of the therapies. It is essential to estimate the 
temperature distribution to maximize the destruction of 
the cancerous tissue while minimize the damage to the 
surrounding healthy cells. To estimate the heat transfer in 
biological tissues, the Pennes bio-heat transfer equation 
(PBHE) is conventionally used [2]. The PBHE model is 
based on the Fourier’s law which depicts an infinite speed 
of the thermal wave propagation. This assumption provides 
unsatisfactory results since the biological tissues have a non-
homogeneous structure, which results to a time lag for the heat 
to propagate in the tissue [3]. This issue has been considered 
by Cattaneo [4] and Vernotte [5] by proposing a single-phase 
lag (SPL) heat conduction model which considers the time 
lag between the temperature gradient and the heat flux. In 
continuation to the SPL model, Tzou [6] introduced a dual-
phase lag model (DPL) model by adding a second phase lag 
to the heat transfer equation. In this model, the phase lags are 
named as τ_q and τ_T, where  τ_q is the time delay for the heat 
flux propagation and τ_T  is the lag time for the occurrence of 
the temperature variation. The DPL model is able to capture 

the micro-scale response of the tissue in both time and space.
z The SPL model was used by Jaunich et al. [7] to analyze 

the temperature distribution in the biological tissue when it 
is exposed to the laser irradiation. The result showed that the 
SPL heat conduction model is a more accurate model than the 
PBHT model. Zhou et al. [8] used the SPL model of bio-heat 
transfer to investigate the thermal damage caused by the laser 
irradiation in the biological tissue. The result indicated that 
the threshold of laser energy at which an irreversible damage 
is occurred is 50% higher when the non-Fourier effect is not 
included.

Zhang et al. [9] developed a numerical method to solve the 
DPL model during the pulsed laser heating of the skin tissue. 
They concluded that in the non-Fourier heat conduction, 
unlike the Fourier heat conduction, the temperature rises 
nonlinearly. McDonough et al. [10] developed a numerical 
method for solving the DPL equation and results depicted that 
the estimation by the DPL model is in a better agreement with 
the experimental results compared to the classical Fourier 
heat equation. Askarizadeh et al. [11] established an analytical 
solution of the DPL bio-heat transfer equation in the skin 
tissue. They showed that it is important to use the DPL model 
specially to predict the thermal damage to the skin. Kumar et 
al. [12] studied the heat transfer problem in a biological tissue 
and they obtained the exact solution for the classical Fourier, 
the SPL and the DPL models. They concluded that the DPL 
model is more consistent with the experimental data. Lin et al. 
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[13] presented the analytical solution of the Pennes, SPL and 
DPL heat conduction models for pulsed laser heating of skin 
tissue. They investigated the effect of time lags and boundary 
conditions on temperature distribution and thermal damage. 
It was shown that the thermal wave speed increases with 
increasing the phase lag of temperature gradient. Ma et al. 
[14] investigated the thermal behavior of the living biological 
tissue subjected to a moving laser heat source and concluded 
that the thermal accumulation is locally increased in the 
tissue while the time delay ( )qτ  is increased. 

In the present study, a numerical solution based on 
the finite volume method (FVM) is employed to solve the 
classical Fourier, SPL and DPL heat conduction equations 
for the analysis of the temperature distribution in a tumoral 
tissue surrounded by the healthy tissue. The tumor is exposed 
to the laser irradiation to cause a thermal damage. The results 
obtained by the three models are compared, and the influence 
of the phase lags and the laser intensity on the temperature 
profile and the tumor necrotic area are studied.

2- PRINCIPLES AND METHODS
2.1.Mathematical Formulation

The energy balance equation is conventionally governed 
by the PBHT [2], which is presented by Eq. (1):

( )

( , ) . ( , )

( , )  b b b b m r

T X tc q X t
t

c T T X t Q Q

ρ

ρ ω

∂
= −∇ +

∂
− + +

 

(1)

where, ρ and c are the density and the specific heat of 
the tissue, respectively; t is time; q is the heat flux vector; 
T is the local tissue temperature; ωb, ρb, cb, Tb are the blood 

perfusion rate, the density, the specific heat and the arterial 
blood temperature, respectively; Qm is the metabolic heat 
source and Qr is the external environmental heat source term. 
There are two phenomena that make heat transfer in living 
tissue more complex: blood perfusion rate and metabolic 
heat generation. In the present study both phenomena have 
been considered to address live tissue conditions. 

The PBHT equation is based on the Fourier’s law, which 
assumes the infinite speed of the thermal wave propagation. 
In some practical situations, it is not physically reasonable, 
especially in biological materials. In order to account the 
effects of the finite heat propagation, a thermal relaxation 
time ( qτ ) is added to the PBHT by Eq. (2) [4], [5]:

( ) ( ), ,  qq X t k T X tτ+ = − ∇
 

(2)

where, k is the thermal conductivity of the material and 
X denotes the position vector  in the Cartesian coordinates. 
The DPL heat conduction model that considers the lagging 
behavior between both heat flux and temperature gradient is 
based on Eq. (3) [6]:

( ) ( ), ,  q Tq X t k T X tτ τ+ = − ∇ +
 

(3)

Where, qτ  is the phase lag of the heat flux and Tτ  is 
the phase lag of the temperature gradient. By using the first 
approximation of Taylor’s expansion of Eq. (3), Eq. (4) is 
derived:
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Fig. 1. 2D axisymmetric computational domain and the control volumes 

  

Fig. 1. 2D axisymmetric computational domain and the control volumes
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The dual-phase lag constitutive equation (Eq. (4)) in 
combination with the energy balance equation (Eq. (1)), 
results in Eq. (5):
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(5)

Eq. (5) is known as the DPL bio-heat transfer equation. In 
this equation, similar to the PBHT equation, blood perfusion 
rate and metabolic heat generation have been considered to 
account for the live biological tissue. Consequently, the values 
of phase lags are derived for the live tissue conditions. 

The external heat source in Eq. (5) is determined by the 
Beer-Lambert’s law which calculates the distribution of laser 
radiation on the biological tissue. The Beer-Lambert law 
assumes that the incident laser beam completely propagates 
in a single direction. The heat source distribution in depth (y) 
using Beer-Lambert’s law could be computed as Eq. (6).

( ) ( ) ( )'
0 expr a a SQ y I yµ λ µ µ = − +   

(6)

Where, λ and I0(λ) are the wavelength and the incident 
intensity of the laser respectively. The wavelength of the laser 
is considered λ = 1064 nm. aµ  is the absorption coefficient, 

'
sµ is the reduced scattering coefficient which is expressed as 

( )' 1s s gµ µ= − where, sµ denotes the scattering coefficient 
and g is the anisotropy factor. y is the depth normal to the 
tissue surface. 

2.2.Thermal damage estimation
The irreversible thermal damage is calculated using the 

Arrhenius equation. The damage parameter Ω  is expressed 
by Eq. (7) [15] :

( )0
exp

t aEA dt
RT t
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 
∫

 
(7)

Where A, Ea and R stand for the frequency factor, the 
activation energy of denaturation reaction and the universal 
gas constant which equals to 8.314 J.mol-1K-1, respectively. 

T(t) is the tissue temperature over the time and t is the time 
when the damage parameter Ω is calculated. Ω=1 represents 
the permanent thermal damage to the tissue. In the present 
study, Arrhenius parameters of the tumor and the healthy 
liver tissue, 56 524 10a

JE .
mol.K

= ×  and 103 12 68788 10A . s−= ×  are 
employed to evaluate the thermal damage [16].

2.3.Numerical method
The Finite Volume Method (FVM) is employed to solve 

the governing Eq. (5).  The computational domain is divided 
to equal control volumes as illustrated in Fig. 1. A numerical 
code is developed to solve the discretized equations using the 
MATLAB software.        

By applying central difference scheme in space and 
backward difference scheme in time, the discretized form of 
Eq. (5) can be expressed as follows:
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Number of elements 

11220 15725 20000 22050 

T(0,0) 73.67 ˚C 74.44 ˚C 75.1 ˚C 75.08 ˚C  

Deviation from the 
finest grid size 1.88% 0.85% 0.02% 0 

Table 1. Mesh independence study
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Fig. 2. 2D axisymmetric geometry of the tissue 

  

Fig. 2. 2D axisymmetric geometry of the tissue

Materials 

Property 

ρ (kg/m3) c (J/(kg.K)) k 
(W/(m.K)) 

b  
(m3/ (m3.s)) 

1
a ( cm ) 

 

1
s ( cm ) 

 
g 1'

s ( cm )   

Liver tissue 1000 4200 0.5 31 10  2 152 0.948 7.9 

Tumor 1100 4200 0.55 49 1 10.   2.5 188 0.952 9 

Table 2. Thermo-physical and optical properties of the liver tissue and the tumor [17, 18]

Parameter Value Parameter Value 

R (J.mol-1.K-1) 8.314 I0 (W/cm2) 4 

Ea (J.mol-1.K-1) 56 524 10.   λ (nm) 1064 

A (s-1) 1032 68788 10.   ρb (kg/m3) 1000 

hconv (W.m-2.K-1) 5 Cb (J.kg-1K-1) 3860 

T (˚C) 25 Qm (W/m3) 1091 

Tbody (˚C) 37 q  (s) 5.66 

T0 (˚C) 37 T (s) 22 

Table 3. List of parameters used for the present study
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The resulting system of algebraic equations (Eqs. (8)-(10)) 

Table 4. Verification of the numerical code

 

Fig. 3. Temperature variation on line A-B for the Fourier, SPL and DPL models at 100 s of laser irradiation 

  

Fig. 3. Temperature variation on line A-B for the Fourier, SPL and DPL models at 100 s of laser irradiation

  

Fig. 4. Temporal variation of temperature estimated by the Fourier, SPL and DPL models at point 
A 

  

Fig. 4. Temporal variation of temperature estimated by the Fourier, SPL and DPL models at point A

Temperature 
Location 

y=0 y=2.5mm y=5mm 

The present study 73.35 ˚C 56.64 ˚C 46.08 ˚C 

Soni et al. [17] 73.52 ˚C 57.15 ˚C 45.95 ˚C 

Error 0.2% 0.9% 0.3% 
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is solved iteratively for temperature in each time step. The 
mesh independence study is presented in Table 1. This table 
provides the temperature at point (0,0), predicted by the DPL 
model for different grid sizes. It is observed that the deviation 
of the finest grid size and the case with 20000 elements is 
negligible. So, the grid with 20000 elements is regarded as the 
optimum value for the grid size. The time step is set to 0.01 
based on the physics of the problem. 

In this study, the DPL model is employed for analyzing the 

heat conduction in a tumor of the liver tissue. The incident 
radiation beam is applied to the upper surface of the tissue 
for a period of 100s. The laser beam diameter is 16mm. A 
2D axisymmetric computational domain is used to perform 
the numerical simulation. The geometry and the related 
dimensions are represented in Fig. 2. The thermo-physical 
and the optical properties of the liver tissue and the tumor 
are listed in Table 2. The convective heat transfer coefficient 
is hconv=5 W/(m2.K), the ambient temperature is T∞ =25 ˚C, 

 

Fig. 5. Temporal evolution of thermal damage at point A obtained by the Fourier, SPL and DPL models 

  

Fig. 5. Temporal evolution of thermal damage at point A obtained by the Fourier, SPL and DPL models
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Fig. 6. The surface plot of the dimensionless temperature distribution in tumoral and healthy tissues with 

respect to the dimensionless spatial coordinates at different intensities for (a) & (c) the Fourier model and (b)  

and (d) the DPL model

Fig. 6. The surface plot of the dimensionless temperature distribution in tumoral and healthy tissues with respect to the 
dimensionless spatial coordinates at different intensities for (a) & (c) the Fourier model and (b) and (d) the DPL modez
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the body temperature Tbody=37 ˚C and the initial temperature 
is T0=37 ˚C. Laser intensity is considered to be 24 W

cm
. The 

blood density, the blood specific heat and the metabolic heat 
generation rate are 1000 kg/m3, 3860 J/(kg.K) and 1091 W/m3, 
respectively. Parameters of the study are reported in Table 3.

In order to verify the numerical analysis, the result of the 
present study is compared with the result of Soni et al. [17]. 
The value of temperature at x=0 and different depths (y) is 
given in Table 4. It is observed that the obtained values of 
temperature are in good agreement with those derived by Soni 
et al. [17], and the temperature deviation does not exceed 1%.

The initial and boundary conditions of the problem are 
defined in Eq. (11)-(15):

( )2 x = 0 and 0 ;  0, , 0      At y y q y t≤ ≤ =  (11)

2 22 x = x  and 0 ;  , ,   ( ) bodyAt y y T y t Tx≤ ≤ =   (12) 

2 2 2 y = y  and 0 ;  , ,  ( ) bodyAt x x T y t Tx≤ ≤ =  
 (13)

( ) ( )2 y = 0 and 0 ;  ,0,    convAt x x q x t h T T∞≤ ≤ = −  (14)

( ) ( )0, ,0  ,  , ,0 0T x y T q x y= =  (15) 
For the heat transfer 

modeling in biological tissue the following assumptions are 
made: (1) The value of the phase lags is assumed to be same 
for the normal tissue and the tumor; (2) it has been assumed 
that the right and the bottom boundaries of the model are 
maintained at constant temperature due to the 
thermoregulation process in the human body; (3) the tissue 
and the tumor have uniform and equal temperatures prior to 
the laser irradiation; (4) the metabolic heat generation and 
the blood perfusion rate are considered for the live tissue 
modeling; (5) the thermo-physical properties and the blood 
perfusion rate are assumed to be constant with temperature; 
(6) the propagation of incident laser beam is assumed to be 
unidirectional; (7) the tissue and the tumor are approximated 
as two-dimensional axisymmetric shapes.

3- RESULTS AND DISCUSSION
Li et al. [19] conducted experiments on the liver tissue and 

determined the values of the thermal relaxation times which 
is used in the present study. The values of the time lags are 
set at 5 66q . sτ =  and 22T sτ =  [19] for the DPL model 
and the phase lag of the heat flux for the SPL model is set at 

5 66q . sτ = . To investigate the effect of the thermal relaxation 
times during the laser exposure, the temperature profile for 
the three models (Fourier, SPL and DPL) by the end of the 
exposure time are compared. The temperature variation of the 
three models are plotted on path A-B (shown in Fig. 2), and is 
illustrated in Fig. 3. It can be observed that the peak value of 
temperature estimated by the DPL model is 4.1 ˚C and 5.7 ˚C 
less than the Fourier and the SPL model, respectively. As the 
distance from center line increases, temperature difference 
between the three models is reduced. It could be inferred 
that the importance of the lagging behavior becomes more 
significant at higher temperature gradients. 

The thermal response of point A (shown in Fig. 2) is 
presented in Fig. 4. The slope of the temperature profile as it 
climbs upward in the SPL model is higher than other models 
which leads to a higher temperature estimation. Based on the 

experimental evidences 
[12], the DPL model 

estimates a more realistic temperature  among  the three 
models So, it could draw the conclusion that the temperature 
predicted by the SPL model is overestimated.  In addition, it 
could be seen that in the decaying part of the temperature 
profile, the temperature decrease slowly in the DPL model. 
As expected, due to lagging behavior, it takes time to dissipate 
the heat.

Temporal evolution of the thermal damage at point A 
for the three models is presented in Fig. 5. According to this 
figure, the SPL model estimates the highest thermal damage 
compared to the other models. Meanwhile, the Fourier model 
estimates the lowest thermal damage because this model 
assumes an infinite speed of the thermal wave propagation. In 
the DPL model, there is a time delay for the heat transmission 
in the tissue, consequently the thermal damage estimated by 
the DPL model is higher than the Fourier model.

Surface plots of the dimensionless temperature distribution 
in the tumoral and healthy liver tissues with respect to the 
dimensionless spatial coordinates are shown in Fig. 6. In 
this figure, two different laser intensities are employed for 
the Fourier and DPL models. The investigation of this figure 
depicts that as the laser intensity increases, the temperature 
increases at the irradiated surface meanwhile the difference 

Laser intensity 2
W

cm
  

Bio-heat transfer models 

Fourier model 
SPL model 

5 66q( . s )   
DPL model 
5 66 22q T( . s& s )    

2 25.5% 29.0% 19.7% 

3 51.8% 58.0% 45.7% 

4 72.6% 81.0% 66.2% 

Table 5. Percentage of tumor necrosis
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between the two models is increased.
The percentage of tumor necrosis for the three models 

is presented in Table 5. From this table, the permanently 
damaged area obtained by the DPL model is much smaller 
than the Fourier and the SPL models. As the laser intensity 
increases, the effect of time lags on the permanently damaged 
area of the tissue becomes more important. This estimation 
is of significant importance in the clinical applications 
since it is required to have the maximum destruction of the 
tumoral tissue while the healthy tissue remains unaffected. As 
expected, results show that the SPL model overestimate the 
necrotic area. Therefore, considering the two-phase lags may 
lead to more accurate thermal damage estimation.

4- CONCLUSIONS
An Accurate estimation of the thermal response in 

biological tissues subjected to the laser irradiation is 
necessary to increasing the efficiency of a treatment in the 
clinical application. Due to the non-homogeneous structure 
of biological tissues, the assumption of an infinite speed of 
the heat propagation is not applicable. The non-Fourier heat 
conduction models should be taken into account to justify 
the actual behavior of the tissue. In this study, a FVM-based 
2D numerical code is employed to investigate the effect of 
the phase lags on the temperature profile in the liver tissue. 
The value of  phase lags obtained by Li [19] is used for the 
simulation. It is observed that the two-phase lags have 
significant influence on the thermal damage and temperature 
distribution in the tumor and in the healthy tissue. By 
increasing the laser intensity, the effect of the phase lags on 
the temperature distribution is elaborated. The results show 
that the DPL model predicts a moderate thermal damage 
compared to other models. By considering the DPL model, 
the maximum temperature is decreased and consequently the 
extent of the necrotic tumor area is obviously reduced.

NOMENCLATURE
A Frequency factor, s-1

c Specific heat of the tissue, J/(kg.K)

Ea
Activation energy of denaturation reaction, 
J/(mol.K)

g Anisotropy factor

hconv
Convective heat transfer coefficient, W/
(m2.K)

I0 Incident intensity, W/cm2

k Thermal conductivity, W/(m.K)
q Heat flux vector, W/cm2

Qm Metabolic heat generation rate, W/m3

Qr
External environmental heat source term, 
W/m3

R Universal gas constant, J/(mol.K)
T Local tissue temperature, ˚C

t Time, s
T0 Ambient temperature, ˚C
X Position vector, m

GREEK SYMBOLS

aµ Absorption coefficient, cm-1

sµ
Scattering coefficient, cm-1

'
sµ

Reduced scattering coefficient, cm-1

λ Wavelength, nm
ρ Density of the tissue, kg/m3

qτ
Phase lag of the heat flux, s

Tτ Phase lag of the temperature gradient, s
Ω Damage parameter
ωb Blood perfusion rate, m3/(m3.s)

SUBSCRIPT
0 Initial 
b Blood
body Body core
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