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 Design of a Robust H∞ Controller for Affine Nonlinear Singular Systems with Norm-
bounded Time-varying Uncertainties
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ABSTRACT:  In this paper, the problem of robust H∞ control for continuous-time affine nonlinear 
singular systems with norm-bounded time-varying uncertainties is addressed. The problem is solved 
locally by employing two different approaches. The first approach is an extended version of the 
guaranteed cost control method, adapted in order to conform to affine nonlinear singular systems. The 
second approach is an indirect method in which a known auxiliary system is presented and it is shown 
that any control law which solves the H∞ control problem for this auxiliary system, also solves the 
robust H∞ control problem for the original unknown system. In both approaches, sufficient conditions 
for the solvability of the considered robust H∞ control problem are provided in terms of a generalized 
Hamilton-Jacobi-Isaacs inequality. In order to show the consistency of our results, solving the robust 
H∞ control problem for linear uncertain singular systems is considered, and, it is shown that the 
corresponding results in linear domain are the special cases of our results. Finally, a numerical example 
is given to illustrate the applicability of the presented approaches.
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1- INTRODUCTION
State-space models are the dominant tool for dynamical 

systems modeling and they are extensively employed for 
analyzing and control design purposes. However, considering 
the potentials of singular models this might not be the case 
in the near future. Singular models could be thought of as a 
broader, more capable class of models, comprising the state-
space models as a special case. In the last 30 years, singular 
models have become a widely accepted tool for modeling and 
simulation of dynamical systems in numerous applications 
such as electrical circuits and power systems [1], robotics 
and mechanical systems [2-4], modern control theories [5], 
chemical processes [6], biological systems and many other 
areas [7-9]. In control theory, systems described by singular 
models are usually called singular or descriptor systems; 
However, it should be mentioned that the terminology differs 
within different fields of study and these systems are also 
known as differential-algebraic, generalized state-space, 
semi-state and implicit systems. 

Recently, many control theory issues have been extended 
from state-space domain to singular systems, among which, 
H∞ control problem is considered in this paper. This problem 
has been studied thoroughly in the context of linear singular 
systems (see, e.g. [10-17] and references therein). Taking 
the parameter uncertainties into account, linear robust H∞ 
control problem is also considered in [12] and [18-21]. 

Robust H∞ controllers are designed to satisfy a pre-specified 
H∞ performance level and simultaneously assuring the 
admissibility of the closed-loop system for all acceptable 
uncertainties.

As compared to linear singular systems, nonlinear 
singular systems (NSSs) are intrinsically more challenging, 
and consequently, fewer results have been reported on the 
subject. The results reported in [22] and [23] were the first 
attempts to solve the H∞ control problem in NSSs. In [23], a 
self-scheduling H∞ control of parameter-varying systems was 
generalized to polytopic NSSs. A more general class of NSSs 
was considered in [24] in which, based on the dissipativity 
theory, the problem has been solved with both state and 
output feedback controllers. In [25-27], affine NSSs with a 
Hamiltonian realization were studied and the Hamiltonian 
approach was employed to tackle the problem. In [26], 
variations in the system parameters were also considered and 
an adaptive H∞ controller was obtained. Taking the advantages 
of port-controlled Hamiltonian systems, in [28] the problems 
of finite-time stabilization and finite-time H∞ control for a 
class of Hamiltonian NSSs was solved and the results were 
used to solve the corresponding problem in affine NSSs.

Although the H∞ control topic for definite NSSs is widely 
studied, the robust H∞ control topic, i.e. the H∞ controller 
design for indefinite models, is studied partially for these 
systems. In fact, to the best of the authors’ knowledge, all 
contributions within the robust H∞ control topic for NSSs 
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were just dedicated to systems that can be modelled as a linear 
uncertain system affected by bounded nonlinear disturbances 
[29-35]. Accordingly, the problem has been solved mainly 
by using linear theories which confines the applicability of 
the obtained results in some cases. One way to overcome 
this restriction is to solve the problem for broader classes of 
nonlinear systems and employing nonlinear theories in the 
controller design problem. 

In this paper, we consider the robust H∞ control problem 
in a broader class of NSSs, i.e. input affine systems, and, 
the problem is solved entirely based on nonlinear control 
theories. For this purpose, the nominal model is considered at 
first, and a modified solution to the corresponding H∞ control 
problem is presented. This solution has the specific property 
that, contrary to the existing results, it can be conveniently 
employed to solve the robust problem. Based on this solution, 
the robust H∞ control problem is solved employing two 
different approaches. The first approach is founded on an 
extended version of the guaranteed cost control (GCC) 
method and directly solves the robust problem. In this regard, 
the guaranteed cost control (GCC) definition is modified to 
comply with the NSSs and the resulted concept is used to 
solve the problem. The second approach is rather an indirect 
method in which the model uncertainty is replaced with a 
weighted disturbance input. Accordingly, a known auxiliary 
system is presented and it is shown that any control law that 
solves the H∞ control problem for the auxiliary system also 
solves the robust H∞ control problem for the main unknown 
system. Consequently, the robust H∞ control problem turns 
into an H∞ control problem for the auxiliary system that can 
be solved using the provided H∞ control theorem.

The rest of the paper is organized as follows: In Section 2, 
the preliminaries and the required definitions are presented. 
Specifically, this section includes the modified solution of 
the H∞ control problem for NSSs. Based on the results of 
Section 2, our main results are presented in Section 3. We 
solve the robust H∞ control problem for NSSs in this section 
and provide the sufficient condition of the problem solvability 
in terms of a generalized Hamilton-Jacobi-Isaacs inequality. 
Section 4 is devoted to a numerical example and Section 5 
concludes the paper.

Notation: The standard notation is employed. R is the set 
of real numbers and [ )0,R R∞+ ⊂= . nR  is the n-dimensional 
real Euclidean space and n mR ×  is the set of all real n m×  
matrices. .  denotes the Euclidean vector norm on nR  
and 2 , ,T n n n

Q
a a Qa a R  Q R= ×∀ ∈ ∈ .  The space [ ]( )2 0 , , nt R∞  

is the space of square-integrable vector-valued functions. 
( )0 0P P> ≥  for some n nP R ×∈ , means that the matrix P 

is positive (semi-positive) definite and the Ck-functions are 
k-times continuously differentiable ones.

2- PRELIMINARIES AND PROBLEM STATEMENT
2-1- Problem Statement

Consider the class of uncertain nonlinear systems 
described by the following differential algebraic model:

 )0,R R+ = nR
n mR  n m .

nR 2 , ,T n n n
Q

a a Qa a R  Q R=       ( )2 0 , , nt R

( )0 0P P  n nP R 
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where ( ) nx t R∈  is the descriptor state, [ ]( )2 0( ) , , sw t t R∞∈  
is the disturbance signal, mR∈u  is the control input, and 

pR∈z  is the to-be-controlled output (tracking errors, cost 
variables, etc.). E is a singular matrix with ( )rank r n= <E  
and, without any loss of generality, it is assumed to be in the 
form 0

0 0
=
 
 
 

rI
E , in which Ir is an r r× identity matrix.

The mappings ( )f x∆  and ( )2g x∆  are supposed to be 
in the form of ( ) ( ) ( , , ), (0, , ) 0f x f x f x t f tθ θ∆ = + ∆ ∆ =  and 

( )2 2 2( ) ( , , )xg g x g x tθ∆ = + ∆  with 2 (0, , ) 0g tθ∆ = , where : n nf R R→  
and 2 : n n mg R R ×→ , as well as 

1 : n n sg R R ×→ , 
1 : n ph R R→ , 

1 : n p sk R R ×→  and 2 : n p mk R R ×→  are known, real C∞-functions 
of x. The unknown parts of model, i.e. : n nf R R R Rθ∆ × × →  and 

2 : n n mg R R R Rθ ×∆ × × → , belong to an admissible uncertainty set 
Ψ∆ defined as
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where Ψθ is the set of all permissible parameters and ∆, F, 
G2, N1 and N2 are C∞-functions with appropriate dimensions. 
F, G2, N1 and N2 are also known matrix functions and 
( ), ,x tθ∆ , representing the uncertainty, is a norm-bounded 

time-varying parameter-dependent function of the state. 
Furthermore, it is assumed that the system admits a unique 
solution and x=0 is the isolated equilibrium point of the 
system when ( ) 0w t ≡ .

Remark 1: Considering the above mappings as C∞-
functions is rather conservative and can be relaxed to “smooth 
functions” assumption. By smooth functions we mean the 
mappings are Ck-functions with ‘k’ big enough such that the 
functions can be differentiated to the order needed by the 
problem in hand.
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Singular models such as (1) are more intricate than 
state-space models and they are capable of modelling more 
complicated phenomena in real world such as the impulsive 
response of dynamic systems [36]. Existence of impulse terms 
in system response may cause saturation of control actuators 
and may even damage the system. Therefore, in addition to 
unstable trajectories, impulsive responses are also undesired 
for singular systems. This fact gives rise to the notions of 
impulse-freeness and admissibility, defined as follows:

Definition 1 [2]: If the state response of a singular system, 
starting from an arbitrary initial condition, does not contain 
impulse terms, then the system is called impulse-free.

Definition 2 [2]: A singular system with a unique solution 
is called admissible if it is stable and impulse-free.

Since the impulsive behavior of singular systems is 
undesired, a proper controller is the one that makes the 
resulted closed-loop system both stable and impulse-free. 
One way to guarantee the impulse-freeness of a singular 
system is ensuring that the system is index one. Therefore a 
class of proper controllers are those which derive the closed-
loop system index one. Here, by index one systems we 
mean singular systems possessing differentiation index one. 
According to [37], for every singular system in the form of
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the differentiation index of the system is defined as the 
minimum number of times that ( )2 1 2, , ,F x x w u  must be 
differentiated with respect to time in order to determine 2x  
as a continuous function of ( , )t x  [38]. This definition of index 
one systems is locally consistent with the definition of [24], 
employed in the sequel.

The necessity of impulse-freeness can be considered as 
the main difference in the definition of H∞ control problem 
between singular systems and conventional state-space 
systems. In other words, the internal stability requirement 
is replaced with the admissibility requirement in the case of 
singular systems. Accordingly, the robust H∞ control problem 
for model  is defined as follows:

Definition 3: The Robust State-Feedback H∞ (suboptimal) 
Control Problem (RSFHICP) for the nonlinear singular 
system (ΣΔ) is the problem of finding a state-feedback strategy 
like ( ) ( ) ,u t x tα=  , : , m nR R Rα Ω× → Ω⊆

, such that the 
indefinite closed-loop system
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has a local 2 -gain less than or equal to a prescribed “γ” 
for all ( )0x t ∈Ω , 2,f g ∆∀∆ ∆ ∈Ψ , [ ]( )2 0( ) , , sw t t R∞∀ ∈ , and it is 
admissible when 0w ≡ .

Notational remark: Without any ambiguity, the 
abbreviation RSFHICP (or SFHICP) and the term Robust 
State-Feedback H∞ Control Problem (or State-Feedback H∞ 
Control Problem) will be used interchangeably, in the sequel.

2-2- H∞ control problem in nonlinear singular systems
Our method for solving the RSFHICP is founded both 

conceptually and practically, on the solution of H∞ control 
problem. Thus, a restatement of the H∞ control problem in 
NSSs is presented which makes the paper self-contained and 
helps to explain the underlying ideas. This restatement is based 
on the two-player zero-sum differential game (TPZSDG) 
theory and can be considered as a slight modification of the 
corresponding results from [24]. Compared to the results of 
[24], our solution has the property that it can be conveniently 
employed to solve the robust problem.

Consider the nominal (known) part of differential 
algebraic model  as follows:
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In what follows, the following assumption is used which 
is similar to the corresponding assumption in conventional 
non-singular case, c.f. ([40]-Ch. 10) and ([39]-Ch. 5) for 
instance.

Assumption 1: Matrix functions of the system satisfy the 
following assumptions:

A1-1: 2
1 1 0T

sQ k k Iγ− <
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[ ] [ ]2
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2 1 ,
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x
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k k k
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x h k

 
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 

> = =

These assumptions are the nonlinear versions of the 
standing assumptions which are commonly used in the 
literature; e.g. [43]. Relaxing these assumptions is indeed 
possible, but more complicated formulae must be worked out.

Definition 4: The nonlinear singular system (Σ) with 
( ) 0w t ≡ , is locally zero-state detectable if there exists a 

neighborhood nRΩ⊆  of the origin such that ( )0x t∀ ∈Ω
, ( ) 0z t ≡  and ( ) 0u t ≡  implies that lim ( ) 0

t
x t

→∞
= . The system is 

zero-state detectable if nRΩ = .
Our main theorem in this section, stated below, is 
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essentially based on Theorem 2.15 of [24] and it is similar 
to Lemma 4.1 of this book or Lemma 5 of [44]; However 
there are a couple of differences between our method and 
these lemmas. The validity domain of our results might be 
generally wider, the related GHJI inequality is derived and, 
contrary to aforementioned lemmas, the presented theorem 
can be conveniently employed to solve the robust problem. 
These characteristics make our results different from Lemma 
4.1. of [24] or Lemma 5 of [44].

Theorem 1: Consider a given γ >0 and the nonlinear 
singular system  for which Assumption 1 is satisfied. If there 
exists a positive definite C3-function ( ) , :V Ex V RΩ→  and a 
C2-function ( ) ,  : nW x W RΩ→  such that:

( ). ( ), (0) 0I x V EW x W∂ ∂ = =
�

 (6)

( ) ( )

( )
( )

( ) ( )
( )

( )
( )

( ) ( )

21
1 1

1
2

1.  
2

( )

1 0
2

T T

T
T

T

II W x f x W

g
g x Q

x x R W x
x g x

x g x

h x h x

−
−

−

+
 
 
 



+ <

� (7)

. ( ) ( ) 0,T T
x xIII E W x W x E= ≥ � (8)

then the control law * 1
2( ) ( ) ( ) ( )Tu t R x g x W x−= −  solves the 

SFHICP for this system, locally in a neighborhood of the 
origin.

Proof: The proof has two parts; in the first part it will 
be shown that by employing *( )u t  the closed-loop system 

has 2 -gain less than or equal to γ; and the admissibility 
of the closed-loop system will be proved in the second part. 
Consider the following Hamiltonian:
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Substituting z(t) in , it can be seen that this Hamiltonian is 
a quadratic function of u(t) and w(t). Therefore the completion 
of squares technique is employed to obtain the following 

relation:
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where * 1
2( ) ( ) ( ) ( )Tu t R x g x W x−= −  and 

* 1
1( ) ( ) ( ) ( )Tw t Q x g x W x−= − . Equation  shows that the couple 
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( ) ( )( )
( ) ( )( )

*

* *

,

, 0 ,  

H u t w t

H u t w t w≤ < ∀ ∈
�

(11)

where ( ) ( )( )* *,  0H u t w t <  is the result of condition . 
Therefore, if  is satisfied and ( )*u t  asymptotically stabilizes 
the closed-loop system, by integrating ( ) ( )( )* *,  0H u t w t <  
from 0 0t =  to ft →∞  the following inequality is acquired

( )( )
( )

( )0

2*

2
0

2*

1 0
2 t

z t

V t dt

w t

Ex γ
∞

 
 
 − + − <
 
 
 

∫

where z*(t) is the controlled output of the system when 
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Considering this inequality and integrating  from 0 0t =  to 
ft →∞  yields * * *( ( ), ( )) ( ( ) ( ) 0,  , )J wu t w t J u t w t< < ∀ ∈  which 

shows that the closed-loop system has 2 gain less than or 
equal to γ.

In order to show the admissibility (internal stability and 
index one property) of the closed-loop system when ( ) 0w t ≡ , 
Theorem 2.15 of [24] is employed. Condition  and  are similar 
to the first and the third properties (Property i. and iii.) of this 
theorem, respectively. For ( ) 0w t ≡ , and in view of inequality 
, it can be seen that ( )( ) ( ) ( )( )* * *,0 , 0 ,  H u t H u t w t w≤ < ∀ ∈  
which results in

* *( ) ( ) 0TW x F x < � (14)

where * * * *
2( ) ( ) ( ) ( )F x f x g x u t+

 and *( )x t  is the state 
of the system when *( )u t  is employed. Inequality  shows 
that the second condition (Property ii.) of this theorem is 
also satisfied. Consequently, based on the same lines as in 
the proof of Theorem 2.15 of [24] the closed-loop system is 
proved to be index one in a neighborhood of the origin such 
as Ω


. In order to show the internal stability, it should be 
noted that every positive definite function V(Ex) satisfying 
- can be considered as an implicit positive definite function 
of x. This is due to the fact that the system is index one and 
consequently Ex=0 implies that x=0. On the other hand, in 
view of , along any trajectory of the closed-loop system the 
following inequality is satisfied:
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This inequality shows that V(Ex) is a Lyapunov function 
for this system and the closed-loop system is locally 
asymptotically stable in Ω



.
Remark 2: Setting E=I in equality  yields W(x)=Vx(x). 

Substituting this relation in  returns an inequality which is 
similar to the HJI inequality obtained in the solution of the 
corresponding problem in nonsingular systems, cf. Theorem 
10.1.1 of [40] or Theorem 5.1.2 of [39]. As a result, inequality 
- is dubbed ‘The Generalized Hamilton-Jacobi-Isaacs (GHJI) 
inequality’ in this paper.

Remark 3: Unlike the conventional HJI inequalities 
which are non-strict, the GHJI inequality - is a strict one; 
this strictness guarantees the required impulse-free property 
of the closed-loop system response. It should be noted that 
the strictness can be relaxed, as it has been done in Lemma 
4.1 of [24], at the expense of putting more restrictions on the 

considered systems and results. In fact, as it can be inferred 
from Lemma 4.1 of [24], the considered system need to 
be zero-state detectable and its linearized model must be 
impulse-observable in this case. Note that satisfying these 
condition get harder for robust problem, i.e. when the model 
uncertainties are also considered. Furthermore, the validity 
region of the results is confined to the neighborhood in which 
the linearized model is a valid approximation for the system.

Theorem 1 completes the groundwork for solving the 
robust H∞ control problem and we are ready to present the 
main results in next section.

3- Robust H∞ control in nonlinear singular systems
In this section a solution for the robust H∞ control problem 

in NSSs is provided by employing two different approaches. 
The first approach is based on the GCC method in which 
an uncertain Hamiltonian is used to derive the solution of 
the RSFHICP. In the second approach an equivalent known 
model is presented and it is shown that by employing this 
model and using the results of SFHICP, the robust problem 
in uncertain model  can be solved. We show that in spite of 
the differences in the idea of the adopted approaches, they are 
rather equivalent and yield similar results.

3-1- First approach: guaranteed cost control
Guaranteed cost control is an extension of quadratic-

stabilization method [39] used to solve the robust H∞ control 
problem in nonlinear systems. We extend this approach to 
NSSs and employ it to solve the RSFHICP in these systems. 
For this purpose, we first extend the definition of GCC to 
NSSs as follows:

Definition 5: The function ( ) : mx Rα Ω→
 is said to be an 

“Extended Guaranteed Cost Control” (EGCC) for singular 
system (ΣΔ) with cost function  if there exists a positive-
definite C3-function ( ), :V Ex V R+Ω→    and a C2-function 

( ), : nW x W RΩ→    such that:

( ). ( ), (0) 0i x V EW x W∂ ∂ = =   � (16)

( )

( )

( )
( )

( )

( )

2

1 2

2

222

( , , )

.
( ) ( )

( , , )

1  0, ,  , ,
2

T

f x f x t

g x
ii W x

g x w t g x
x t

z t
x w f g

w t

θ

α
θ

γ
∆

+ ∆ 
 

+  
  
+ + ∆  
  

  
 
 + < ∀ ∈Ω ∀ ∈ ∀∆ ∆
 − 

∈Ψ







 

� (17)

The above-defined EGCC notion paves the way for finding 
a robust H∞ controller in NSSs as it is stated in the following 
lemma:
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Lemma 1: Consider the uncertain singular system (ΣΔ) 
and suppose that there exists an extended guaranteed cost 
control such as ( )xα  for this system in a neighborhood of 
the origin like nRΩ⊆ . If the function ( )W x  also satisfies the 
additional condition ( ) ( ) 0T T

x xE W x W x E= ≥  , then the control 
law ( ) ( )u t xα=   solves the robust H∞ control problem for (ΣΔ), 
locally in a neighborhood of the origin.

Proof: Using the closed-loop system equation

( )

( )
( )2

1 2

( , , )

( ) ( )

(

( , , )

) f x f x t

g

E

x
g x w

x

t g x
x t

t θ

α
θ

+ ∆

+ 
 

+

=

+ ∆ 
 
 





� (18)

and in view of relations -, existence of an EGCC for (ΣΔ) 
yields

( ) ( )2 22

2

1 1 0,
2 2

,  , ,

( )d z tV Ex d

x

t w t

w f g

γ

∆

+ − <

∀ ∈Ω ∀ ∈ ∀∆ ∆ ∈Ψ




� (19)

Integrating both sides of the above relation from 0 0t =  to 
ft →∞  results in:

( )

( )

2*

2
0 00

2*

2

1  ( ) ( ),
2

 , ,

z t

dt V Ex x

w t

w f g

γ β

∆

∞

 
 
 − ≤ ≤
 
 
 

∀ ∈ ∀∆ Ψ∆ ∈

∫ 



� (20)

which shows that the existence of an EGCC guarantees 

that the closed-loop system has an 2 -gain less than or 
equal to γ, locally in Ω . Furthermore, setting w=0 and 
defining * * * *

2( ) ( ) ( ) ( )F x f x g x u t= + , inequality  implies that 
* *( ) ( ) 0TW x F x <   for all 2,f g ∆∆ ∆ ∈Ψ∀ . This fact together 

with conditions  and the relation ( ) ( ) 0T T
x xE W x W x E= ≥   show 

that the closed-loop system satisfies the three conditions of 
Theorem 2.15 of [24]. Therefore, based on this theorem the 
closed-loop system has index one for all 2,f g ∆∆ ∆ ∈Ψ∀ , locally 
in a neighborhood of the origin. In addition, the index one 
property of the closed-loop system makes ( )V Ex  an explicit 
positive definite function of x, and consequently an appropriate 
Lyapunov candidate for analyzing the stability. Setting w=0 

in inequality  shows that ( ) 0V Ex <

  for all 
2,f g ∆∆ ∆ ∈Ψ∀ , which 

means that the closed-loop system is locally asymptotically 
stable in Ω . To sum up, every extended guaranteed cost 
control such as ( )xα  which satisfies the additional condition 

( ) ( ) 0T T
x xE W x W x E= ≥  , solves the RSFHICP.

In view of Lemma 1, one way to solve the robust H∞ 
control Problem in NSSs is to find an EGCC in these systems. 
Based on this fact, sufficient conditions for the solvability of 
the robust H∞ control Problem in NSSs are presented in the 
following theorem:

Theorem 2: Consider a given γ >0 and the uncertain 
singular system (ΣΔ). Supposes that Assumption 1 is satisfied 
and there exist a positive-definite C3-function ( ), :V Ex V R+Ω→    
and a C2-function ( ), : nW x W RΩ→    such that:

( ). ( ) ( ), (0) 0I x V Ex EW x W∂ ∂ = =   � (21)

( ) ( ) ( )

( )

( )2

2
1

2 22
2

1
1 1

1
2
1 1

2

1

1 ( ) ( )

1 1. ( ) ( )
2

( ) ( )

1( )
2( ) ( )

1( ) ( ) ( ) ( ) 0
2

T

T T T

T

T
T

T

F x F x

II W x f x W x G x G x

g x Q x g x

g x R
W x N

x g x

x N x h x h x

ε

ε

ε

−

−




+ +

−


−
+



+ <

 





 � (22)

. ( ) ( ) 0T T
x xIII E W x W x E= ≥  � (23)

where ε1 and ε2 are some nonzero scalars. Then the control 
law * 1

2( ) ( ) ( ) ( )Tu t R x g x W x−= −  



, where 2
2 2 2( ) ( ) ( ) ( )TR x R x N x N xε= + , 

solves the RSFHICP for these systems, locally in nRΩ⊆ .
Proof: Considering Lemma 1, it suffices to show that if 

conditions - are satisfied, then *( )u t  is an EGCC for (ΣΔ). In 
this regard, the uncertain Hamiltonian ( , , , )H x W w u∆

  is defined 
as follows:

( )

( )

( )

( )

( )

( )
( )

( )
( )

( ) ( )

1

2

2

2 22

, , ,

, ,

, ,

1
2

T

H x W w u

f x f

g x

W x g x
x t

w t g u t
x t

z t w t

θ

θ

γ

∆

+ ∆


+ 


  
  + +∆  
    

 + −
 







 �  (24)
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Using the following facts:

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

1

2
1

2
1 1 1

, ,
1

2
1  
2

T

T T

T

W x F x x t N

x W x F x F x

W x N x N x

θ

ε

ε

∆

≤

+







� (25)

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2 2

2 22
2

2
2 2 2

, ,
1

2
1
2

T

T T

T T

W x G x x t N x u t

W x G x G

x W x u t N x N x u t

θ

ε

ε

∆

≤

+







� (26)

results in

( ) ( ) ( )

( )
( )

( )

( )

( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( )
( )

( )
( ) ( )

( )
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1
1

1

2
1

2 2 2 2
1 1 1

1
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2

1
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1

2

1

*

2
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1  12
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T

T

T

T

T

T

T T
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x W
H W
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g x Q

x g x
x f x W x

F x

F x

G x G x g
W x N x N x

x R x g x

u t

h x h x R x g

x W x

w t

Q x g w
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−
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≤  
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























� (27)

If condition (II), i.e. the generalized HJI inequality  is 
satisfied, then

*( , , , ) 0,  H x W w u w∆ ≤ ∀ ∈

  � (28)

Therefore, according to definition 5, if conditions (I)-(III) 
are satisfied, *( )u t  is an EGCC for (ΣΔ) and solves the 

robust H∞ control problem in the considered NSSs.
To this point, guaranteed cost control approach has 

been extended to nonlinear singular systems and it has been 
shown that the resulted EGCC solves the robust H∞ control 
problem in NSSs, provided that the additional condition 

( ) ( ) 0T T
x xE W x W x E= ≥   is satisfied. Accordingly, sufficient 

conditions for solvability of this problem in NSSs and the 
corresponding control law is provided in Theorem 2. In the 
next part, this problem is solved using a different approach 
which is based on offering an equivalent known model for 
(ΣΔ).

3-2- Second approach: Employing the auxiliary system
Our approach in this section is based on an idea which 

is employed previously for nonsingular systems. In this 
approach, the RSFHICP is turned into a SFHICP and can 
be solved using the SFHICP theories such as Theorem 1. 
Accordingly, we offer an auxiliary known system such that 
any control law which solves the SFHICP for this system, also 
solves the robust SFHICP for the original uncertain system. 
In this regard, the model uncertainties in (ΣΔ) should be 
replaced by an equivalent disturbance input which is scaled 
to become bounded energy. Hence, the following assumption 
is required:

Assumption 2: There exist nonzero scalars α, β and 
smooth mappings like 2 1

ˆˆ ˆ, ,F G N  and 2N̂  such that the equalities 
1 1

ˆ ˆ( ) ( ) ( ) ( )F N F Nξ ξ ξ ξ∆ = ∆  and 2 2 2 2
ˆ ˆ( ) ( ) ( ) ( )G N G Nξ ξ ξ ξ∆ = ∆  

are satisfied, and the signals ( )1 1
ˆ( ) ( )t Nδ α γ ξ= ∆  and 

( )2 2
ˆ( ) ( ) ( )t N u tδ β γ ξ= ∆  belong to 02 ( , ]t ∞ .

Regarding Assumption 2, we define the following auxiliary 
model:

( )

( ) ( ) ( )
( ) ( ) ( ) ( )

1

2 0 0

1

2

ˆ

,
ˆ ˆ( ) ( ) ( )

ˆ( ) ( ) ( )

a

a

a a

E t f g w

t g u t t

z t h k w

t k u t

ξ ξ

ξ ξ ξ

ξ ξ

ξ

ξ

Σ

 = +


+ =


= +


+



�  (29)

where ( ) nt Rξ ∈  is the state, 2 0( , ]( )aw tt ∈ ∞  is the equivalent 
disturbance input, ( ) mu t R∈  is the control input and ( )az t  
is the to-be-controlled output of the auxiliary system 
(Σa). The mappings f, g1, g2, h, k1, k2, F, G2, N1, N2 and 
Δ(x,θ,t) are borrowed from (ΣΔ) and they were defined in . 

( ) ( )1 1 2
ˆˆˆ ( ) ( ) ( ) ( )g g F Gξ ξ γ α ξ γ β ξ =    and

1 2( ) ( ) ( ) ( )
TT T T

aw t w t t tδ δ =   �  (30)
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The mappings defining za(t) are as follows:

( )

1
1

1

1

( 2 ) ( 2 )

2 2 2 ( 2 )

2

ˆˆ ˆ( ) ( ) 0 , (0) 0,
( )

( ) 0 0
ˆ ( ) 0 0 0 ,

0 0 0

ˆ ˆ( ) ( ) 0 ,

ˆ (0) 0.

TT
T

k

p k s l

TT T

m p k

Nh h h

k
k

k k N

k

αξ ξ
ξ

ξ
ξ

ξ ξ β ξ

×

+ × +

× +

 
= = 
 

 
 =  
  

 =  

=

� (31)

The cost function for the auxiliary system (Σa) is defined 
as follows:

( )

( ) ( )

2

0

22
0

0

1( , )  
2

1  
2

a a a

a

J w u z t dt

w t dtγ β ξ

∞

∞

=

− −

∫

∫
� (32)

The following Lemma states the relation between the 
solution of the SFHICP in (Σa) and the RSFHICP solution for 
the original system (ΣΔ):

Lemma 2: Consider the uncertain singular system (ΣΔ) and 
the corresponding auxiliary system (Σa) with their respected 
cost functions ( , )J w u  and ( , )a aJ w u . Let ˆ (.)α  be a state-
feedback control law which solves the H∞ control problem for 
the auxiliary system (Σa). Then it follows that ˆ (.)α  also solves 
the robust H∞ control problem for the main system (ΣΔ).

Proof: Comparing (ΣΔ) and the auxiliary system (Σa) 
shows that the state evolution equations of these systems 
are identical. This fact implies that for any common control 
input the state trajectories of the two systems are the same. 
Consequently, any control law which solves the SFHICP 
for the auxiliary system can also makes the state trajectory 
of the uncertain closed-loop system ( cl

∆Σ ) impulse-free and 
asymptotically stable. In addition, for the given 0γ >  the 

resulted auxiliary closed-loop system has an 2 -gain less 
than or equal to . This in turn yields

( )

( )

2

2

22
02

1ˆ ˆ( , )  
2

1  0.
2

a a a

a

J w z

w x

α ξ

γ β

=

− − ≤
� (33)

where ˆ ( )az t  is the to-be-controlled output of the closed-
loop auxiliary system ( cl

aΣ ) when ( )ˆ( )u t α ξ=  is used. Expanding 
the above inequality and using the fact that 0( ) ( ),x t t t tξ= ∀ ≥  
together with equations  and  results in

( )
2 2

1 22 22 2
2 2

1 22 2

ˆ( , )

ˆ ˆ ˆ ( )1 1ˆ( , ( ))
2 2ˆ ˆ ˆ ( )

a aJ w

N N
J w x

N N

α ξ

α ξ
α α β

α ξ

=

   −   + +   
∆ − ∆      

 � (34)

where ˆ( , ( ))J w xα  is the cost function of the uncertain 
closed-loop system ( cl

aΣ ) when ( )ˆ( )u t xα=  is used. Since Δ 
satisfies T I∆ ∆ ≤ , equality  along with inequality  show that 

ˆ( , ( )) 0J w xα ≤  which in turn means that the uncertain closed-

loop system ( cl
∆Σ ) has an 2 -gain less than or equal to γ.

The above lemma is used in the following theorem which 
presents some sufficient conditions for the solvability of 
RSFHICP in NSS modelled by  and the corresponding robust 
H∞ controller:

Theorem 3: Consider a given 0γ >  and the uncertain 
nonlinear singular system (ΣΔ) for which Assumptions 1 and 
2 are satisfied. If there exists a positive definite C3-function 
ˆ ˆ ˆ( ), :V Ex V R+Ω→  and a C2-function ˆ ˆ ˆ( ), : nW x W RΩ→  such that:

( ) ˆ ˆ ˆ. ( ) ( ), (0) 0I x V Ex EW x W∂ ∂ = = � (35)

( ) ( ) ( )
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22 2
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2 1 1

1

2
1 2
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1 1 ˆˆ ˆ( ) ( ) ( )1ˆ ˆ.
2 ˆ ( ) ( ) ( )

1ˆ ˆ ˆ( ) ( ) ( ) ( )
2

1ˆ ( ) ( ) ( ) 0
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T
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T T

T T
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F x F x G x
II W x f x W x

G x g x Q x g x

g x R x g x W x N x

N x h x h x

α β

α

−

−

 ++ 
 −

− +

+ <

 � (36)

ˆ ˆ. ( ) ( ) 0T T
x xIII E W x W x E= ≥ � (37)

where 2
2 2

ˆ ˆ ˆ( ) ( ) ( ) ( )TR x R x N x N xβ= + , then the control law 
* 1

2
ˆ ˆ( ) ( ) ( ) ( )Tu t R x g x W x−= −  solves the RSFHICP locally in a 

neighborhood of the origin.
Proof: In view of Lemma 2, it suffices to find an H∞ 

control law for the corresponding auxiliary system (Σa) and 
use it as a robust H∞ controller for the original system. In this 
regard, and based on the fact that (ΣΔ) satisfies Assumption 
1, it can be easily shown that (Σa) satisfies the corresponding 
assumption as well, i.e.,
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2
1 1 ( 2 )
ˆ ˆˆ 0T

s lQ k k Iγ +− <

1
2

2

2

2 2

2

ˆ ˆ, ( ) ( ) ( )
( )

ˆ ˆˆ ( ) 0, (0) 0, (0) 0.

0 0ˆ ˆ ˆ
ˆ0

T
Tk k kh R x R x N x

x

N h

R

x k

β
     = = +      

> = =

Observe that condition  of Theorem 1 for (Σa) is obtained 
as follows:

( ) ( ) ( )
( )

( ) ( )
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( )
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1 2

ˆ ˆ1ˆ ˆ ˆ 
2 ˆ ˆ( )

1 ˆ ˆ 0
2

T T
T T

T

g Q g R
W f W W

g g

h h

ξ ξ
ξ ξ ξ ξ

ξ ξ ξ ξ

ξ ξ
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� (38)

Substituting 1 2
ˆ ˆˆ ˆ, , ,g Q g R  and ĥ  in  yields:
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1 2
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2 2 1
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−

−

 −+ 
−


+ +



+ <

� (39)

which is the same as condition . Since the conditions  
and  are also similar to the corresponding ones in Theorem 
1, the fulfilment of conditions - implies that (Σa) satisfies the 
requirements of Theorem 1. Hence, based on this theorem, 
the control law * 1

2
ˆ ˆ( ) ( ) ( ) ( )Tu t R g Wξ ξ ξ−= −  solves the SFHICP in 

(Σa), which in turn means that * 1
2

ˆ ˆ( ) ( ) ( ) ( )Tu t R x g x W x−= −  solves 
the RSFHICP in (ΣΔ).

Remark 4: By comparing Theorem 2 and Theorem 3, we 
can see that although the equivalent system approach and the 
EGCC method are based on different ideas, they yield the 
same results. Particularly, if 1ε  and 2ε  in - are set equal to α 
and β in Assumption 2 respectively, and the auxiliary system 
parameters can be chosen as F̂ F= , 

2 2Ĝ G= , 
1 1N̂ N=  and 

2 2N̂ N= , then the two theorems amounts exactly to each other. 
This fact also shows the consistency of the derived results.

Employing the nonlinear domain results to solve the 
analogous problem in linear case and comparing the 
outcomes with the existing linear literature is a convenient 
verification method and a beneficial practice in nonlinear 
system theories. Thus, in the next part our results are used to 
solve the robust H∞ control problem in linear time-invariant 

(LTI) singular systems.

3-3- Robust H∞ control of linear time-invariant singular 
systems

Linear singular systems can be considered as a special case 
of the affine NSSs considered above. For instance, consider 
the LTI form of (ΣΔ) as follows:

( )
( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

1

2 2 0 0

12

,
 

l

Ex t A A x t B w t

B B u t x t x
z t Cx t D u t

 = + ∆ + +


Σ + ∆ =
 = +



 �
� (40)

ΔA and ΔB2 are unknown matrices representing norm-
bounded uncertainties, which are assumed to be in the 
following forms:

( ) ( )1 2 2 ,            A M t N B M t N∆ = ∆ ∆ = ∆ � (41)

where M, N1 and N2 are known real constant matrices with 
appropriate dimensions and the uncertain matrix Δ(t) satisfies 

( ) ( )T t t I∆ ∆ ≤ .
It is assumed that the nominal system is regular and 

C-Observable [2]. It is also assumed that the system 
coefficients are such that the relation [ ] [ ]12 12 0T

m n mD C D I×=  
is satisfied. Employing the state feedback structure suggests 
the following relations for V(x) and W(x):

( ) ( )1 ,
2

T TV x x E Xx W x Xx= = � (42)

where n nX R ×∈  is a constant matrix with the property 
0T TE X X E= ≥ . Putting the systems coefficients and the above 

candidates for V(x) and W(x) in the generalized HJI inequality  
yields the following inequality:

( ) )
1 12

1

2 2 2 2

1 1

12 12

1

2

2 0

1
2

T T T T

T T

T T

T

T

A X X A X B B MM

B D N N B X

N N C C

D

γ

ε

ε

ε
−

+ + +

− +

+ + <





� (43)

where 2 2
1 22 2, 0ε ε ε ε= = ≠ . Therefore, Theorem 2 implies 
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that if there exists a constant real matrix n nX R ×∈ , satisfying 
the above generalized Riccati equation, then the control input 

( ) ( ) 1

12 12 2 2
* 2T T Tu t D D N N B Xxε

−
= − +  solves the robust H∞ control 

problem for (Σl). Using the Schur complement inequality  is 
rewritten as follows:

( ) ( )
2

2 1 2

1

1
1

2

0 0
0

T T
cl cl
T

T
cl T T

T

T

clA X
X B X M

B X I
M X

N

I

X A C C

N N K N K

ε

γ
ε

 
 
 
 − < 



+

+

−

+



+




+



 �(44)

where 2 12,cl clA A B K C C D K+ + 
--and 

( ) 1

12 12 2 2 22T T TK XD D N N Bε
−

+− . Based on the fact that TG G
∞ ∞
=

, where G(s) denote the closed-loop system transfer function, 
the dual condition for inequality  is obtained. defining Y KΩ

 
and ( ),X Q XE SQΩ +

 as it is stated in [[12]- Ch. 5], the 
obtained dual inequalities turn into the following inequalities:

0T TE X X E= ≥  � (45)

2

1 2
1 1

1 2

0 0
2

0

T
cl T T T TT

T
cl T

clT T

cl

A
C N Y N

B B MM
C

N N Y

A

I
I

γ
ε

ε

 
Ω Ω 

 
 − < 

− 
 
 

Ω +Ω
+

+ +
Ω

Ω+



 � (46)

which is similar to the condition presented in Theorem 
5.8. of [[12]- Ch. 5]. It should be noted that the term 

1 1
TB B  and 

the coefficient of TMMε are missed in this theorem which is 
possibly due to a typographical error, c.f. Theorem 5.3. of the 
same book.

4- ILLUSTRATIVE EXAMPLE
In order to illustrate the performance of presented 

approach, example 2.3 of [45] is considered where two 
current sources are added to the circuit as shown in Fig. 1. 
In this figure G represents a conductance with the i-v relation 

3( ) , , 0i G v av bv a b= = − > . C is a linear capacitance and R is 
assumed to be a nonlinear current-controlled resistor with 
uncertain v-i relation, which is confined to the area between 
mi and mi , 0 1m m< < < , as shown in Fig. 2.

The dynamic behavior of the above electric circuit can be 
modeled as:

[ ]

3
1 1 1 2

1 2

1 2

1 1 1

0 ( )
T

a bx x x x u w
C C C C C

x m x

z x x u

 = − + + + +


= − +


=




� (47)

where [ ]( ) ( ) ( ) T
R Rx t v t i t= , w(t)=iw and u=Is. The uncertain 

v-i relation of R could be modeled as 0( ) ( ( ) )m i m i m iδ= +  , in 
which 0 ( ) 2m m m= + , ( ) 2m m m= −  and ( )i Rδ ∈ is uncertain 
with the property ( ) 1iδ < . Consequently, representing  

 Fig.  1. The electrical circuit schematic  
  Fig.  1. The electrical circuit schematic

  
         Fig.  2. Nonlinear function v = m(i) 

  

  

 Fig.  2. Nonlinear function v = m(i)
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in the form of model  shows that x=0 is the isolated 
equilibrium point and the assumptions of Theorem 2 
are satisfied. Employing this theorem for 2γ = , the 
following HJI inequality is obtained:

3
1 1 2

1 0 2

2
2 2
1 1

1
( )

0 01 ( )
0 12

1 1( ) 0
2 2

T

T

a bx x x
W x C C C

x m x

W x W

mx x x

 − + + 
 

− +  
 

+  
 

+
+ + <



 



�

(48)

One solution to  is ( )2
1 1( ) 0TW x kx a bx = − 

 , in which 
( )2 2 21 2k C m m m≥ + + , 1a m> , 1a a m= − and { }1|x x a bΩ = <

. Therefore, the corresponding solution to generalized HJI 
inequality - is the positive-definite function 2

1( ) ln(1 )
2

bxkV x
b a

= − −

, which leads to robust H∞ controller 1
2
1

( ) xku t
C a bx

= −
−

*


.
Fig. 3 and Fig. 4 show the results of a numerical 

simulation, carried out with Ex0=[-0.5743  0] and the 
following numerical values:

2, 0.2, 10, 2.5, 1Fm m a b C= = = = =

It can be observed from Fig. 3 ( 0w ≡ ) that the closed-
loop system is internally stable. Furthermore, cost function 
(3) for the disturbed closed-loop system ( 0w ≠ ) turns to 

 

 

 
Fig.  3. State trajectory and control signal of the disturbance-free closed-loop system 

  
Fig.  3. State trajectory and control signal of the disturbance-free closed-loop system

 

 

 

 
Fig.  4. State trajectory and control signal of the disturbed closed-loop system 

 
Fig.  4. State trajectory and control signal of the disturbed closed-loop system
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be negative (equals to -3.1725 in our simulation) which 

means that the corresponding 2 -gain is less than or 
equal to 2γ = . Simulation results confirm that in spite of 
the disturbance and the model uncertainty, the obtained 
control input is effective.

5- CONCLUSION
The problem of robust H∞ controller design for 

continuous-time affine nonlinear singular systems has 
been investigated in this paper. The underlying idea was the 
differential games theory and a modified solution to the H∞ 
control problem has been presented which has provided a 
convenient basis for solving the robust problem. The robust 
H∞ control problem has been tackled using two different 
approaches. It has been observed that in spite of the differences 
between the adopted approaches, they yield in similar results 
and they could be evenly employed. Both approaches have 
yielded a sufficient condition for the solvability of the robust 
H∞ control problem in terms of an extended version of the 
celebrated Hamilton-Jacobi-Isaacs inequality. It has also been 
shown that the existing results for linear singular systems are 
special cases of the presented results. A numerical example 
has been employed which has demonstrated the effectiveness 
of the presented results.
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