
AUT Jouranl of Modeling and Simulation

AUT J. Model. Simul., 52(1) (2020) 63-76
DOI: 10.22060/miscj.2020.17052.5170

Sequential fraud detection by determining proper sequence length in payment cards 
using HMM
Ghazaleh Shahidi,  Mehrdad Kargari*

Tarbiat Modares University, Industrial and systems engineering, Tehran Jalal AleAhmad Nasr P.O.Box: 14115-111 

ABSTRACT:  The use of bank cards has increased significantly in recent years. This has resulted in 
increasing the probability of internet payment card frauds and has highly imposed losses on customers, 
institutions and banks. The methods used to detect frauds in this area mainly require a huge volume 
of historical data. On the other hand, these methods usually work well when there are single bank 
transactions, which means they only have the ability to detect frauds during single bank transactions and 
do not reveal fraudulent sequence identification.
In this paper, a model is proposed to determine the appropriate sequence length required to evaluate 
every single customer’s spending behavior. Through adding the feature of fraudulent sequence detection 
in payment cards, the proposed model has been completed. This model automatically creates and updates 
the Hidden Markov Model of each sequence, and ultimately detects frauds by comparing the Kullback-
Leibler divergence between Hidden Markov Model of each sequence. The fraud detection is presented 
by real semi-supervised payment cards data of an Iranian bank. The obtained F-Score, derived from 7 
real fraudulent scenarios created under the supervision of a bank expert, representing 87%. Using the 
proposed model also leads to a reduction in the fraudulent sequences incidence cost of 81%.

Review History:

Received: Sep. 14,2019
Revised: Apr. 15, 2020
Accepted: May, 27, 2020
Available Online: Jun. 15, 2020

Keywords:

Payment card 

Sequential spending behavior 

Fraud detection 

Hidden Markov Model 

KL divergence

63

*Corresponding author’s email: m_kargari@modares.ac.ir 

                                  Copyrights for this article are retained by the author(s) with publishing rights granted to Amirkabir University Press. The content of this article                                                  
                                 is subject to the terms and conditions of the Creative Commons Attribution 4.0 International (CC-BY-NC 4.0) License. For more information, 
please visit https://www.creativecommons.org/licenses/by-nc/4.0/legalcode.

1- INTRODUCTION
The incidence of payment card fraud is one of the 

most considerable challenges facing banks and financial 
institutions. Payment card fraud inflicts direct financial losses 
on the organizations, causing customer dissatisfaction and 
reduces the success rate of organization in retaining its clients.

According to the Nilson Report (2016), the credit card and 
debit card fraud losses in 2010 were $ 7.6 billion, and it was 
predicted that by 2020 this number will be quadrupled to $ 
31.67 billion. The growth of electronic banking besides having 
more than 400 million payment cards in Iran have also caused 
significant financial losses as a result of card fraud (Vosough, 
Taghavi Fard, and Alborzi 2015).

So far, various methods have been employed to detect credit 
card and payment card fraud. Kumar and Spafford classified 
these methods into two general categories; abuse detection 
which means using a specific pattern obtained from previous 
known attacks to identify future frauds and anomaly detection 
which means creating a profile containing user history to 
identify any deviations of his behavior pattern (Kumar and 
Spafford 1994). The main advantage of the anomaly detection 
approach comparing to misuse detection is the potentiality of 
detecting new attacks that were not identified by the system 
previously (Kumar and Spafford 1994).

Despite numerous research and studies about card fraud 

detection, there are still so many unresolved issues in this area. 
Two of these important issues are addressed in this paper. The 
first problem is to determine the minimum volume of historical 
data needed to detect frauds. If all the data is processed, the 
pace of modeling and fraud detection will be reduced, and in 
most cases, accessing this volume of data is not possible. On 
the other hand, if only a part of data is processed, there will be 
a possibility of reducing the accuracy of modeling. Therefore, 
a special amount of data must be processed that, in addition 
to accessibility, has a positive impact on both the speed and 
accuracy of fraud detection. Detection of sequential fraud is 
considered as the second unresolved problem. A review of 
the literature reveals that most of the approaches to payment 
card fraud focus on single fraudulent transaction and these 
approaches are less concerned with detecting fraudulent 
sequences. It is possible that all the single transactions are 
detected as normal ones, while we are facing a fraudulent 
sequence which is not detectable by single-transaction-based 
fraud detection system.

Two main purposes are considered for this work. The first 
one is to find a solution to determine the appropriate volume 
of data which needs to be processed. This purpose is achieved 
by accurate sampling of each payment card data by HMMs, 
and in such a manner as to indicate the overall and repeatable 
spending behavior of each customer.  The second purpose 
is also detecting fraudulent sequences in payment cards. 
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This problem has been solved by constructing the HMMs 
of each payment card sequences with a specified length and 
comparing the degree of KL divergence of these models.

This paper has two main contributions compared to 
previous works. The first one is determining an adequate 
sequence length for detecting fraud, which is obtained based 
on each individual’s spending behavior. The main advantage 
of determining adequate sequence length is using a volume 
of data which could optimize the pace and accuracy of 
fraud detection model, and on the other hand to generate a 
pattern to determine the repetitive spending behavior of the 
customer. The second contribution of this article is detecting 
fraudulent sequences in bank card transactions. Nowadays, 
fraud methods have become more complex in a way that they 
can avoid the usual rules of fraud detection systems (Van 
Vlasselaer et al. 2015)the ease of online payment has opened 
up many new opportunities for e-commerce, lowering the 
geographical boundaries for retail. While e-commerce is still 
gaining popularity, it is also the playground of fraudsters who 
try to misuse the transparency of online purchases and the 
transfer of credit card records. This paper proposes APATE, 
a novel approach to detect fraudulent credit card transactions 
conducted in online stores. Our approach combines (1. One 
of these complex methods is the incidence of fraudulent 
sequences. However, most of the studies and systems in bank 
fraud detection area have only the capability of detecting single 
fraudulent transactions. Therefore, addressing this significant 
research gap can be considered as the most important 
advantage of this study. Totally, the proposed model can be 
employed as a complementary method to a single-transaction 
based fraud detection system to increase the accuracy of 
detecting fraud. In order to evaluate the performance of the 
proposed model, it was used along with the fraud detection 
model presented in (Eshghi and Kargari 2019b).

The rest of the paper is organized as follows. First this 
paper begins with describing the HMMs and addressing the 
previous works on detection of fraudulent transactions and 
sequences in payment card in Section 2. Next, in Section 3, 
the methodology is described in details through 5 different 
parts. In Section 4, the findings and results are represented. 
The usage and limitations of proposed model is discussed in 
Section 5. Finally, Section 6 concludes the paper. 

2- RELATED WORKS
Several studies have been carried out in the field of fraud 

detection based on anomaly detection method. This method 
is categorized into Unsupervised, Semi-supervised and 
Supervised anomaly detection proportional to the learning 
approach (Akhilomen 2013). Supervised anomaly detection 
needs a labeled data set including “fraud” and “non-fraud” 
samples. Unsupervised anomaly detection techniques require 
an unlabeled data set and Semi-supervised anomaly detection 
involves a small number of labeled samples and a large 
number of unlabeled samples.

Each of these categories consists of different algorithms 
and techniques. Decision tree is one of the oldest techniques 
employed in Supervised anomaly detection (Kokkinaki 1997; 

Sahin, Bulkan, and Duman 2013; Şahin and Duman 2011; 
Save et al. 2017; Zareapoor and Shamsolmoali 2015). Artificial 
neural network is also one of the most common techniques of 
Supervised anomaly detection (Dorronsoro et al. 1997; Ghosh 
and Reilly 1994; Guo and Li 2008; Maes et al. 2002; Patidar, 
Sharma, and others 2011; Syeda, Zhang, and Pan 2002; Wiese 
and Omlin 2009). Some of the other techniques used for the 
card fraud detection based on Supervised anomaly detection 
approach are artificial immune systems (Brabazon et al. 2010; 
Gadi et al. 2008; Halvaiee and Akbari 2014; Wong et al. 2012), 
K-nearest neighbors (Ganji and Mannem 2012; Malini and 
Pushpa 2017), support vector machines (Bhattacharyya et al. 
2011; Chen et al. 2004; Chen, Chen, and Lin 2006; Dheepa and 
Dhanapal 2012; Lu and Ju 2011), genetic algorithms (Duman 
and Ozcelik 2011; Wu et al. 2007) and hidden Markov models 
(Falaki et al. 2012; Kumari, Kannan, and Muthukumaravel 
2014; Mule and Kulkarni 2014; Robinson and Aria 2018; 
Abhinav Srivastava et al. 2008)

Two techniques of Fuzzy (Behera and Panigrahi 2017; 
Bentley et al. 2000; Eshghi and Kargari 2018) and self-
organizing maps (Quah and Sriganesh 2008; Zaslavsky 
and Strizhak 2006) are also used in Unsupervised anomaly 
detection. Due to the fact that in many cases non-fraud 
transactions can be accessed, semi-supervised anomaly 
detection techniques have become more prominent in 
recent years (Eshghi and Kargari 2019b). Most of the 
above mentioned studies have worked on single fraudulent 
transaction. The fact that more complicated fraudsters hide 
their intention behind a sequence of transactions is neglected 
in most of the works.

In the year of 2008, Srivastava et al. modeled the sequence 
of bank card transactions by HMM so that they could detect a 
single fraudulent transaction (Abhinav Srivastava et al. 2008). 
In the proposed method of Srivastava et al., HMM is calculated 
based on the transaction history of each card using the Baum-
welch algorithm, and then the probability of generation of 
the observed transaction sequences with the length of 15 by 
the HMM is calculated using the forward algorithm. When a 
new transaction occurs, the initial sequence is updated, and 
the probability of this observed sequence is also calculated 
under the condition of HMM. If the probability of observing 
the second sequence is less than the first sequence, then the 
last transaction of the second sequence will be considered as 
fraud. Srivastava et al. have used the concept of sequence in 
their work but did not detect the fraudulent sequence.

In 2018, Robinson and Aria used Srivastava’s work as 
basis of their study and modeled the sequence of prepaid card 
transactions on a store-centric approach to detect fraudulent 
sequences (Robinson and Aria 2018). In their study, the data 
was windowed and for each sequence with a length of between 
100 and 600 transactions, one HMM was obtained, then the 
divergence of these HMMs was calculated. If the calculated 
divergence is greater than the threshold obtained by multiple 
experiments, one encounters a fraudulent sequence.

In general, the HMM is one of the most widely used models 
for detecting anomalies in different domains. This model has 
been used to detect anomalies in public areas (Epaillard and 
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Bouguila 2016), human dynamics (Fuse and Kamiya 2017), 
Internet user behavior (Xie and Yu 2009)patients health 
system (Forkan et al. 2015), electronic systems (Dorj, Chen, 
and Pecht 2013), and in network intrusion detection (Ariu, 
Tronci, and Giacinto 2011; Bang, Cho, and Kang 2017)Cho, 
and Kang 2017. 

In this paper, HMM analysis and KL Divergence is used 
to calculate a proper sequence length for each card, which 
represents the card holder’s repeatable spending behavior, and 
then detects the fraudulent sequences in each card.

3- HIDDEN MARKOV MODEL
HMM is one method among other methods used to detect 

anomalies in discrete sequences (Chandola, Banerjee, and 
Kumar 2012). A review of the preceding studies suggests that 
the HMM is more effective in detecting anomalies in discrete 
sequences than other methods such as window-based and 
Markovian techniques (Warrender, Forrest, and Pearlmutter 
1999).

The HMM has a finite set of states and a set of transition 
probabilities. The observation can be created based on the 
probability distribution. For an external observer, only these 
results are visible and states are hidden (Rabiner 1989). A 
HMM can be defined as follows (Rabiner 1989):

{ }1 2, , ,  NS s s s= …  represents a set of states. N shows the number 
of states in the model and is  is a state. { }1 2, , ,  MV v v v= … is a set of 
observations and M denotes number of observation symbols 
per state. 1 2 3, , , ,  RO O O O O= … is also the observation sequence. 
The state transition probability matrix ijA a =   , represents 
the transition probabilities from one state to the other one. 
Where ( )  1   ,1  ,1 , 1, 2,ij j ia P s at t s at t i N j N t= + ≤ ≤ ≤ ≤ = …and 0ija >  for all i, j. 
we also have 

1

1  ,1 
N
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j

a i N
=

= ≤ ≤∑ . The emission probabilities matrix 
( )jB b k =   , denotes the probability of different observations in a 

special state. Where ( ) ( )  |    ,1 ,1 j k jb k P v at t s at t j N k M= ≤ ≤ ≤ ≤ , addiyionaly 
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1
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To illustrate a complete set of model parameters, we use 

the symbol ( ), ,A Bλ π= , in which as mentioned A  is the state 
transition probability matrix, B  is the emission probability 
matrix and π  is the probability vector of the initial state 
(Rabiner and Juang 1986).

Two types of techniques can be used to detect anomalies 
using the HMM:

Technique 1. Comparing the acceptance probability of the 
observation sequence: Srivastava used this technique in his 
study and thus provided a model for single-transaction fraud 
detection based on a card-centric approach (A. Srivastava et 
al. 2008b)the use of  credit  cards has dramatically  increased. 
As credit  card becomes the most popular mode of  payment 
for  both  online  as  well  as  regular  purchase  ,cases  of  fraud 
associated with it are also rising .In this paper ,we model the 
sequence of operations in credit card transaction processing 
using a hidden Markov model) HMM.

Technique 2. Comparing HMMs generated from the 
sequences of observation: Robinson and Aria used this 
technique to detect fraudulent sequences through taking a 
store-centric approach, and used Kullback-Leibler Divergence 

to compare the mentioned HMMs (Robinson and Aria 2018).

( ) ( ) ( )
( )

P Q
i

P i
KLD P i log

Q i
=∑                                                          (1)

KL Divergence, equation (1) is  also known as relative 
entropy, is used as a measure to calculate the degree of 
divergence between the two probability distributions in 
statistics (Kullback 1997).KL divergence completely compare 
two HMMs and provide accurate information about the 
degree of divergence of the two models. Besides, the KL 
divergence is asymmetric, which means that KLD (P || Q) ≠ 
KLD (Q || P) (Hershey, Olsen, and Rennie 2007). This feature 
helps us reduce the number of false positives because of the 
transition from fraud to normal has a different KLD than the 
transition from normal to fraud (Robinson and Aria 2018).

Robinson and Aria used action on products 
as the sequence of observation, iO , to define the 
parameters of the HMM. Observed symbols were

{ }1 2 , , , MV product action product action product action= − − … − . For example, 
cash to AT&T 25$ is an observed symbol. Hidden states 
were also based on sales context, { }, ,S normal weekend holidays=

. The transition matrix, A, was generated based on equal 
probabilities among three mentioned states and the initial 
state probabilities, π, were also considered equal. In the 
emission probability matrix, B, each value denoted the sales 
state x the product types.

The method of mentioned study is generally applied as 
follows:

1. A HMM, 
1λ , is generated for each store from the last 

sequence, iO .
2. All the new occurred transactions are added to the next 

sequence, 1iO + , until the specified window size is reached.
3. Then the next HMM, 

2λ , is generated from the new 
sequence, 1iO + .

4. The two HMM’s are compared, 
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𝑃𝑃(𝑣𝑣𝑘𝑘 𝑎𝑎𝑎𝑎 𝑎𝑎|𝑠𝑠𝑖𝑖 𝑎𝑎𝑎𝑎 𝑎𝑎) , 1 ≤ 𝑗𝑗 ≤ 𝑁𝑁, 1 ≤ 𝑘𝑘 ≤ 𝑀𝑀, addiyionaly ∑ 𝑏𝑏𝑖𝑖(𝑘𝑘) = 1 , 1 ≤ 𝑗𝑗 ≤𝑀𝑀

𝑘𝑘=1 𝑁𝑁. The initial state 
probability vector 𝜋𝜋 = [𝜋𝜋𝑖𝑖], where 𝜋𝜋𝑖𝑖 = 𝑃𝑃(𝑠𝑠𝑖𝑖 𝑎𝑎𝑎𝑎 𝑎𝑎 = 1) , 1 ≤ 𝑖𝑖 ≤ 𝑁𝑁 and ∑ 𝜋𝜋𝑖𝑖 = 1𝑁𝑁

𝑖𝑖=1 . 

To illustrate a complete set of model parameters, we use the symbol 𝜆𝜆 = (𝐴𝐴, 𝐵𝐵, 𝜋𝜋), in which as mentioned 𝐴𝐴 is 
the state transition probability matrix, 𝐵𝐵 is the emission probability matrix and 𝜋𝜋 is the probability vector of the 
initial state (Rabiner and Juang 1986). 

Two types of techniques can be used to detect anomalies using the HMM: 

Technique 1. Comparing the acceptance probability of the observation sequence: Srivastava used this technique 
in his study and thus provided a model for single-transaction fraud detection based on a card-centric approach 
(A. Srivastava et al. 2008b). 

Technique 2. Comparing HMMs generated from the sequences of observation: Robinson and Aria used this 
technique to detect fraudulent sequences through taking a store-centric approach, and used Kullback-Leibler 
Divergence to compare the mentioned HMMs  (Robinson and Aria 2018). 

𝐾𝐾𝐾𝐾𝐾𝐾(P Q) = ∑ 𝑃𝑃(𝑖𝑖)𝑙𝑙𝑙𝑙𝑙𝑙 𝑃𝑃(𝑖𝑖)
𝑄𝑄(𝑖𝑖)𝑖𝑖                                (1) 

KL Divergence, equation (1) is  also known as relative entropy, is used as a measure to calculate the degree of 
divergence between the two probability distributions in statistics (Kullback 1997).KL divergence completely 
compare two HMMs and provide accurate information about the degree of divergence of the two models. 
Besides, the KL divergence is asymmetric, which means that KLD (P || Q) ≠ KLD (Q || P) (Hershey, Olsen, and 
Rennie 2007) . This feature helps us reduce the number of false positives because of the transition from fraud to 
normal has a different KLD than the transition from normal to fraud (Robinson and Aria 2018). 

Robinson and Aria used action on products as the sequence of observation, 𝑂𝑂𝑖𝑖, to define the parameters of the 
HMM. Observed symbols were 𝑉𝑉 = {𝑝𝑝𝑝𝑝𝑙𝑙𝑝𝑝𝑝𝑝𝑝𝑝𝑎𝑎 − 𝑎𝑎𝑝𝑝𝑎𝑎𝑖𝑖𝑙𝑙𝑎𝑎1, 𝑝𝑝𝑝𝑝𝑙𝑙𝑝𝑝𝑝𝑝𝑝𝑝𝑎𝑎 − 𝑎𝑎𝑝𝑝𝑎𝑎𝑖𝑖𝑙𝑙𝑎𝑎2, … , 𝑝𝑝𝑝𝑝𝑙𝑙𝑝𝑝𝑝𝑝𝑝𝑝𝑎𝑎 − 𝑎𝑎𝑝𝑝𝑎𝑎𝑖𝑖𝑙𝑙𝑎𝑎𝑀𝑀}. For 
example, cash to AT&T 25$ is an observed symbol. Hidden states were also based on sales context, 𝑆𝑆 =
{𝑎𝑎𝑙𝑙𝑝𝑝𝑛𝑛𝑎𝑎𝑙𝑙, 𝑤𝑤𝑤𝑤𝑤𝑤𝑘𝑘𝑤𝑤𝑎𝑎𝑝𝑝, ℎ𝑙𝑙𝑙𝑙𝑖𝑖𝑝𝑝𝑎𝑎𝑜𝑜𝑠𝑠}. The transition matrix, A, was generated based on equal probabilities among 
three mentioned states and the initial state probabilities, π, were also considered equal. In the emission 
probability matrix, B, each value denoted the sales state x the product types. 
The method of mentioned study is generally applied as follows: 

1. A HMM, 𝜆𝜆1, is generated for each store from the last sequence, 𝑂𝑂𝑖𝑖. 
2. All the new occurred transactions are added to the next sequence, 𝑂𝑂𝑖𝑖+1, until the specified window size 

is reached. 
3. Then the next HMM, 𝜆𝜆2, is generated from the new sequence, 𝑂𝑂𝑖𝑖+1. 
4. The two HMM’s are compared, ∆𝜆𝜆2,1 = 𝐾𝐾𝑘𝑘𝑘𝑘(𝜆𝜆2, 𝜆𝜆1). 
5. A fraud alert will be raised if ∆𝜆𝜆 is greater than the specified threshold. 
6. Ultimately, the existing HMM is updated to be the most recent HMM, 𝜆𝜆2. 

In the mentioned work, 3 real fraud cases are defined and are injected into the existing data. Then with multiple 
experiments, parameters such as window size and threshold are determined based on the F-score and the 
processing time of each experiment. 

In this paper the use of HMM analysis and KL Divergence is similar to that of Robinson and Aria; however, 
significant differences include the following; (i) payment cards rather than stores are modeled, (ii) instead of 
action on products, clustered transaction amounts are used, (iii) hidden states include channel of transactions (iv) 

 is greater than the 
specified threshold.

6. Ultimately, the existing HMM is updated to be the most 
recent HMM, 

2λ .
In the mentioned work, 3 real fraud cases are defined 

and are injected into the existing data. Then with multiple 
experiments, parameters such as window size and threshold 
are determined based on the F-score and the processing time 
of each experiment.

In this paper the use of HMM analysis and KL Divergence 
is similar to that of Robinson and Aria; however, significant 
differences include the following; (i) payment cards rather 
than stores are modeled, (ii) instead of action on products, 
clustered transaction amounts are used, (iii) hidden states 
include channel of transactions (iv) HMM parameters are 
completely derived from each card transaction history, (v) 7 
fraudulent scenarios including 60 fraudulent sequences are 
modeled, rather than 3 general cases, (vi) proper sequence 
length is determined for each card by using HMM and KL 
Divergence, and (vii) for each card, a unique threshold is 
determined based on its transaction history, rather than 
obtained F-Score and processing time.
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4- METHODOLOGY
The research methodology consists of four steps. At first, 

the observations, states HMM parameters are determined. 
Then, the proper number of transactions is specified, which 
can illustrate the repeatable spending behavior of each card. In 
the next step, the threshold of the KL divergence is calculated 
for each card. Finally, the fraudulent scenarios are defined.

4.1. Determining HMM’s parameters
At first, transactions with a zero amount are omitted on 

each card. Then, to symmetrize and normalize the amount 
of transactions, the logarithmic amount of them is calculated 
(Manikandan 2010). Finally, the transactions channels are 
classified. Generally, transactions can be occurred through 
seven channels including ATM, POS, Kiosk, PIN pad, 
Internet, Mobile and Tell. Around 82.7% of all transactions 
occurred through ATM, POS and Internet; therefore, PIN 
pad, Kiosk, Mobile, and Tell channels, which together 
account for about 17.3% of all transactions, are considered as 
a single channel called “Other”. Thus the accuracy of HMM 
parameters calculation increases.

To define the parameters of the HMM, we must first define 
the observation symbols and the model states. The transactions 
of each card are considered as model observations and they 
are categorized as VL (very low), L (low), M (Medium), H 
(High) and VH (very high), so the observation symbols are V 

= {VL, L, M, H, VH} and M = 5. These categories have equal 
length and exist in the range of the lowest and the highest 
transactions amount logarithms of each card.

It is important to note that the range for each symbol is 
determined by the history and spending behavior of each 
card owner; in this way a unique profile is created for each 
card. Channels through which the transactions occur are 
also considered as model states, so S = {ATM, POS, Internet, 
Other} and N = 4. The reason for choosing channels as model 
states is that the amount of transactions for each person varies 
in different and relatively wide range, while the channels that 
each person uses is limited and more stable.

In Fig. 1., the most frequent use of each channel is shown 
in different cards. As can be seen the displayed sample 
contains 25 cards, and in each card one or two channels are 
used in more than 50% of all transactions. In fact, each card 
has one or two dominant channels.

Additionally, observations are related to the states, due to 
the limitation on the transaction amount in different channels. 
The relation between observation symbols and states is 
determined by performing calculations and reviews on the 
used real data. According to Table 1, 52% of transactions 
with VL symbol is occurred through the Internet channel, 
53% of transactions with L symbol is occurred through 
the Pos channel, 51% of transactions that have been in the 
M-symbol category are occurred through the Internet, 55% 

 
Figure 1: Most used channels in a sample includes 25 cards 
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Table 1. The relation between Observations and States

Fig. 1. Most used channels in a sample includes 25 cards
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of transactions with H symbol are occurred through the ATM 
channel and finally 52% of VH transactions are performed 
through other channels. Therefore, for example, knowing that 
a transaction occurred at H (high) level, it can be said that 
this transaction was performed through an ATM channel 
with high probability.

4.2. Determining adequate length of a sequence
After determining the parameters of the HMM, the length 

of the sequence is calculated according to the spending 
behavior of each card owner. In general, the purpose of 
determining this sequence length is to choose the number 
of transactions that can represent repeatable behavior of the 
card owner.

Based on the different results obtained in different window 
sizes in Robinson and Aria’s paper, it can be concluded that 
the length of sequence affects the accuracy of fraud detection 
model (Robinson and Aria 2018). Therefore, in order to have 
an accurate fraudulent sequence detection system, a proper 
sequence length must be considered. On the other hand, 
since each individual has a different transactional behavior 
that can depend on his job, the time of receiving a salary, 
etc., an adequate sequence length is calculated for each 

person separately. Fig. 1. shows an example of an individual’s 
transactional behavior over four consecutive months, which 
indicates the dependence of the individual’s spending 
behavior on receiving his monthly salary.

The dominant pattern on the mentioned individual’s 
transactions in each month is shown in Fig. 2.

To determine the appropriate sequence length, the 
following variables need to be defined:
D: The number of cards 
i: The card No. ( )1 i D≤ ≤
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Figure. 2 Dominant pattern on an individual's transactions sample over four months 

To determine the appropriate sequence length, the following variables need to be defined: 

D: The number of cards  

i: The card No. (1 ≤ i ≤ D) 

αi: The median of the number of i-th card daily transactions   

βi: The average of number of i-th card weekly transactions   

j: The sequence length (𝛼𝛼𝑖𝑖 ≤ 𝑗𝑗 ≤ 𝛽𝛽𝑖𝑖) 

ni,j: The number of sequences with the length of j in i-th card 

k: The sequence no. (1 ≤ 𝑘𝑘 ≤ 𝑛𝑛𝑖𝑖,𝑗𝑗) 

k′: The sequence no.(𝑘𝑘 + 1 ≤ 𝑘𝑘′ ≤ 𝑛𝑛𝑖𝑖,𝑗𝑗) 

gi,j: A group of sequences with the length of j in i-th card 

λi,j,k: The HMM of k-th sequence with the length of j in i-th card 

Mi,j: The average of calculated KL divergence between HMMs of all the sequences with the length of j in i-th 
card 

After defining the above variables, the following steps are taken. The initial step is to calculate 𝛼𝛼𝑖𝑖 and 𝛽𝛽𝑖𝑖 for the 
existing cards. In the second step, all the sequences of length 𝑗𝑗(𝛼𝛼𝑖𝑖 ≤ 𝑗𝑗 ≤ 𝛽𝛽𝑖𝑖) are selected in training data of each 
card. Sequences of the same length 𝑗𝑗 are placed in the 𝑔𝑔𝑖𝑖,𝑗𝑗group. Therefore, for each card 𝑔𝑔𝑖𝑖 = 𝛽𝛽𝑖𝑖 − 𝛼𝛼𝑖𝑖 + 1 
sequence groups are generated. Next, in each card, λ𝑖𝑖,𝑗𝑗,𝑘𝑘(1 ≤ 𝑖𝑖 ≤ 𝐷𝐷, 𝛼𝛼𝑖𝑖 ≤ 𝑗𝑗 ≤ 𝛽𝛽𝑖𝑖, 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛𝑖𝑖,𝑗𝑗) is calculated 
according to the second step and separately. Afterwards, in each sequence group of individual card, 
𝐾𝐾𝐾𝐾𝐷𝐷(λ𝑖𝑖,𝑗𝑗,𝑘𝑘+1, λ𝑖𝑖,𝑗𝑗,𝑘𝑘′) , (1 ≤ 𝑖𝑖 ≤ 𝐷𝐷, 𝛼𝛼𝑖𝑖 ≤ 𝑗𝑗 ≤ 𝛽𝛽𝑖𝑖, 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛𝑖𝑖,𝑗𝑗, 𝑘𝑘 + 1 ≤ 𝑘𝑘′ ≤ 𝑛𝑛𝑖𝑖,𝑗𝑗) is calculated between the 
HMMs of each sequence and all the subsequent sequences. 

Then, the average of these KL divergence values is calculated, and 𝑀𝑀𝑖𝑖,𝑗𝑗 is obtained for different cards and 
different length of sequences. Finally, in each card, after calculating ∆𝑀𝑀𝑖𝑖 = 𝑀𝑀𝑖𝑖,𝑗𝑗 − 𝑀𝑀𝑖𝑖,𝑗𝑗−1, the minimum (most 
negative) ∆𝑀𝑀𝑖𝑖is determined and the j-th sequence which is involved in calculating ∆𝑀𝑀𝑖𝑖 is considered as the 
sequence length corresponding to the spending behavior for that card. 

The basis of the mentioned computational steps is the divergence value between HMMs of transactional 
sequences. The greater convergence between HMMs of sequences with a certain length or the less calculated 
KLD value means that the individual's spending behavior is more repeatable with the mentioned sequence 
length (Robinson and Aria 2018). Based on the calculations performed on our real data, with the smallest 
sequence length (2 transactions), the average of KLD has the least value, and as the sequence length increases, 
this value gradually grows, and then it has small fluctuations around a certain value. Then at a unique point 
(adequate sequence length) suddenly the average of divergence value decreases with a steep gradient. This 
length of sequence that leads to the most negative gradient of divergence average is actually a relative minimum 
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Figure. 2 Dominant pattern on an individual's transactions sample over four months 

To determine the appropriate sequence length, the following variables need to be defined: 
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After defining the above variables, the following steps are taken. The initial step is to calculate 𝛼𝛼𝑖𝑖 and 𝛽𝛽𝑖𝑖 for the 
existing cards. In the second step, all the sequences of length 𝑗𝑗(𝛼𝛼𝑖𝑖 ≤ 𝑗𝑗 ≤ 𝛽𝛽𝑖𝑖) are selected in training data of each 
card. Sequences of the same length 𝑗𝑗 are placed in the 𝑔𝑔𝑖𝑖,𝑗𝑗group. Therefore, for each card 𝑔𝑔𝑖𝑖 = 𝛽𝛽𝑖𝑖 − 𝛼𝛼𝑖𝑖 + 1 
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HMMs of each sequence and all the subsequent sequences. 

Then, the average of these KL divergence values is calculated, and 𝑀𝑀𝑖𝑖,𝑗𝑗 is obtained for different cards and 
different length of sequences. Finally, in each card, after calculating ∆𝑀𝑀𝑖𝑖 = 𝑀𝑀𝑖𝑖,𝑗𝑗 − 𝑀𝑀𝑖𝑖,𝑗𝑗−1, the minimum (most 
negative) ∆𝑀𝑀𝑖𝑖is determined and the j-th sequence which is involved in calculating ∆𝑀𝑀𝑖𝑖 is considered as the 
sequence length corresponding to the spending behavior for that card. 

The basis of the mentioned computational steps is the divergence value between HMMs of transactional 
sequences. The greater convergence between HMMs of sequences with a certain length or the less calculated 
KLD value means that the individual's spending behavior is more repeatable with the mentioned sequence 
length (Robinson and Aria 2018). Based on the calculations performed on our real data, with the smallest 
sequence length (2 transactions), the average of KLD has the least value, and as the sequence length increases, 
this value gradually grows, and then it has small fluctuations around a certain value. Then at a unique point 
(adequate sequence length) suddenly the average of divergence value decreases with a steep gradient. This 
length of sequence that leads to the most negative gradient of divergence average is actually a relative minimum 
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Figure. 2 Dominant pattern on an individual's transactions sample over four months 

To determine the appropriate sequence length, the following variables need to be defined: 

D: The number of cards  

i: The card No. (1 ≤ i ≤ D) 

αi: The median of the number of i-th card daily transactions   

βi: The average of number of i-th card weekly transactions   

j: The sequence length (𝛼𝛼𝑖𝑖 ≤ 𝑗𝑗 ≤ 𝛽𝛽𝑖𝑖) 

ni,j: The number of sequences with the length of j in i-th card 

k: The sequence no. (1 ≤ 𝑘𝑘 ≤ 𝑛𝑛𝑖𝑖,𝑗𝑗) 

k′: The sequence no.(𝑘𝑘 + 1 ≤ 𝑘𝑘′ ≤ 𝑛𝑛𝑖𝑖,𝑗𝑗) 

gi,j: A group of sequences with the length of j in i-th card 

λi,j,k: The HMM of k-th sequence with the length of j in i-th card 

Mi,j: The average of calculated KL divergence between HMMs of all the sequences with the length of j in i-th 
card 

After defining the above variables, the following steps are taken. The initial step is to calculate 𝛼𝛼𝑖𝑖 and 𝛽𝛽𝑖𝑖 for the 
existing cards. In the second step, all the sequences of length 𝑗𝑗(𝛼𝛼𝑖𝑖 ≤ 𝑗𝑗 ≤ 𝛽𝛽𝑖𝑖) are selected in training data of each 
card. Sequences of the same length 𝑗𝑗 are placed in the 𝑔𝑔𝑖𝑖,𝑗𝑗group. Therefore, for each card 𝑔𝑔𝑖𝑖 = 𝛽𝛽𝑖𝑖 − 𝛼𝛼𝑖𝑖 + 1 
sequence groups are generated. Next, in each card, λ𝑖𝑖,𝑗𝑗,𝑘𝑘(1 ≤ 𝑖𝑖 ≤ 𝐷𝐷, 𝛼𝛼𝑖𝑖 ≤ 𝑗𝑗 ≤ 𝛽𝛽𝑖𝑖, 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛𝑖𝑖,𝑗𝑗) is calculated 
according to the second step and separately. Afterwards, in each sequence group of individual card, 
𝐾𝐾𝐾𝐾𝐷𝐷(λ𝑖𝑖,𝑗𝑗,𝑘𝑘+1, λ𝑖𝑖,𝑗𝑗,𝑘𝑘′) , (1 ≤ 𝑖𝑖 ≤ 𝐷𝐷, 𝛼𝛼𝑖𝑖 ≤ 𝑗𝑗 ≤ 𝛽𝛽𝑖𝑖, 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛𝑖𝑖,𝑗𝑗, 𝑘𝑘 + 1 ≤ 𝑘𝑘′ ≤ 𝑛𝑛𝑖𝑖,𝑗𝑗) is calculated between the 
HMMs of each sequence and all the subsequent sequences. 

Then, the average of these KL divergence values is calculated, and 𝑀𝑀𝑖𝑖,𝑗𝑗 is obtained for different cards and 
different length of sequences. Finally, in each card, after calculating ∆𝑀𝑀𝑖𝑖 = 𝑀𝑀𝑖𝑖,𝑗𝑗 − 𝑀𝑀𝑖𝑖,𝑗𝑗−1, the minimum (most 
negative) ∆𝑀𝑀𝑖𝑖is determined and the j-th sequence which is involved in calculating ∆𝑀𝑀𝑖𝑖 is considered as the 
sequence length corresponding to the spending behavior for that card. 

The basis of the mentioned computational steps is the divergence value between HMMs of transactional 
sequences. The greater convergence between HMMs of sequences with a certain length or the less calculated 
KLD value means that the individual's spending behavior is more repeatable with the mentioned sequence 
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sequence length (2 transactions), the average of KLD has the least value, and as the sequence length increases, 
this value gradually grows, and then it has small fluctuations around a certain value. Then at a unique point 
(adequate sequence length) suddenly the average of divergence value decreases with a steep gradient. This 
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: The HMM of k-th sequence with the length of j in i-th 
card

i, jM : The average of calculated KL divergence between 
HMMs of all the sequences with the length of j in i-th card

After defining the above variables, the following steps are 
taken. The initial step is to calculate  and  for the existing cards. 
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In the second step, all the sequences of length ( ) i ij jα β≤ ≤  
are selected in training data of each card. Sequences of the 
same length  are placed in the group. Therefore, for each 
card 1i i ig β α= − +  sequence groups are generated. Next, 
in each card, 
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The basis of the mentioned computational steps is the divergence value between HMMs of transactional 
sequences. The greater convergence between HMMs of sequences with a certain length or the less calculated 
KLD value means that the individual's spending behavior is more repeatable with the mentioned sequence 
length (Robinson and Aria 2018). Based on the calculations performed on our real data, with the smallest 
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calculated between the HMMs of each sequence and all the 
subsequent sequences.

Then, the average of these KL divergence values is 
calculated, and ,i jM  is obtained for different cards and 
different length of sequences. Finally, in each card, after 
calculating 
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After defining the above variables, the following steps are taken. The initial step is to calculate 𝛼𝛼𝑖𝑖 and 𝛽𝛽𝑖𝑖 for the 
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The basis of the mentioned computational steps is the divergence value between HMMs of transactional 
sequences. The greater convergence between HMMs of sequences with a certain length or the less calculated 
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this value gradually grows, and then it has small fluctuations around a certain value. Then at a unique point 
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different length of sequences. Finally, in each card, after calculating ∆𝑀𝑀𝑖𝑖 = 𝑀𝑀𝑖𝑖,𝑗𝑗 − 𝑀𝑀𝑖𝑖,𝑗𝑗−1, the minimum (most 
negative) ∆𝑀𝑀𝑖𝑖is determined and the j-th sequence which is involved in calculating ∆𝑀𝑀𝑖𝑖 is considered as the 
sequence length corresponding to the spending behavior for that card. 

The basis of the mentioned computational steps is the divergence value between HMMs of transactional 
sequences. The greater convergence between HMMs of sequences with a certain length or the less calculated 
KLD value means that the individual's spending behavior is more repeatable with the mentioned sequence 
length (Robinson and Aria 2018). Based on the calculations performed on our real data, with the smallest 
sequence length (2 transactions), the average of KLD has the least value, and as the sequence length increases, 
this value gradually grows, and then it has small fluctuations around a certain value. Then at a unique point 
(adequate sequence length) suddenly the average of divergence value decreases with a steep gradient. This 
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 is considered as the sequence length 
corresponding to the spending behavior for that card.

The basis of the mentioned computational steps is 
the divergence value between HMMs of transactional 
sequences. The greater convergence between HMMs 
of sequences with a certain length or the less calculated 
KLD value means that the individual’s spending behavior 
is more repeatable with the mentioned sequence length 
(Robinson and Aria 2018). Based on the calculations 

performed on our real data, with the smallest sequence 
length (2 transactions), the average of KLD has the least 
value, and as the sequence length increases, this value 
gradually grows, and then it has small fluctuations around 
a certain value. Then at a unique point (adequate sequence 
length) suddenly the average of divergence value decreases 
with a steep gradient. This length of sequence that leads to 
the most negative gradient of divergence average is actually 
a relative minimum point. This behavior is observed in all 
sample cards transactions, and for each card, a relative 
minimum point is obtained that creates the most negative 
divergence gradient, which is considered as the adequate 
sequence length for that card.

Fig. 2. shows the averages of KLDs obtained for a specific 
card. As can be seen, at the sequence length of 15, the M 
decreases abruptly. This means that at the sequence length of 
15 compared to the other points, the convergence between 
sequences is greater and the behavior is more repetitive. 
Therefore, the length of sequence 15 is considered as the 
adequate sequence length for this card. 

Fig. 3. also shows the gradient of the divergence or 
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4.3. Calculating threshold
After determining the adequate sequence length for each card, 

all sequences of proper length are selected in the training data 
of each card and the KL divergence is calculated between these 
sequences. The maximum value of the obtained KL divergences 
in each card is considered to be the divergence threshold of that 
card, 
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. In the mentioned sample card in section 4.2, which 
has a proper sequence length of 15, the calculated threshold is 
5.2. This number is calculated based on the maximum degree 
of divergence between the HMM of all the sequences with the 
length of 15 in the training data of this card.

4.4. Fraudulent scenarios
The purpose of determining fraudulent scenarios is 

to measure the ability of the created system to detect the 
cardholder’s fraudulent behavior. Since the main goal of 
this study is to establish a system for detecting fraudulent 
sequences, the fraudulent scenarios are extracted based 
on the occurrences of fraud in a sequence form. The initial 
idea behind defining these fraudulent scenarios comes from 
the fraudulent sequence presented in (Eshghi and Kargari 
2019a). After performing reviews on our real bank data and 
identifying the actual fraudulent sequences in it, and also 
based on some bank experts opinions, more comprehensive 
sequences are defined in the form of 7 fraudulent scenarios.  
It cannot be claimed that the occurrence of these scenarios 
is certainly equal to the incidence of fraud, but we can say 
that the occurrence of such transactional behavior is rare 
with non-fraudulent purposes. In fact, the presence of 
these scenarios in an individual’s transactions increases the 
probability of fraud incidence.

The length of these fraudulent scenarios varies according 
to the calculated proper length of the sequence of each card. 
In our mentioned sample card in section 4.2, all defined 
scenarios include 15 fraudulent transactions. 

Totally 7 scenarios including 60 fraudulent sequences 
are extracted. In each of these fraudulent sequences, all of 
the transactions must occur through the same channel. For 
example, in scenario 1 with one mode, we have 4 fraudulent 
sequences each of which occurs through one of the possible 

channels. Each scenario will be described as follows:
Fraudulent scenario 1:
As shown in Fig. 4., scenario 1 is modeled based on the 

occurrence of a fraudulent sequence of VH amount symbol.
Fraudulent scenario 2:
Scenario 2 is modeled based on the occurrence of a 

fraudulent sequence of VH and H or M and VH amount 
symbols. Fig. 5.  shows scenario two in its four modes.

Fraudulent scenario 3:
Scenario 3 is modeled based on the occurrence of a 

fraudulent sequence of VH and H and M amount symbols. 
Fig. 6. shows scenario three in its two modes.

Fraudulent scenario 4:
As shown in Fig. 7., scenario 4 is modeled based on the 

occurrence of a fraudulent sequence with an ascending trend 
which includes, respectively, M, H and VH amount symbols.

Fraudulent scenario 5:
As shown in Fig. 8., scenario 5 is modeled based on the 

occurrence of a fraudulent sequence with a descending trend 
which includes, respectively, VH, H and M amount symbols.

Fraudulent scenario 6:
Scenario 6 is modeled based on the occurrence of a 

fraudulent sequence with an ascending trend which includes, 
respectively, H and VH or M and H or M and VH amount 
symbols. Fig. 9. shows scenario six in its three modes.

Fraudulent scenario 7:
Scenario 7 is modeled based on the occurrence of a 

fraudulent sequence with a descending trend which includes, 
respectively, VH and H or H and M or VH and M amount 
symbols. Fig. 10. shows scenario seven in its three modes.

After adjusting each scenario with the proper sequence 
length of each card, the HMMs of all fraudulent sequences 
are determined. In each card, the degree of KL divergence 
between the HMM of each fraudulent sequence and the HMM 
of the train data last sequence is calculated. If the calculated 
divergence is greater than or equal to the threshold of each 
card 
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or equal to the threshold of each card (𝐾𝐾𝐾𝐾𝐾𝐾(λScei (modej,channelk), λ𝑁𝑁) ≥ 𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜λ), then the system will 
detect the fraudulent sequence, otherwise the system will not distinguish fraudulent sequences from the normal 
spending behavior of the cardholder. 

5 - Experimental settings 

5.1 Data 
The experimental data used is the real payment cards data of a private bank in Iran. This data contains 
information about around 700 payment cards belonging to different customers. In each card, 70% of the data is 
considered as trained data and the remaining 30% is considered as test data. 

The data driven belongs to a period of one year (2016). For each card, the information is available on three 
features including the transaction amount, the transaction time, and the channel through which the transaction 
occurred. 

5.2 Measures 
In this paper, the common quality measures including 𝑅𝑅𝑟𝑟𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜 = 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇+𝐹𝐹𝑁𝑁,  𝑃𝑃𝑟𝑟𝑟𝑟𝑅𝑅𝑃𝑃𝑟𝑟𝑃𝑃𝑜𝑜𝑃𝑃 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇,  𝐹𝐹 − 𝑆𝑆𝑅𝑅𝑜𝑜𝑟𝑟𝑟𝑟 =

2 × 𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃×𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅
𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅 are used to evaluate our proposed fraud detection system. In addition to the mentioned 

measures, equation (2) is also used to indicate the effect of the proposed model on the cost. 

𝐶𝐶𝑜𝑜𝑟𝑟𝐶𝐶 = {𝛼𝛼0𝑍𝑍0 + 𝛼𝛼1𝑍𝑍1 + 𝐶𝐶0              𝑈𝑈𝑟𝑟𝑃𝑃𝑃𝑃𝑈𝑈 𝐶𝐶ℎ𝑟𝑟 𝑝𝑝𝑟𝑟𝑜𝑜𝑝𝑝𝑜𝑜𝑟𝑟𝑟𝑟𝑜𝑜 𝑚𝑚𝑜𝑜𝑜𝑜𝑟𝑟𝑜𝑜  
𝛽𝛽(𝐹𝐹𝐹𝐹)                             𝐹𝐹𝑜𝑜𝐶𝐶 𝑢𝑢𝑟𝑟𝑃𝑃𝑃𝑃𝑈𝑈 𝐶𝐶ℎ𝑟𝑟 𝑝𝑝𝑟𝑟𝑜𝑜𝑝𝑝𝑜𝑜𝑟𝑟𝑟𝑟𝑜𝑜 𝑚𝑚𝑜𝑜𝑜𝑜𝑟𝑟𝑜𝑜 

(2) 
 

 

The cost function 𝐶𝐶𝑜𝑜𝑟𝑟𝐶𝐶 = 100 × 𝑓𝑓𝑃𝑃 + 1 × (𝑓𝑓𝑝𝑝 + 𝐶𝐶𝑝𝑝) has been used in previous works (Gadi et al. 2008). In this 
paper, the mentioned cost function is improved and localized under the supervision of some bank experts in 
accordance with the financial process of the considered Iranian bank. The coefficients of the proposed cost 
function are calculated based on the actual costs in Iran, and for using it in other fraud detection studies, the 
coefficients can be optimized based on the local costs of the parameters. 

According to equation (1), when the proposed model is employed, the cost consists of three parts including the 
corresponding cost of the 7 identified scenarios, the corresponding cost of an unknown scenario and the fixed 
cost of the implementation of the model. In the case where the proposed model is not used, the cost function is 
equal to the cost of occurrence of fraudulent sequences without any alert 

Given the fact that the scenarios are modeled under the supervision of bank experts, the experts’ opinions and 
also the obtained cost function are the criteria for evaluating the validity of the model and the results. True 
positive (TP), true negative (TN), false positive (FP) and false negative (FN) values must be computed to 
calculate the mentioned measures. 

In order to calculate two values of TP and FN: 

If 𝐾𝐾𝐾𝐾𝐾𝐾(λScei (modej,channelk), λ𝑁𝑁) ≥ 𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜λ, then the sequence Scei (modej, channelk) will be detected as 
a fraudulent sequence and the result is recorded as TP . 

If 𝐾𝐾𝐾𝐾𝐾𝐾(λScei (modej,channelk), λ𝑁𝑁) < 𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜λλ, then the sequence Scei (modej, channelk)will be detected as 
a normal sequence and the result is recorded as FN. 

In order to calculate the two values of TN and FP, the normal sequences of each card should be examined. 
Therefore, the test data of each card is used, and sequences of the determined length are selected on this data, 
and then the HMM of these sequences are calculated. Finally, the KL divergence between the HMM of each 
sequence and all subsequent sequences are calculated progressively. 

If 𝐾𝐾𝐾𝐾𝐾𝐾(λ𝑘𝑘+1, λ𝑘𝑘) ≥ 𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜λ, then the sequence(𝐾𝐾 + 1)-th will be detected as a fraudulent sequence and the 
result is recorded as FP . 

If 𝐾𝐾𝐾𝐾𝐾𝐾(λ𝑘𝑘+1, λ𝑘𝑘) < 𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜λ, then the sequence (𝐾𝐾 + 1)-th will be detected as a normal sequence and the 
result is recorded as TN. 

, then the system 
will detect the fraudulent sequence, otherwise the system 
will not distinguish fraudulent sequences from the normal 
spending behavior of the cardholder.
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Fig. 4. Fraudulent scenario 1 with one mode
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Figure 5: Fraudulent scenario 2 with four modes 
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Figure 6: Fraudulent scenario 3 with two modes 

  

 
Figure 7: Fraudulent scenario 4 with one mode 
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Fig. 7. Fraudulent scenario 4 with one mode
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Figure 8: Fraudulent scenario 5 with one mode 
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Figure 9: Fraudulent scenario 6 with three modes 

  

 
Figure 10: Fraudulent scenario 7 with three modes 
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5- EXPERIMENTAL SETTINGS
4.1. Data

The experimental data used is the real payment cards data 
of a private bank in Iran. This data contains information about 
around 700 payment cards belonging to different customers. 
In each card, 70% of the data is considered as trained data and 
the remaining 30% is considered as test data.

The data driven belongs to a period of one year (2016). 
For each card, the information is available on three features 
including the transaction amount, the transaction time, and 
the channel through which the transaction occurred.

4.2 Measures
In this paper, the common quality measures including 

TPRecall
TP FN

=
+

,  TPPrecision
TP FP

=
+

,  2 Precision RecallF Score
Precision Recall

×
− = ×

+
 are used to 

evaluate our proposed fraud detection system. In addition to 
the mentioned measures, equation (2) is also used to indicate 
the effect of the proposed model on the cost.

( )
0 0 1 1 0                    

                                 
Z Z C Using the proposed model

Cost
FN Not using the proposed model

α α
β

+ +
= 
  

(2)

The cost function ( )100 1n p pCost f f t= × + × +  has been used in 
previous works (Gadi et al. 2008). In this paper, the mentioned 
cost function is improved and localized under the supervision 
of some bank experts in accordance with the financial process 
of the considered Iranian bank. The coefficients of the 
proposed cost function are calculated based on the actual 
costs in Iran, and for using it in other fraud detection studies, 
the coefficients can be optimized based on the local costs of 
the parameters.

According to equation (1), when the proposed model 
is employed, the cost consists of three parts including 
the corresponding cost of the 7 identified scenarios, the 
corresponding cost of an unknown scenario and the fixed cost 
of the implementation of the model. In the case where the 
proposed model is not used, the cost function is equal to the 
cost of occurrence of fraudulent sequences without any alert

Given the fact that the scenarios are modeled under the 
supervision of bank experts, the experts’ opinions and also 
the obtained cost function are the criteria for evaluating the 
validity of the model and the results. True positive (TP), 
true negative (TN), false positive (FP) and false negative 
(FN) values must be computed to calculate the mentioned 
measures.

In order to calculate two values of TP and FN:
If 
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or equal to the threshold of each card (𝐾𝐾𝐾𝐾𝐾𝐾(λScei (modej,channelk), λ𝑁𝑁) ≥ 𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜λ), then the system will 
detect the fraudulent sequence, otherwise the system will not distinguish fraudulent sequences from the normal 
spending behavior of the cardholder. 

5 - Experimental settings 

5.1 Data 
The experimental data used is the real payment cards data of a private bank in Iran. This data contains 
information about around 700 payment cards belonging to different customers. In each card, 70% of the data is 
considered as trained data and the remaining 30% is considered as test data. 

The data driven belongs to a period of one year (2016). For each card, the information is available on three 
features including the transaction amount, the transaction time, and the channel through which the transaction 
occurred. 

5.2 Measures 
In this paper, the common quality measures including 𝑅𝑅𝑟𝑟𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜 = 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇+𝐹𝐹𝑁𝑁,  𝑃𝑃𝑟𝑟𝑟𝑟𝑅𝑅𝑃𝑃𝑟𝑟𝑃𝑃𝑜𝑜𝑃𝑃 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇,  𝐹𝐹 − 𝑆𝑆𝑅𝑅𝑜𝑜𝑟𝑟𝑟𝑟 =

2 × 𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃×𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅
𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅 are used to evaluate our proposed fraud detection system. In addition to the mentioned 

measures, equation (2) is also used to indicate the effect of the proposed model on the cost. 

𝐶𝐶𝑜𝑜𝑟𝑟𝐶𝐶 = {𝛼𝛼0𝑍𝑍0 + 𝛼𝛼1𝑍𝑍1 + 𝐶𝐶0              𝑈𝑈𝑟𝑟𝑃𝑃𝑃𝑃𝑈𝑈 𝐶𝐶ℎ𝑟𝑟 𝑝𝑝𝑟𝑟𝑜𝑜𝑝𝑝𝑜𝑜𝑟𝑟𝑟𝑟𝑜𝑜 𝑚𝑚𝑜𝑜𝑜𝑜𝑟𝑟𝑜𝑜  
𝛽𝛽(𝐹𝐹𝐹𝐹)                             𝐹𝐹𝑜𝑜𝐶𝐶 𝑢𝑢𝑟𝑟𝑃𝑃𝑃𝑃𝑈𝑈 𝐶𝐶ℎ𝑟𝑟 𝑝𝑝𝑟𝑟𝑜𝑜𝑝𝑝𝑜𝑜𝑟𝑟𝑟𝑟𝑜𝑜 𝑚𝑚𝑜𝑜𝑜𝑜𝑟𝑟𝑜𝑜 

(2) 
 

 

The cost function 𝐶𝐶𝑜𝑜𝑟𝑟𝐶𝐶 = 100 × 𝑓𝑓𝑃𝑃 + 1 × (𝑓𝑓𝑝𝑝 + 𝐶𝐶𝑝𝑝) has been used in previous works (Gadi et al. 2008). In this 
paper, the mentioned cost function is improved and localized under the supervision of some bank experts in 
accordance with the financial process of the considered Iranian bank. The coefficients of the proposed cost 
function are calculated based on the actual costs in Iran, and for using it in other fraud detection studies, the 
coefficients can be optimized based on the local costs of the parameters. 

According to equation (1), when the proposed model is employed, the cost consists of three parts including the 
corresponding cost of the 7 identified scenarios, the corresponding cost of an unknown scenario and the fixed 
cost of the implementation of the model. In the case where the proposed model is not used, the cost function is 
equal to the cost of occurrence of fraudulent sequences without any alert 

Given the fact that the scenarios are modeled under the supervision of bank experts, the experts’ opinions and 
also the obtained cost function are the criteria for evaluating the validity of the model and the results. True 
positive (TP), true negative (TN), false positive (FP) and false negative (FN) values must be computed to 
calculate the mentioned measures. 

In order to calculate two values of TP and FN: 

If 𝐾𝐾𝐾𝐾𝐾𝐾(λScei (modej,channelk), λ𝑁𝑁) ≥ 𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜λ, then the sequence Scei (modej, channelk) will be detected as 
a fraudulent sequence and the result is recorded as TP . 

If 𝐾𝐾𝐾𝐾𝐾𝐾(λScei (modej,channelk), λ𝑁𝑁) < 𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜λλ, then the sequence Scei (modej, channelk)will be detected as 
a normal sequence and the result is recorded as FN. 

In order to calculate the two values of TN and FP, the normal sequences of each card should be examined. 
Therefore, the test data of each card is used, and sequences of the determined length are selected on this data, 
and then the HMM of these sequences are calculated. Finally, the KL divergence between the HMM of each 
sequence and all subsequent sequences are calculated progressively. 

If 𝐾𝐾𝐾𝐾𝐾𝐾(λ𝑘𝑘+1, λ𝑘𝑘) ≥ 𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜λ, then the sequence(𝐾𝐾 + 1)-th will be detected as a fraudulent sequence and the 
result is recorded as FP . 

If 𝐾𝐾𝐾𝐾𝐾𝐾(λ𝑘𝑘+1, λ𝑘𝑘) < 𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜λ, then the sequence (𝐾𝐾 + 1)-th will be detected as a normal sequence and the 
result is recorded as TN. 

 then the sequence 

( )i j kSce  mode ,channel  will be detected as a fraudulent sequence 
and the result is recorded as TP.

If 
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or equal to the threshold of each card (𝐾𝐾𝐾𝐾𝐾𝐾(λScei (modej,channelk), λ𝑁𝑁) ≥ 𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜λ), then the system will 
detect the fraudulent sequence, otherwise the system will not distinguish fraudulent sequences from the normal 
spending behavior of the cardholder. 

5 - Experimental settings 

5.1 Data 
The experimental data used is the real payment cards data of a private bank in Iran. This data contains 
information about around 700 payment cards belonging to different customers. In each card, 70% of the data is 
considered as trained data and the remaining 30% is considered as test data. 

The data driven belongs to a period of one year (2016). For each card, the information is available on three 
features including the transaction amount, the transaction time, and the channel through which the transaction 
occurred. 

5.2 Measures 
In this paper, the common quality measures including 𝑅𝑅𝑟𝑟𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜 = 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇+𝐹𝐹𝑁𝑁,  𝑃𝑃𝑟𝑟𝑟𝑟𝑅𝑅𝑃𝑃𝑟𝑟𝑃𝑃𝑜𝑜𝑃𝑃 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇,  𝐹𝐹 − 𝑆𝑆𝑅𝑅𝑜𝑜𝑟𝑟𝑟𝑟 =

2 × 𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃×𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅
𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅 are used to evaluate our proposed fraud detection system. In addition to the mentioned 

measures, equation (2) is also used to indicate the effect of the proposed model on the cost. 

𝐶𝐶𝑜𝑜𝑟𝑟𝐶𝐶 = {𝛼𝛼0𝑍𝑍0 + 𝛼𝛼1𝑍𝑍1 + 𝐶𝐶0              𝑈𝑈𝑟𝑟𝑃𝑃𝑃𝑃𝑈𝑈 𝐶𝐶ℎ𝑟𝑟 𝑝𝑝𝑟𝑟𝑜𝑜𝑝𝑝𝑜𝑜𝑟𝑟𝑟𝑟𝑜𝑜 𝑚𝑚𝑜𝑜𝑜𝑜𝑟𝑟𝑜𝑜  
𝛽𝛽(𝐹𝐹𝐹𝐹)                             𝐹𝐹𝑜𝑜𝐶𝐶 𝑢𝑢𝑟𝑟𝑃𝑃𝑃𝑃𝑈𝑈 𝐶𝐶ℎ𝑟𝑟 𝑝𝑝𝑟𝑟𝑜𝑜𝑝𝑝𝑜𝑜𝑟𝑟𝑟𝑟𝑜𝑜 𝑚𝑚𝑜𝑜𝑜𝑜𝑟𝑟𝑜𝑜 

(2) 
 

 

The cost function 𝐶𝐶𝑜𝑜𝑟𝑟𝐶𝐶 = 100 × 𝑓𝑓𝑃𝑃 + 1 × (𝑓𝑓𝑝𝑝 + 𝐶𝐶𝑝𝑝) has been used in previous works (Gadi et al. 2008). In this 
paper, the mentioned cost function is improved and localized under the supervision of some bank experts in 
accordance with the financial process of the considered Iranian bank. The coefficients of the proposed cost 
function are calculated based on the actual costs in Iran, and for using it in other fraud detection studies, the 
coefficients can be optimized based on the local costs of the parameters. 

According to equation (1), when the proposed model is employed, the cost consists of three parts including the 
corresponding cost of the 7 identified scenarios, the corresponding cost of an unknown scenario and the fixed 
cost of the implementation of the model. In the case where the proposed model is not used, the cost function is 
equal to the cost of occurrence of fraudulent sequences without any alert 

Given the fact that the scenarios are modeled under the supervision of bank experts, the experts’ opinions and 
also the obtained cost function are the criteria for evaluating the validity of the model and the results. True 
positive (TP), true negative (TN), false positive (FP) and false negative (FN) values must be computed to 
calculate the mentioned measures. 

In order to calculate two values of TP and FN: 

If 𝐾𝐾𝐾𝐾𝐾𝐾(λScei (modej,channelk), λ𝑁𝑁) ≥ 𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜λ, then the sequence Scei (modej, channelk) will be detected as 
a fraudulent sequence and the result is recorded as TP . 

If 𝐾𝐾𝐾𝐾𝐾𝐾(λScei (modej,channelk), λ𝑁𝑁) < 𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜λλ, then the sequence Scei (modej, channelk)will be detected as 
a normal sequence and the result is recorded as FN. 

In order to calculate the two values of TN and FP, the normal sequences of each card should be examined. 
Therefore, the test data of each card is used, and sequences of the determined length are selected on this data, 
and then the HMM of these sequences are calculated. Finally, the KL divergence between the HMM of each 
sequence and all subsequent sequences are calculated progressively. 

If 𝐾𝐾𝐾𝐾𝐾𝐾(λ𝑘𝑘+1, λ𝑘𝑘) ≥ 𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜λ, then the sequence(𝐾𝐾 + 1)-th will be detected as a fraudulent sequence and the 
result is recorded as FP . 

If 𝐾𝐾𝐾𝐾𝐾𝐾(λ𝑘𝑘+1, λ𝑘𝑘) < 𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜λ, then the sequence (𝐾𝐾 + 1)-th will be detected as a normal sequence and the 
result is recorded as TN. 

 then the sequence 
( )i j kSce  mode ,channel will be detected as a normal sequence and 

the result is recorded as FN.
In order to calculate the two values of TN and FP, 

the normal sequences of each card should be examined. 
Therefore, the test data of each card is used, and sequences 
of the determined length are selected on this data, and then 
the HMM of these sequences are calculated. Finally, the 
KL divergence between the HMM of each sequence and all 
subsequent sequences are calculated progressively.

If 
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or equal to the threshold of each card (𝐾𝐾𝐾𝐾𝐾𝐾(λScei (modej,channelk), λ𝑁𝑁) ≥ 𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜λ), then the system will 
detect the fraudulent sequence, otherwise the system will not distinguish fraudulent sequences from the normal 
spending behavior of the cardholder. 

5 - Experimental settings 

5.1 Data 
The experimental data used is the real payment cards data of a private bank in Iran. This data contains 
information about around 700 payment cards belonging to different customers. In each card, 70% of the data is 
considered as trained data and the remaining 30% is considered as test data. 

The data driven belongs to a period of one year (2016). For each card, the information is available on three 
features including the transaction amount, the transaction time, and the channel through which the transaction 
occurred. 

5.2 Measures 
In this paper, the common quality measures including 𝑅𝑅𝑟𝑟𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜 = 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇+𝐹𝐹𝑁𝑁,  𝑃𝑃𝑟𝑟𝑟𝑟𝑅𝑅𝑃𝑃𝑟𝑟𝑃𝑃𝑜𝑜𝑃𝑃 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇,  𝐹𝐹 − 𝑆𝑆𝑅𝑅𝑜𝑜𝑟𝑟𝑟𝑟 =

2 × 𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃×𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅
𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅 are used to evaluate our proposed fraud detection system. In addition to the mentioned 

measures, equation (2) is also used to indicate the effect of the proposed model on the cost. 

𝐶𝐶𝑜𝑜𝑟𝑟𝐶𝐶 = {𝛼𝛼0𝑍𝑍0 + 𝛼𝛼1𝑍𝑍1 + 𝐶𝐶0              𝑈𝑈𝑟𝑟𝑃𝑃𝑃𝑃𝑈𝑈 𝐶𝐶ℎ𝑟𝑟 𝑝𝑝𝑟𝑟𝑜𝑜𝑝𝑝𝑜𝑜𝑟𝑟𝑟𝑟𝑜𝑜 𝑚𝑚𝑜𝑜𝑜𝑜𝑟𝑟𝑜𝑜  
𝛽𝛽(𝐹𝐹𝐹𝐹)                             𝐹𝐹𝑜𝑜𝐶𝐶 𝑢𝑢𝑟𝑟𝑃𝑃𝑃𝑃𝑈𝑈 𝐶𝐶ℎ𝑟𝑟 𝑝𝑝𝑟𝑟𝑜𝑜𝑝𝑝𝑜𝑜𝑟𝑟𝑟𝑟𝑜𝑜 𝑚𝑚𝑜𝑜𝑜𝑜𝑟𝑟𝑜𝑜 

(2) 
 

 

The cost function 𝐶𝐶𝑜𝑜𝑟𝑟𝐶𝐶 = 100 × 𝑓𝑓𝑃𝑃 + 1 × (𝑓𝑓𝑝𝑝 + 𝐶𝐶𝑝𝑝) has been used in previous works (Gadi et al. 2008). In this 
paper, the mentioned cost function is improved and localized under the supervision of some bank experts in 
accordance with the financial process of the considered Iranian bank. The coefficients of the proposed cost 
function are calculated based on the actual costs in Iran, and for using it in other fraud detection studies, the 
coefficients can be optimized based on the local costs of the parameters. 

According to equation (1), when the proposed model is employed, the cost consists of three parts including the 
corresponding cost of the 7 identified scenarios, the corresponding cost of an unknown scenario and the fixed 
cost of the implementation of the model. In the case where the proposed model is not used, the cost function is 
equal to the cost of occurrence of fraudulent sequences without any alert 

Given the fact that the scenarios are modeled under the supervision of bank experts, the experts’ opinions and 
also the obtained cost function are the criteria for evaluating the validity of the model and the results. True 
positive (TP), true negative (TN), false positive (FP) and false negative (FN) values must be computed to 
calculate the mentioned measures. 

In order to calculate two values of TP and FN: 

If 𝐾𝐾𝐾𝐾𝐾𝐾(λScei (modej,channelk), λ𝑁𝑁) ≥ 𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜λ, then the sequence Scei (modej, channelk) will be detected as 
a fraudulent sequence and the result is recorded as TP . 

If 𝐾𝐾𝐾𝐾𝐾𝐾(λScei (modej,channelk), λ𝑁𝑁) < 𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜λλ, then the sequence Scei (modej, channelk)will be detected as 
a normal sequence and the result is recorded as FN. 

In order to calculate the two values of TN and FP, the normal sequences of each card should be examined. 
Therefore, the test data of each card is used, and sequences of the determined length are selected on this data, 
and then the HMM of these sequences are calculated. Finally, the KL divergence between the HMM of each 
sequence and all subsequent sequences are calculated progressively. 

If 𝐾𝐾𝐾𝐾𝐾𝐾(λ𝑘𝑘+1, λ𝑘𝑘) ≥ 𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜λ, then the sequence(𝐾𝐾 + 1)-th will be detected as a fraudulent sequence and the 
result is recorded as FP . 

If 𝐾𝐾𝐾𝐾𝐾𝐾(λ𝑘𝑘+1, λ𝑘𝑘) < 𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜λ, then the sequence (𝐾𝐾 + 1)-th will be detected as a normal sequence and the 
result is recorded as TN. 

 then the sequence ( )1K +

-th will be detected as a fraudulent sequence and the result is 
recorded as FP.

If 
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or equal to the threshold of each card (𝐾𝐾𝐾𝐾𝐾𝐾(λScei (modej,channelk), λ𝑁𝑁) ≥ 𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜λ), then the system will 
detect the fraudulent sequence, otherwise the system will not distinguish fraudulent sequences from the normal 
spending behavior of the cardholder. 

5 - Experimental settings 

5.1 Data 
The experimental data used is the real payment cards data of a private bank in Iran. This data contains 
information about around 700 payment cards belonging to different customers. In each card, 70% of the data is 
considered as trained data and the remaining 30% is considered as test data. 

The data driven belongs to a period of one year (2016). For each card, the information is available on three 
features including the transaction amount, the transaction time, and the channel through which the transaction 
occurred. 

5.2 Measures 
In this paper, the common quality measures including 𝑅𝑅𝑟𝑟𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜 = 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇+𝐹𝐹𝑁𝑁,  𝑃𝑃𝑟𝑟𝑟𝑟𝑅𝑅𝑃𝑃𝑟𝑟𝑃𝑃𝑜𝑜𝑃𝑃 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇,  𝐹𝐹 − 𝑆𝑆𝑅𝑅𝑜𝑜𝑟𝑟𝑟𝑟 =

2 × 𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃×𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅
𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅 are used to evaluate our proposed fraud detection system. In addition to the mentioned 

measures, equation (2) is also used to indicate the effect of the proposed model on the cost. 

𝐶𝐶𝑜𝑜𝑟𝑟𝐶𝐶 = {𝛼𝛼0𝑍𝑍0 + 𝛼𝛼1𝑍𝑍1 + 𝐶𝐶0              𝑈𝑈𝑟𝑟𝑃𝑃𝑃𝑃𝑈𝑈 𝐶𝐶ℎ𝑟𝑟 𝑝𝑝𝑟𝑟𝑜𝑜𝑝𝑝𝑜𝑜𝑟𝑟𝑟𝑟𝑜𝑜 𝑚𝑚𝑜𝑜𝑜𝑜𝑟𝑟𝑜𝑜  
𝛽𝛽(𝐹𝐹𝐹𝐹)                             𝐹𝐹𝑜𝑜𝐶𝐶 𝑢𝑢𝑟𝑟𝑃𝑃𝑃𝑃𝑈𝑈 𝐶𝐶ℎ𝑟𝑟 𝑝𝑝𝑟𝑟𝑜𝑜𝑝𝑝𝑜𝑜𝑟𝑟𝑟𝑟𝑜𝑜 𝑚𝑚𝑜𝑜𝑜𝑜𝑟𝑟𝑜𝑜 

(2) 
 

 

The cost function 𝐶𝐶𝑜𝑜𝑟𝑟𝐶𝐶 = 100 × 𝑓𝑓𝑃𝑃 + 1 × (𝑓𝑓𝑝𝑝 + 𝐶𝐶𝑝𝑝) has been used in previous works (Gadi et al. 2008). In this 
paper, the mentioned cost function is improved and localized under the supervision of some bank experts in 
accordance with the financial process of the considered Iranian bank. The coefficients of the proposed cost 
function are calculated based on the actual costs in Iran, and for using it in other fraud detection studies, the 
coefficients can be optimized based on the local costs of the parameters. 

According to equation (1), when the proposed model is employed, the cost consists of three parts including the 
corresponding cost of the 7 identified scenarios, the corresponding cost of an unknown scenario and the fixed 
cost of the implementation of the model. In the case where the proposed model is not used, the cost function is 
equal to the cost of occurrence of fraudulent sequences without any alert 

Given the fact that the scenarios are modeled under the supervision of bank experts, the experts’ opinions and 
also the obtained cost function are the criteria for evaluating the validity of the model and the results. True 
positive (TP), true negative (TN), false positive (FP) and false negative (FN) values must be computed to 
calculate the mentioned measures. 

In order to calculate two values of TP and FN: 

If 𝐾𝐾𝐾𝐾𝐾𝐾(λScei (modej,channelk), λ𝑁𝑁) ≥ 𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜λ, then the sequence Scei (modej, channelk) will be detected as 
a fraudulent sequence and the result is recorded as TP . 

If 𝐾𝐾𝐾𝐾𝐾𝐾(λScei (modej,channelk), λ𝑁𝑁) < 𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜λλ, then the sequence Scei (modej, channelk)will be detected as 
a normal sequence and the result is recorded as FN. 

In order to calculate the two values of TN and FP, the normal sequences of each card should be examined. 
Therefore, the test data of each card is used, and sequences of the determined length are selected on this data, 
and then the HMM of these sequences are calculated. Finally, the KL divergence between the HMM of each 
sequence and all subsequent sequences are calculated progressively. 

If 𝐾𝐾𝐾𝐾𝐾𝐾(λ𝑘𝑘+1, λ𝑘𝑘) ≥ 𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜λ, then the sequence(𝐾𝐾 + 1)-th will be detected as a fraudulent sequence and the 
result is recorded as FP . 

If 𝐾𝐾𝐾𝐾𝐾𝐾(λ𝑘𝑘+1, λ𝑘𝑘) < 𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜λ, then the sequence (𝐾𝐾 + 1)-th will be detected as a normal sequence and the 
result is recorded as TN. 

 then the sequence ( )1K +

-th will be detected as a normal sequence and the result is 
recorded as TN.

6- RESULT
The results have been obtained by applying the proposed 

model on the real data. This model compares the normal 
sequences of each card with the fraudulent scenarios. Table 
2 shows the results of each of the seven fraudulent scenarios 
based on recall, precision and F-score. As can be seen, all 
the scenarios demonstrate F-score above 85%. By reviewing 
the experimental findings, it can be concluded that that 
the proposed model can detect Scenario No.1, which is the 
sequential occurrence of a VH amount symbol, with the 
highest F-score (97%).The lowest F-Score (85%) is also related 
to detecting Scenario No.2, which is the sequential occurrence 
of VH and H or M and VH amount symbols in four modes.

Another approach for calculating the mentioned measures, 
is to calculate the overall outcome of applying the model to the 
existing data, regardless of the distinction between scenarios. 
In this way, instead of considering each scenario separately 
and calculating measures for each of them, all 60 fraudulent 
sequences are applied to the data, and the measures are 
generally calculated. Thus, according to Table 3, we have one 
F-score which is equal to 87%.

In the case of examining 60 fraudulent sequences, 
we developed and used the mentioned cost measure in 
section 5.2. Generally, cost is an appropriate measure for 
determining the efficiency of a fraud detection system. The 
developed cost function in the condition of using the model is

0 0 1 1 0Cost Z Z Cα α= + + . This function is based on three hypotheses: 
(1) there are 7 known scenarios which are described in Section 

Scenario 7 Scenario 6 Scenario 5 Scenario 4 Scenario 3 Scenario 2 Scenario 1  
80% 83% 83% 83% 83% 79% 100% Recall 

92% 93% 93% 93% 93% 92% 94% Precision 

86% 87% 87% 87% 87% 85% 97% F-Score 

Table 2. The results of 7 scenarios
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4.4 and a cost of 0 0Zα is considered for these seven scenarios. (2) 
There is 1 unknown scenario which has not been identified in 
this paper and the cost of 1 1Zα  is considered for this scenario. 
(3) Setting up the proposed model has a fixed cost, 

0C .
To calculate the coefficients 0α  and 1α , we consider 

the probability of occurrence of each scenario as Uniform 
(0,1), so 0α  and 1α  are calculated as 7

8  and 1
8 . Based on 

the calculations and reviews performed on our real data, 
0 466,500 100 10Z FN FP TP= + +  is obtained. According to the 

formula of 
0Z , any fraudulent sequence that occurs and is 

not identified by the model (FN) generates a cost of 466,500 
monetary units. To calculate the FN coefficient, we consider 
the length of 12 for all seven scenarios, which is the average 
of the proper lengths of all the cards, and, in each scenario, 
instead of amount symbols, we place the computed average 
of each symbol’s numeric value. Each false alert (FN) cost 
includes the expenses of alerting the customer and causing 
customer dissatisfaction. The number of 100 is calculated 
based on the experts’ opinions, assuming that the cost of 
sending an alert is positive and the cost of causing customer 
dissatisfaction is zero. For future processes of any true positive 
detection (TP), the cost is estimated at 10 units.

Since 1Z  is the cost of using the model in detecting an 
unknown scenario, it is considered equal to the average of the 
cost of using the model in detecting a known scenario, 0

1 7
ZZ = . 

The cost of launching the proposed fraud detection model is 

estimated at 200,000. Therefore, 0
0

7 1 200,000 
8 8 7

ZCost Z  = + + 
  is the cost 

function in condition of using the model. By replacing FN, 
FP, and TP values, 0Z  is calculated and consequently the cost 
in condition of using the model is equal to 1,325,000 units.

Under conditions of not using the model, all 60 fraudulent 
sequences occur without any alert and ( )Cost FNβ= . According 
to the given explanation, in this condition, the occurrence 
of any fraudulent sequence generates a cost equivalent to 

466,500 β = units. By replacing β  and FN values, we have a cost 
of 7,000,000 units. As shown in Fig. 11., we can conclude that 
using the proposed model, caused 81% reduction in the costs 
of fraudulent sequences.As mentioned earlier, the proposed 
model is a complementary method to single-transaction based 
models, so in order to provide a stronger validation for this 
model, it has been employed along with the MCDM model 
presented in (Eshghi and Kargari 2019b). After running our 
proposed model on the data used in the mentioned paper, the 
F-score obtained from MCDM method with the threshold of 
0.8, has increased by 5%. So in this way, the capability of our 
sequential fraud detection model to cover some of the existing 
system shortcomings has been indicated.

7- CONCLUSION 
In recent years, bank card criminals have become smarter 

and the types of card frauds are increasingly varied. In this 
paper, a model is created based on HMM to determine the 

Value Measure 
83% Recall 
93% Precision 
87% F-Score 

 

 
Figure 11: Comparing the cost of incidence of 60 fraudulent sequences 
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Table 3. The results of all 60 fraudulent sequences
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adequate data needed to identify the repeatable spending 
behavior of each payment card owner. Subsequently a model 
is formed to detect fraudulent sequences by, first using the 
obtained proper length of the sequences of each payment 
card and then comparing the existing divergence between the 
HMMs of sequences. 

According to the results obtained, the best performance 
of the model is related to detecting fraudulent sequences with 
a steady trend, in which several transactions of a constant 
amount of symbols occur in a sequential manner through 
one channel. This model needs a relatively small amount of 
historical data and has a high accuracy in detecting fraudulent 
sequences. 

This fraud detection system can be used in banks where 
fraudulent sequences may occur in cards, but the existing 
fraud detection system only has the capability to detect single-
transaction fraud. The best way to apply the proposed model 
is to use it in parallel with a single-transaction-based fraud 
detection system to cover the existing system shortcomings.

Totally the injection of more data, associating with the 
longer period of time can provide more precise patterns and 
models in which case it would be more appropriate to use the 
big data approach. Detecting specific fraudulent scenarios for 
each individual and based on one’s spending behavior can 
also be considered as a prospective study, which may produce 
better results. The other usage of this sequence matching 
system in the future is to consider the status of an organization 
instead of an individual and detect its abnormal situations.
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