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ABSTRACT:  This paper is concerned with the eradication of tumor cells in the human body 
by defining an optimal protocol using a polynomial approximation technique for the injection of 
chemotherapy drugs. The dynamics of the system are described based on immune-oncology. Variation 
of host, tumor, and immune cells’ populations are studied in the model during the injection of the 
chemotherapeutic drugs. The objective is the minimization of cancerous cells’ average population by 
minimum drug injection to avoid the destructive side-effects of these chemotherapeutic substances. It 
should be done by stabilizing the population of host and immune cells around a free-tumor desirable 
health condition. This optimization problem by considering the nonlinear model of the system makes 
applying nonlinear optimal control inevitable. Solving Hamilton-Jacobi-Bellman (HJB) nonlinear 
partial differential equation (PDE) for the system is put into our perspective to cope with this problem. 
Since the dynamics of the system are not polynomial, it comprises fractional terms, this PDE cannot be 
solved straightforwardly. We take advantage of the power series expansion technique to approximate the 
solution of the PDE with satisfactory accuracy. Finally, a series of simulations are carried out to prove 
the capability of the controller in terms of robustness and sensitivity, increasing convergence rate for the 
elimination of cancerous cells, and enlargement of the domain of attraction.
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1- INTRODUCTION
Cancerous tumors emerge when the cells lose their ability 

to stop dividing. This leads to the formation of tumors. 
Malignant tumors can bring impairment for the operation 
of side organs or attack to other organs by angiogenesis [1]. 
Cancer disease is known as one of the most fatal ones. Hence, 
there is a wide range of researchers in different fields to cure 
it. The treatment approaches include surgery, chemotherapy, 
immunotherapy, virotherapy, radiotherapy, etc.

One of these research areas is mathematical modeling 
and systems control. Addressing the cancerous tumors 
proliferation problem from the system’s theory viewpoint 
makes it possible for researchers to reveal various interplays 
between different types of cells and cells with drugs or have a 
more comprehensive understanding of them [2]. It also helps 
to take advantage of control techniques to propose effective 
treatment protocols and test them initially by computer 
simulations instead of clinical trials and errors.

The immune system of the body is a defensive organ and 
it reacts against the presence of malignant immunogenic 
cells. Based on a series of assumptions and theories which 
are obtained from observation of cells behavior and their 
interaction in vitro or in vivo, there have been proposed 

various types of models [2-4]. Methods of treatment and 
their effects on different cells are other factors that should 
be considered in mathematical modeling of the system. The 
initial model in [5] is a fifth-order one in which two out 
of five dynamics are not coupled with others, hence, the 
model is reduced to a third-order one. Also, one of the three 
coupled dynamics has fast variation rather than that of two 
others, therefore, the model is presented by a second-order 
differential equation which is considered as the base model 
for a wide range of other presented models in papers. 

In [6, 7], the dynamics are extended to a fourth-order 
model by considering the competition of tumor-host cells 
and the chemotherapy treatment method. This model 
becomes complicated by inclusion a dynamic that governs the 
toxicity of chemotherapy drugs in [8] , but it is not coupled 
with other states. Therefore the basic model is a fourth-order 
one. In [9], the immunotherapy treatment by injection of 
Interleukin-2 (IL-2) and Adoptive cellular injection (ACI) is 
presented instead of chemotherapy, then, a third-order model 
is proposed. A model based on mixed immunotherapy and 
chemotherapy in presented in [10]. Also, a second-order 
dynamic by considering just virotherapy is presented in [11]. 

Chemotherapy drugs, because of their possible destructive 
effects need a more accurate injection protocol. Among the 
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side effect, anemia, bleeding, blood clotting, kidney, and 
fertility problems are the most serious ones. On the side, 
chemotherapy is a treatment approach that is conventionally 
prescribed for most of the people who suffer cancer disease 
roughly. Compromise between the complexity of the model to 
comprise all cells’ interactions and the simplicity of the model 
to analyze and determine treatment protocol is another main 
factor in describing models. Based on the aforementioned 
notes, in this paper, a well-known fourth-order nonlinear 
coupled ordinary differential model based on the interaction 
of tumor-immune cells, the competition of normal-tumor 
cells, and chemotherapy treatment method is exploited [7].

The main objective of any treatment regimen is inhibition 
of cancerous cells population growth and their eradication 
with minimum destructive effects on other cells and organs. It 
means that we are dealing with an optimization problem with 
a special cost function which is defined as the minimization of 
tumor cells’ average population while the minimum dosage of 
the drugs is injected [12, 13]. A host number of papers, during 
the last decades, have focused on proposing a nonlinear 
controller to cope with this problem. These approaches 
are mainly optimal but cannot be extended to all of them 
[14]. Linear controllers are not the case because of the high 
nonlinearities of the system’s dynamics and by linearization, 
a series of the system’s properties cannot be revealed and it 
leads to unsatisfactory results [15]. In [8], a Lyapunov-based 
approach is proposed to determine the time of drug injection. 
Feedback linearization [16], adaptive controller [17, 18], 
adaptive fuzzy [19], and impulsive approach [20] are among 
the proposed nonlinear controllers. 

The optimal nonlinear controllers are mainly formed 
based on potryagin’s minimum principle for different 
cost functions [7, 21-23]. In [12], state-dependent Riccati 
equation (SDRE) technique is used to eradicate tumor cells 
for the simplified version of the model [6]. It considers mass 
product formulation for the effect of chemotherapeutic drugs 
on different cells instead of the exponential formulation. An 
optimal controller based on the SDRE in combination with an 
extended Kalman filter has been proposed for the simplified 
model in [24]. In this paper, we design an efficient optimal 
controller based on approximate solution of the Hamilton-
Jacobi-Bellman (HJB) partial differential equation (PDE) 
[25]. It is designed in order to determine the dosage of injected 
chemotherapeutic drugs while satisfy the optimization 
conditions and stabilize the system asymptotically around the 
desired point. In the desired point, the population of tumor 
cells is zero and two other cells’ populations meet the health 
conditions. 

The PDE cannot be solved simply even for simple 
nonlinear systems. Proposing approximate techniques for the 
PDE has attracted the attention of many researchers in the 
fields of mathematics and control engineering even decades 
after presenting the HJB PDE [26-29]. Derivative and integral 
transforms are among the conventional tools to solve the 
PDEs. However, there are different proposed techniques in 
published papers that can solve the PDE indirectly [30, 31] 
. Designed Optimal controllers by solving HJB PDE have 

broad applications and their effectiveness have been proved 
in various papers [32-34]. The effective applied method 
in this paper, as our main contribution, is truncated power 
series expansion which has a fast computational procedure 
and makes it possible to solve a set of algebraic equations 
instead of PDE one. It also can determine the complexity 
of the controller in terms of its order based on the designer 
requirement and satisfying the closed-loop system desired 
measures. The obtained controller is in polynomial format, 
hence, its real implementation would be most straightforward 
rather than the controller with other formats. Finally, it is 
compared with the SDRE controller.

The rest of this paper is organized as follows: in section 2, 
the mathematical model is presented and analyzed in terms of 
placement of equilibrium point and the behavior of the open-
loop system. The procedure of the controller design for the 
system is elaborated in section 3. An overview of the HJB PDE 
and its solution is presented and then it is designed for the 
system to eradicate tumor cells. Simulations are carried out 
in section 4, and finally, the conclusion is drawn in section 5.

2- IMMUNE-ONCOLOGY DYNAMICS
When a cancerous tumor is formed as a result of a 

malfunction in the apoptosis procedure, the immune system 
of the body tries to eliminate them. The immune response 
consists of a two-level confrontation. Innate immune system 
(IIS) and the adaptive immune system (AIS). IIS is the first 
level that responds to unnatural cells and eliminates them. It 
is done by natural killer (NK) cells. In the second level, AIS 
responds to tumor cells and eradicates them with the help of 
cytotoxic T-cells (CD8+). Therefore, there is an interaction 
between immune and tumor cells. Other cells in the host 
body need nutrients to survive and divide. On the other side, 
tumor cells do not stop dividing and need great amounts of 
nutrients. This leads to a competition for nutrients and space 
between normal (host) and tumor cells. These assumptions 
can be presented by the following dynamic model [6, 7]:
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Where the population size of the normal, tumor, 
and immune cells at time t  are presented by ( )N N t=
, ( )T T t= , and ( )I I t= , respectively. The control signal, the 
injected chemotherapy drugs, is denoted by ( )u u t=  and its 
concentration in blood is specified by the fourth state ( )v v t= . 

The first terms in the first and second dynamics show the 
population variation of normal and tumor cells in the absence 
of any other cells. They are presented in a logistic form which 
is according to observation in vitro [35]. An overview of 
logistic models can be found in [36]. Instead of the logistic 
models, there are models can be used. A comparison between 
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models has been presented in [37]. 
Competition on nutrients for tumor-normal cells are 

presented by the second term in the first dynamic and the 
third term in the second dynamic. Immune and tumor cells 
have the pray-predator interaction in the Lotka-Volterra 
manner. The second term in the second dynamic and the 
third term in the third dynamic can reveal it. The presence 
of tumor cells makes the IIS and AIS to the response. This 
stimulation leads to more proliferation of immune cells which 
is modeled by fractional Michaelis-Menten type function in 
the third dynamic. Immune cells in the absence of tumor cells 
are produced by bone marrow constantly which is denoted by 
s  and has a death rate equal to 1d . Injection of chemotherapy 

drugs increases their concentration in the blood. The effects 
of excessive drugs injection on cells, i.e., the effects of its 
toxicity, is confined by exponential terms in the first, second, 
and third dynamics. The concentration of drugs decreases 
with the rate 2d  in conditions the drug is not injected. The 
system’s parameters and their values are described in Table 1 
according to those in [7].

2-1- Analysis of the open loop dynamic systems in terms of 
equilibrium points

Since the system is nonlinear and highly coupled, the 
number of equilibrium points (EPs) of the system (1) are 
dependent on the values of the parameters. The number of 
equilibrium points has been investigated in [7]. The values of 
the system’s parameters in this paper are selected according 
to Table 1. In healthy conditions, corresponding to a tumor-

free version of the system (1) ( ( ) 0T t =  and ( ) 0v t = ), there are 
two equilibrium points [ ]0 1.65 T  and [ ]1 1.65 T by considering 
[ ]TN I  as the state vector. The equilibrium points of the 
dynamics governing on the cells in the presence of tumor cells 
based on the system (1) are obtained as follows:

· The EPs for normal cells population are obtained as 
follows:

( )* 0N t = � (2-a)

( ) ( )* *1
1

1

1 0cb N t T t
r

− − =
�

(2-b)

· The EPs for tumor cells population are obtained as 
follows:

( )* 0T t = � (3-a)

( ) ( ) ( )* * *32
2

2 2

1 0ccb T t I t N t
r r

− − − =
�

(3-b)

And

· The EPs for immune cells population are obtained as 
follows:

Parameter 
symbol Description Value 

1r  Per unit growth rate (Normal cells) 1 

2r  Per unit growth rate (Tumor cells) 1.5 

1b  Carrying capacity (Normal cells) 1 

2b  Carrying capacity (Tumor cells) 1 

1c  
Competition coefficient (Normal-Tumor 
cells) 1 

2c  
Competition coefficient (Tumor-Immune 
cells) 0.5 

3c  
Competition coefficient (Tumor-Normal 
cells) 1 

4c  
Competition coefficient (Immune-Tumor 
cells) 1 

1  Fraction cell kill (Normal cells) 0.1 

2  Fraction cell kill (Tumor cells) 0.3 

3  Fraction cell kill (Immune cells) 0.2 
s  Immune source rate 0.33 
  Immune response rate 0.01 
  Immune threshold rate 0.3 

1d  Per capita death rate (Immune cells) 0.2 

2d  Per capita death rate (Drug) 1 

Table 1. Description and values of parameters for the dynamic system (1)  [7]
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The system would have three to five EPs based on the 
solution of algebraic equations which is consisted of the 
combination of (2), (3), and (4). Based on the value of the 
parameters in Table 1., we have following EPs (The stability 
property of these EPs is demonstrated based on the position of 
eigenvalues in state matrices which are obtained by Jacobian 
linearization):

· Two unstable dead EPs: since the population of normal 
cells is zero, it is assumed that they are related to a person who 
is dead.
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· Stable coexistence point: since both tumor and immune 
cells exist without a winner.
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· Unstable coexistence point
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· Stable tumor-free point: since the health of patient is 
guaranteed with eradication of tumor cells it is a desirable point.

5
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(8)

A stable coexistence point means the immune system 
can inhibit the cancerous cells population without full 
eradication. Reaching this point is not desirable since the 
permanent existence of tumor cells in the body has a high 
risk of metastasizing that can have harmful effects on other 
organs’ performance. Mathematically, this stable point 
has a specific domain of attraction that any patient with an 
initial condition in this domain cannot be cured without 
external drug intervention [38]. Also, the tumor-free point 
which corresponds to healthy point has an specific domain 

of attraction which has been estimated in [39]. It can arise 
a question that a healthy point is stable and there is no need 
to control the system. Chemotherapy treatment from the 
system’s theory can be interpreted to find a control signal 
which can enlarge the domain of attraction of the healthy 
point and increases the convergence rate to cure the people, 
reaching to healthy condition.

3- NONLINEAR OPTIMAL CONTROL DESIGN
The HJB PDE originates from nonlinear dynamic 

programming [40]. The general structure for our problem is 
defined as stabilizing the nonlinear system (1) with following 
format 

( ) ( )( ) ( )x t f x t Gu t= +

�
(9)

asymptotically around the healthy point while minimizing 
the following cost function

( ) ( )( ) ( ) ( ) ( )( )2 2 2
1 2 2 4 3

0
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2

x t u t x t x t u t dtψ β β β
∞

= + +∫
�
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where ( )x x t=  is the vector of state variables and is defined 
as [ ]Tx N T I v=  for the system (1), ( ) 4f x ∈  is according 
to the right hand side of the first to forth dynamics in (1), 
and 4G∈  is a constant input matrix that for the system (1) is 
formed as [ ]0 0 0 1 TG = . The parameters zβ , for 1,2,3z = ,  
are positive weighting factors and ( ),x uψ  is a predefined cost 
function. 

It is proved that by the following optimal control signal 
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our control objective is achievable provided to finding 
( )( )*,x u xψ [25]. This function can be obtained by solution of the 

following HJB PDE
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The equation (12) is not solvable analytically for the system 
(1) because of its high complexity. In the next subsection, an 
efficient technique based on the power series expansion is 
used to solve (12) for the system (1) numerically [27]. 

3-1- Power series expansion method
Let suppose that ( )f x  in (9) and ( )( )*,x u xψ  in (12) can be 

approximated by the following polynomial functions:

( ) [ ] ( ) [ ] ( )2 3f x Fx F x F x= + + + � (13)
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( )( ) ( ) [ ] ( ) [ ] ( )3 4* 1,
2

Tx u x x x Px x xψ ψ ψ ψ= = + + +
�

(14)

where the matrix 0TP P= > . Also, [ ] ( )iF x  and [ ] ( )h xψ  denote 
functions from order 2i ≥  and 3h ≥ , respectively. All the 
functions in (13) are known and can be computed by power 
series expansion while the functions in (14) are unknown and 
should be computed by solving HJB PDE (12). 

Shifting the systems from the healthy EP to origin and 
Substituting (13) and (14) in (12) leads to a series of algebraic 
equations in a polynomial formation. Now, it would be 
straightforward to put the summation of terms with identical 
degree equal to zero. Doing this procedure for the shifted 
system leads to the following equations for Tx Px  and [ ] ( )h xψ , 

3,4h = , respectively:

2 2
2 4307.7 0.098Tx Px x x≅ +  � (15)
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+ + + + +�
(17)

To calculate (15) to (17) it has been supposed that the constant 
weighting parameters are 1 200β = , 2 0.2β = , and 3 2.4β =  
according to [12]. Also, the second-layer approximation 

[ ] ( ) ( ) [ ] ( ).i i
xV x A BK x V x+ ≈ � (18)

has been used in computing procedure of (16) and (17).
By substituting (14) to (17) in (11), we would have the 

following control signal for the shifted system (1)

( )* 2 2 3 2 2
2 4 2 1 2 2 3 2 426.28 166.66 288.46 89.7 -0.4 38.46 04u x x x x x x x x x x≅ − − − − (19)

which is consisted of the third order terms based on the 
state variables. 

It worth noting that ( )*,x uψ  can be considered as a 
candidate Lyapunov function for the system (1) and the 
optimal control signal for approximate solution procedure is 
sought in the area where ( )xψ  is positive. The derivative of 
( )xψ  with respect to time is obtained negative semi-definite 

which by applying Lasalle’s theorem in [15] its negative 
definiteness is proved. 

One of the other techniques to solve (12) is SDRE. In this 
approach, instead of finding ( )( )*,x u xψ ,  its derivative with 
respect to x , ( )( )*,

x

x u x
x

ψ
ψ

∂
=

∂
, is found numerically by imitating 

the formulation of the algebraic Riccati equation (ARE) for 
the linear systems by considering ( )T

x x P xψ =  as T
x x Pψ =  for 

linear systems. In fact, ( )( )*,x u xψ  is not calculated and instead 
xψ  is obtained by finding ( )P x  numerically. The function 
( )P x  is acquired by substituting ( )Tx P x  for xψ  in (12) and 

transforming it to an algebraic Riccati equation (ARE) by 
point to point evaluation of (12). In the SDRE method there 
is no closed-form solution for ( )xψ  and ( )*u x . It means that 

for ( )xψ  and ( )*u x  we would have a series of linear Lyapunov 
functions, Tx Px , and linear controllers, Kx , based on the 
operation point of the systems, respectively. Therefore, for 
Lyapunov based analyses of the closed-loop system such 
as estimation of the domain of attraction, there would be 
problems in dealing with the SDRE approach.

4- SIMULATIONS AND ANALYSIS OF THE CLOSED 
LOOP SYSTEM
4-1- Sensitivity Analysis

One of the effective performances of a controller is its 
ability to reduce the sensitivity of the system’s behavior to 
its parameters. To investigate the ability of the proposed 
controller, the sensitivity equation is formed as [15]

( ) ( ) ( ) ( ) ( )0 0, , ; 0 0S t A t S t B t Sλ λ= + =

� (20)

Where

( ) ( )
( )0
0

0
,

, ,
,

x x t

f t x
A t

x λ
λ λ

λ
λ

=
=

∂
=

∂
�

(21)

( ) ( )
( )0
0

0
,

, ,
,

x x t

f t x
B t

λ
λ λ

λ
λ

λ =
=

∂
=

∂
�

(22)

where 15λ∈  is the vector of parameters in dynamics (1) 
and 0λ  is the vector λ  evaluated in their nominal values, 
( ) 4 19S t ×∈ , ( ) 4 4

0,A t λ ×∈ , and ( ) 4 19
0,B t λ ×∈ . 

In [8] it has been shown that the system (1) is very 
sensitive to variations of the value of the parameter 2c  
in the second dynamic. To show the effectiveness of the 
controller in the reduction of sensitivity to the parameter 

2c , a comparison between the sensitivity of the closed-
loop and open-loop systems is done and depicted in Fig. 
1. It is obvious that the closed-loop system shows a better 
performance rather than that of the open-loop stable 
system around healthy point. Especially, the population 
variation of the immune cells in the open-loop system is 
highly sensitive to the parameter while for the closed-loop 
system this sensitivity is decreased to about 20 percent of 
the open-loop system.

The values of the parameters for the system (1) differ 
from one patient to another. This problem necessitates 
investigating the robustness of the designed controller with 
the nominal values for other patients with uncertainty in 
the values of parameters. To check the robustness of the 
controller the same mechanism as [41] is employed. The 
controller is applied to 8 patients with different parameters’ 
values. The parameters experience 20 percent uncertainty 
in some cases. The results have been depicted in Fig. 2. It is 
important to note that the populations of cells and values 
of the parameters for the dynamics (1) are normalized.
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4-2- Minimization of the cost function
The control mission is defined as minimizing the cost 

function (10) while the behavior of the system converges 
to its desirable point asymptotically. Linear and truncated 
nonlinear optimal controllers at the second and third-orders 
are compared based on the predefined cost function (10) and 
treatment time for the initial condition ( ) [ ]0 0.75 0.25 1 0 Tx =  in 
Table 2. 

Treatment time, i.e., the time is needed to eradicate 
tumor cells is a measure that can be vital in determining the 

performance of a proposed controller. Our measure is when 
the population of tumor cells meets the condition ( ) 610T t −≤ . It 
should be noted that the minimum value for the population of 
tumor cells to be detected in the conventional medical tests is 
about ( ) 410T t −≈ in normalized population, hence the condition 
( ) 610T t −≤  is a strict measure for demonstration of the presented 

controller.  A unit population of tumor cells is equal to 1110  cells 
that can form a sphere tumor with a radius 3 to 6 centimeters. 

Fig. 3 shows the performances of closed-loop systems by 
different controllers and their comparison with the open-loop 

 

Fig. 2. Variation of cells’ population with uncertainties in system’s parameters in response to critical initial condition 

   0 1 0.2 0.15 0 Tx  . 

   
 Open-Loop 

System 
Linear 

Controller 
Truncated controller at Second 

order 
Truncated controller at Third 

order 
Cost function value 106 106 106 70 

Treatment time 
(day) 79 79 79 69 

Table 2. Comparison of performance measures for closed-loop systems with truncated controllers at different orders and the open-loop 
system

Fig. 2. Variation of cells’ population with uncertainties in system’s parameters in response to critical initial condition ( ) [ ]0 1 0.2 0.15 0 Tx = .

 

Fig. 1. Sensitivity Comparison of closed loop system (CLS) and open loop system (OLS) to parameter 2c  for initial condition 

   0 0.75 0.25 0.9 0 Tx  . 

   

Fig. 1. Sensitivity Comparison of closed loop system (CLS) and open loop system (OLS) to parameter 2c  for initial condition 

( ) [ ]0 0.75 0.25 0.9 0 Tx = .
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system in response to initial condition ( ) [ ]0 0.75 0.25 1 0 Tx =

.  It is clear that the highest order controller has a better 
performance in convergence rate. But it is not a case generally. 
A higher order controller may show a worse behavior than 
that of a lower order controller [27]. 

In simulations, we limit the dosage of the drug to a unit. 
By imposing this limitation, the toxic effects of injected 
chemotherapy drugs on normal cells are controlled and 
the population of normal cells is kept around its desirable 
value [12]. It is demonstrated by all of the simulations. To 
show the positive effect of limiting dosage of the injected 
chemotherapeutic drugs on the population of normal cells, 
the performances of the closed-loop systems for the critical 
initial condition [ ]1 0.5 0.15 0 T  with a limitation and without 
it are compared in Fig. 4. 

4-3- Domain of attraction
The open-loop system has two stable equilibrium points 

with a specific domain of attraction. The controller should 
be able to broaden this area for healthy EP. It can be done 
by eliminating the coexistence equilibrium point and other 
unstable EPs, which means that the closed-loop system would 
have a global domain of attraction. The closed-loop systems 
with truncated orders are compared for an initial condition 
( ) [ ]0 0.625 0.25 0.625 0 Tx =  in Fig .5. 

The second order controller is not capable to broad the 
domain of attraction of the system. One of the interesting 
points about designing a controller using these types of 
approximation techniques is that a higher-order controller 
does not necessarily mean better response and wider domain 
of attraction [27]. Since the open-loop system is stable 
(because of that all the processes in the body are asymptotically 
stable with a specific domain of attraction, convergence rate, 
and transient response), the truncated controllers at the first 
and second orders are not capable to function desirably and 
effectively. But, it is not the case for the third-order controller.

 

Fig. 3. Comparison of closed loop system (CLS) and open loop system (OLS) responses 

  

 

 

Fig. 4. Comparison between variation of normal cells’ population for the closed-loop systems with limited and unlimited 
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Also, the phase plane of the states ( )N t , ( )T t , and ( )I t  
for the closed-loop system with the truncated controller 
at the third order in response to the acute initial condition 
[ ]1 0.25 0.1 0 T  is depicted in Fig. 6. In this initial condition, 
the population of tumor cells is about 102.5 10×  cells (a sphere 
tumor of radius 2.85 centimeter), which is a large tumor 
sphere, and the number of immune cells is lower than 10% 
of healthy conditions. This point is in the stable coexistence 
point’s domain of attraction. The response of the fourth state 
and control effort are illustrated in Fig. 7.

It is obvious that the third-order controller has more 
capability to extend the region of attraction. The third order 
controller ( )*u x  in (19) eliminates the stable coexistence EP 
of the system and two of the unstable EPs. The closed-loop 
system has two EPs corresponding to 

,1 ,2

1 0
0 0

;
1.65 1.65

0 0

CL CLEP EP

   
   
   = =
   
   
    �

(23)

where the first one is healthy EP and the second one is 
unstable dead EP. Medically, since the second EP is related to 
a dead person, the closed-loop system has a global domain of 
attraction. From the system’s theory point of view, the third-
order controller enlarges the domain of attraction significantly 
but it is not global. 

4-4- Comparison with SDRE technique
One of the well-known optimal control techniques for 

 

Fig. 5. Comparison of closed loop system (CLS) with truncated controllers at third and second order in terms of enlargement of 

domain of attraction 
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Fig. 6. Comparison of OLS and CLS in terms of enlargement of the domain of attraction
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Fig. 7. Concentration of drug, the fourth state in (1), and control effort for the closed-loop system in response to acute initial 

condition  1 0.25 0.1 0 T   

   

 

Fig. 8. Comparison between two nonlinear optimal control techniques SDRE (dash-dotted lines) and HJB approximate solution 

(solid lines). Population of normal, tumor, and immune cells are shown by blue, red, and green colors, respectively. 
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Fig. 9. Comparison between closed-loop systems with two different chemotherapeutic drugs injection protocol for initial 

condition  1 0.25 0.4 0 T  : pulsed chemotherapy and proposed optimal protocols. 
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proposing an effective chemotherapy regimen to inhibit the 
proliferation of cancerous cells and eradicate them is the 
state-dependent Riccati equation (SDRE) approach [12]. 
Since it is an optimal controller, the results of employing 
this technique can be compared by the proposed optimal 
control approach (based on the HJB approximate solution) 
in this paper. This comparison for a critical medical initial 
condition [ ]1 0.25 0.15 0 T  is shown in Fig. 8.  It is clear 
that the proposed controller leads to a better performance 
in facing with cancerous cells in the human body. Besides 
the less effectiveness of the SDRE technique rather than the 
proposed controller, there are some drawbacks with it. The 
SDRE controller is designed based on switching between 
linear controllers at specific times. This switching mechanism 
practicality may lead to instability of the closed-loop system at 
the instant of switching which is not the case for the proposed 
controller. 

Also, the proposed technique is compared with prevailing 
clinical drugs injection protocols, pulsed chemotherapy 
[7]. The pulsed chemotherapy not only is not effective in 
broadening the domain of attraction, but also it takes far 
more time for treatment. Fig. 9. Shows the results of this 
comparison.

5- CONCLUSION
Finding a cancer treatment’s optimal regimen by 

determining the dosage of the chemotherapeutic drugs was 
addressed in this paper. Generally, people who suffer cancer 
are cured by chemotherapy drugs alone or in combination 
with other approaches. These drugs may have fatal results in 
the health of a patient. In these cases, an optimization problem 
arises: minimization of tumor cells’ average population 
with minimum drug injection. Since the model is highly 
nonlinear a nonlinear optimal controller was proposed. This 
controller was designed by solving HJB PDE. This equation 
can be solved by the SDRE technique which transforms the 
nonlinear problem into a pseudo-linear structure. It has 
some drawbacks. Instead, we put the direct solution of HJB 
PDE into our perspective. Since the PDE was not solvable in 
a closed form, an approximation technique based on power 
series expansion was applied to solve a series of dependent 
algebraic equations instead of the PDE. The power series 
expansion gives the designer the ability to truncate the 
controller at any order in which the closed-loop system meets 
predefined measures. We truncated controller at third-order 
where the special objective including extending the domain 
of attraction, faster convergence rate, reducing the sensitivity 
to parameters, and minimizing the cost function was fulfilled. 
To prove the ability of the closed-loop system a series of 
simulations were carried out.
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