[1] www.cancer.gov
[2] J.A. Adam, N. Bellomo, A survey of models for tumor-immune system dynamics, Springer Science & Business Media, 2012.
[3] A. Swierniak, M. Kimmel, J. Smieja, Mathematical modeling as a tool for planning anticancer therapy, European journal of pharmacology, 625(1-3) (2009) 108-121.
[4] M. Marušić, Ž. Bajzer, J. Freyer, S. Vuk‐Pavlović, Analysis of growth of multicellular tumour spheroids by mathematical models, Cell proliferation, 27(2) (1994) 73-94.
[5] V.A. Kuznetsov, I.A. Makalkin, M.A. Taylor, A.S. Perelson, Nonlinear dynamics of immunogenic tumors: parameter estimation and global bifurcation analysis, Bulletin of mathematical biology, 56(2) (1994) 295-321.
[6] L.G. De Pillis, A. Radunskaya, A mathematical tumor model with immune resistance and drug therapy: an optimal control approach, Computational and Mathematical Methods in Medicine, 3(2) (2001) 79-100.
[7] L.G. De Pillis, A. Radunskaya, The dynamics of an optimally controlled tumor model: A case study, Mathematical and computer modelling, 37(11) (2003) 1221-1244.
[8] A. GHAFARI, N. Naserifar, Mathematical modeling and lyapunov-based drug administration in cancer chemotherapy, (2009).
[9] D. Kirschner, J.C. Panetta, Modeling immunotherapy of the tumor–immune interaction, Journal of mathematical biology, 37(3) (1998) 235-252.
[10] L.G. de Pillis, W. Gu, A.E. Radunskaya, Mixed immunotherapy and chemotherapy of tumors: modeling, applications and biological interpretations, Journal of theoretical biology, 238(4) (2006) 841-862.
[11] A. Ashyani, H. Mohammadinejad, O. RabieiMotlagh, Hopf bifurcation analysis in a delayed system for cancer virotherapy, Indagationes Mathematicae, 27(1) (2016) 318-339.
[12] M. Itik, M.U. Salamci, S.P. Banks, SDRE optimal control of drug administration in cancer treatment, Turkish Journal of Electrical Engineering & Computer Sciences, 18(5) (2010) 715-730.
[13] D.A. Drexler, L. Kovács, J. Sápi, I. Harmati, Z. Benyó, Model-based analysis and synthesis of tumor growth under angiogenic inhibition: a case study, IFAC Proceedings Volumes, 44(1) (2011) 3753-3758.
[14] G.W. Swan, Role of optimal control theory in cancer chemotherapy, Mathematical biosciences, 101(2) (1990) 237-284.
[15] H.K. Khalil, J.W. Grizzle, Nonlinear systems, Prentice hall Upper Saddle River, NJ, 2002.
[16] T.-L. Chien, C.-C. Chen, C.-J. Huang, Feedback linearization control and its application to MIMO cancer immunotherapy, IEEE Transactions on Control Systems Technology, 18(4) (2009) 953-961.
[17] H. Moradi, M. Sharifi, G. Vossoughi, Adaptive robust control of cancer chemotherapy in the presence of parametric uncertainties: A comparison between three hypotheses, Computers in biology and medicine, 56 (2015) 145-157.
[18] N. Babaei, M.U. Salamci, Personalized drug administration for cancer treatment using model reference adaptive control, Journal of theoretical biology, 371 (2015) 24-44.
[19] H. Nasiri, A.A. Kalat, Adaptive fuzzy back-stepping control of drug dosage regimen in cancer treatment, Biomedical Signal Processing and Control, 42 (2018) 267-276.
[20] A. Aghaeeyan, M.J. Yazdanpanah, J. Hadjati, A New Tumor-Immunotherapy Regimen based on Impulsive Control Strategy, Biomedical Signal Processing and Control, 57 (2020) 101763.
[21] U. Ledzewicz, H. Schättler, Optimal bang-bang controls for a two-compartment model in cancer chemotherapy, Journal of optimization theory and applications, 114(3) (2002) 609-637.
[22] T.N. Burden, J. Ernstberger, K.R. Fister, Optimal control applied to immunotherapy, Discrete and Continuous Dynamical Systems Series B, 4(1) (2004) 135-146.
[23] L.G. De Pillis, K.R. Fister, W. Gu, C. Collins, M. Daub, Seeking bang-bang solutions of mixed immuno-chemotherapy of tumors, (2007).
[24] Y. Batmani, H. Khaloozadeh, Optimal chemotherapy in cancer treatment: state dependent Riccati equation control and extended Kalman filter, Optimal Control Applications and Methods, 34(5) (2013) 562-577.
[25] D.E. Kirk, Optimal control theory: an introduction, Courier Corporation, 2004.
[26] A. Fakharian, M. Hamidi Beheshti, A. Davari, Solving the Hamilton–Jacobi–Bellman equation using Adomian decomposition method, International Journal of Computer Mathematics, 87(12) (2010) 2769-2785.
[27] C.L. Navasca, A.J. Krener, Solution of hamilton jacobi bellman equations, in: Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No. 00CH37187), IEEE, 2000, pp. 570-574.
[28] T. Hunt, A.J. Krener, Improved patchy solution to the Hamilton-Jacobi-Bellman equations, in: 49th IEEE Conference on Decision and Control (CDC), IEEE, 2010, pp. 5835-5839.
[29] R.W. Beard, G.N. Saridis, J.T. Wen, Galerkin approximations of the generalized Hamilton-Jacobi-Bellman equation, Automatica, 33(12) (1997) 2159-2177.
[30] M. Sassano, A. Astolfi, Dynamic solution of the HJB equation and the optimal control of nonlinear systems, in: 49th IEEE Conference on Decision and Control (CDC), IEEE, 2010, pp. 3271-3276.
[31] M. Sassano, A. Astolfi, Dynamic approximate solutions of the HJ inequality and of the HJB equation for input-affine nonlinear systems, IEEE Transactions on Automatic Control, 57(10) (2012) 2490-2503.
[32] M. Nazari Monfared, M. Yazdanpanah, Friction Compensation for Dynamic and Static Models Using Nonlinear Adaptive Optimal Technique, AUT Journal of Modeling and Simulation, 46(1) (2014) 1-10.
[33] M.N. Monfared, M.H. Dolatabadi, A. Fakharian, Nonlinear optimal control of magnetic levitation system based on HJB equation approximate solution, in: 2014 22nd Iranian Conference on Electrical Engineering (ICEE), IEEE, 2014, pp. 1360-1365.
[34] R.M. Milasi, M.J. Yazdanpanah, C. Lucas, Nonlinear optimal control of washing machine based on approximate solution of HJB equation, Optimal Control Applications and Methods, 29(1) (2008) 1-18.
[35] Z. Bajzer, M. Marušić, S. Vuk-Pavlović, Conceptual frameworks for mathematical modeling of tumor growth dynamics, Mathematical and computer modelling, 23(6) (1996) 31-46.
[36] A. Tsoularis, J. Wallace, Analysis of logistic growth models, Mathematical biosciences, 179(1) (2002) 21-55.
[37] E.A. Sarapata, L. de Pillis, A comparison and catalog of intrinsic tumor growth models, Bulletin of mathematical biology, 76(8) (2014) 2010-2024.
[38] A. Merola, C. Cosentino, F. Amato, An insight into tumor dormancy equilibrium via the analysis of its domain of attraction, Biomedical Signal Processing and Control, 3(3) (2008) 212-219.
[39] A. Dini, M. Yazdanpanah, Estimation of the domain of attraction of free tumor equilibrium point of perturbed tumor immunotherapy model, in: 2016 4th International Conference on Control, Instrumentation, and Automation (ICCIA), IEEE, 2016, pp. 69-74.
[40] F.L. Lewis, D. Vrabie, V.L. Syrmos, Optimal control, John Wiley & Sons, 2012.
[41] Y. Batmani, M. Davoodi, N. Meskin, Nonlinear suboptimal tracking controller design using state-dependent Riccati equation technique, IEEE Transactions on Control Systems Technology, 25(5) (2016) 1833-1839.