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A Multi-Scale Transform Method Based on Morphological Operators for Pansharpening
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ABSTRACT:  The aim of pansharpening is to fuse the low resolution multispectral (MS) image with 
the high resolution panchromatic (PAN) image to provide a synthesized MS image with high resolution. 
One of the main approaches for pansharpening is the multi-resolution analysis (MRA). It is generally 
successful in transform of spectral information. But, it often results in spatial distortion in the fused 
product. To deal with this problem, a morphological profile based multi-scale transform (MP-MST) is 
proposed in this paper which utilizes the good characteristics of morphological filters for reduction of 
spatial redundancies in the pansharpened image. More efficient approximate image and detail image are 
achieved from the MS and PAN images by applying the closing and opening by reconstruction operators, 
respectively. Different spatial structures with different sizes are extracted through considering a range 
of structuring elements sizes. The performance of the proposed MP-MST methods is compared to MST 
ones by doing experiments on three different remote sensors GeoEye, QuickBird and IKONOS. The 
experiments show the superior performance of MP-MST method compared to MST in terms of various 
qualitative assessments. The visual comparison is also investigated. The proposed MP-MST methods 
solve the problem of noise and redundant spatial information in the pansharpened images significantly.
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1- INTRODUCTION
Satellite remote sensors can acquire images about the 

same area of the Earth surface in different wavelengths at 
different spatial resolutions. The multispectral (MS) sensors 
acquire images in several spectral bands with a coarse spatial 
resolution while the panchromatic (PAN) sensors acquire a 
single band image from the same scene with a fine resolution. 
While the high spatial resolution of PAN helps to recognize 
the fine features, the high spectral resolution of MS is required 
to discriminate among objects with different materials. In 
respond to requirement to an image with both high spectral 
resolution and high spatial resolution, fusion of MS and PAN 
images has been introduced which is known as pansharpening 
[1]. 

In the literature, two main groups of pansharpening 
methods can be seen: the component substitution (CS) 
methods [2]-[3] and the multi-resolution analysis (MRA) 
[4]-[5] or multi-scale transform (MST) approaches. The CS 
methods generally apply a color transform to the MS image to 
decorrelate spectral bands and converts image into a new color 
system that separates the spectral details from the spatial ones. 
Then, the component of MS, which is supposed to contain the 
most spatial information, is substituted by the PAN image. 
Finally, by applying the inverse of color transform, the fused 
image is achieved. Intensity hue saturation [6], Gram Schmidt 
[7], principal component analysis [8], Brovey transform [9], 

band dependent spatial details [10] and different versions of 
them [11]-[13] are among the most well known CS methods.

The MRA or MST approaches generally try to separate 
the low pass bands containing the approximate of image from 
the high pass bands containing the details of images through 
applying an image decomposition to source images (MS and 
PAN). Then, a fusion rule is used to combine the appropriate 
bands of source images. Finally, by applying the inverse of 
MST, the fused image is synthesized. In other words, it can be 
said that MRA approaches inject the high frequencies of PAN 
into the upsampled MS bands. Laplacian pyramid (LP) [14], 
ratio of low pass pyramid (RP) [15], discrete wavelet transform 
(DWT) [16], dual tree complex wavelet transform (DTCWT) 
[17], curvelet transform (CVT) [18], and nonsubsampled 
contourlet transform (NSCT) [19] are among the popular 
and state-of-the-art MST methods [20]. In addition to CS 
and MRA approaches, there are other types of approaches 
such as model based methods which consider a model such 
as Bayesian [21] or a data representation type such as sparse 
representation [22] for modeling of source images or fused 
image. Some other pansharpening approaches are the hybrid 
methods which use two or more CS, MRA or model based 
methods to provide the advantages of all of them [23]-[24]. 
Estimate of parameters in model based methods and policy 
of integration are the main challenges of the model based and 
hybrid methods, respectively. Moreover, they have burden 
complexity too. The pansharpening methods generally try 
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to provide a good compromise between spectral and spatial 
quality. The CS and MRA methods exhibit a complementary 
spatial-spectral quality trade off. The CS methods often can 
render the spatial details in the fused image with a high fidelity 
while they often result in significant spectral distortion. This 
distortion is due to that the PAN sensor does not exactly 
cover the same wavelengths as the MS sensor. Performing 
histogram matching of PAN to the selected component of 
MS before implementation of substitution can degrade the 
spectral distortion. The histogram-matched PAN image will 
have the same mean and variance of the replaced component. 
On the contrary, the MRA approaches can efficiently preserve 
spectral information but they often result in spatial distortions 
such as staircase or ringing effects. However, the better 
matching between the frequency response of low pass filter 
used in MST with the modulation transfer function (MTF) 
of the spectral channel which PAN details are injected to it 
decreases the spatial distortion [25]. 

The application of nonlinear decomposition methodology 
to the pansharpening field is studied in [26]. The proposed 
method utilizes the morphological half gradient operators 
to improve the quality of fusion product. The nonlinear 
decomposition algorithms based on mathematical 
morphological operators are used to implement the non-linear 
MRA methods. A detail discussion of morphological half-
gradient as an extraction operator is given in [26]. Different 
versions of the decomposition approaches such as High-Pass 
Filtering (HPF), High Pass Modulation (HPM), the work of 
Laporterie-Déjean et al. [27] and Half Gradients (HG) by 
applying suggested morphological filters, called as MF-TO-
HPF, MF-TO-HPM, MF-LA and MF-HG, respectively, have 
been discussed in [26]. 

Our main focus in this paper is on the MRA methods. To 
reduce the spatial distortions and redundant spatial features 
from the fused product, a method based on the morphological 
profile (MP) is introduced. The morphological operators can 
efficiently extract the geometrical structures and useful spatial 
information from the source MS and PAN images [28]-[29]. 
The proposed method well transforms the extracted features 
into the fused product. The closing by reconstruction operator 
can provide an approximate component of image. By duality, 
the opening by reconstruction operator can achieve a detail 
component of image. So, the closing and opening operators 
are applied to MS (band by band) and PAN images to provide 
good estimates of approximate and details images, respectively. 
In addition, a multi-scale approach is used which considers a 
range of different structuring element sizes that helps to explore 
a range of different spatial structures. The results obtained by 
different scales are eventually fused by using the max-absolute 
rule to find the final fused product. The proposed method is 
called as MP-MST where MP indicates the morphological profile 
while different transforms such as LP, RP, DWT, DTCWT, CVT 
and NSCT can be replaced by MST. The experimental results 
on three real datasets acquired by different sensors show the 
good quality of MP-MST compared to conventional MST in 
terms of several quality measures.

2- MULTI-SCALE TRANSFORMS
A) Laplacian pyramid (LP)

The LP transform generates a set of band pass copies of 
the given image. Due to similarity to the Laplacian operator, 
it is referred as the Laplacian pyramid. The LP transform can 
be implemented one dimensional (1D) or 2D. The 2D case is 
a straightforward extension of 1D. Generally, to implement a 
LP transform, a decimation filter is used to generate the low 
pass filtered version of input signal. Then, the filtered signal 
is downsampled to produce the coarse signal. To produce 
the detail signal, the coarse signal is upsampled and then, an 
interpolator filter is applied to obtain the prediction signal. 
The first level of the detail signal is achieved by subtracting 
the prediction signal from the original input one. This process 
is repeatedly applied to the coarse signal until the final 
resolution is achieved. Assuming the original 0 0r c×  image 
denoted by 0g  be the zero level or bottom of the pyramid. The 
image level 1 of pyramid is indicated by 1g  and is obtained 
by reducing and low pass filtering of 0g . Generally, we have: 

( )1 ;0l lg reduce g l N−= < <  which means [14]:

( ) ( ) ( )
2 2

1
2 2

, , 2 , 2l l
a b

g i j w a b g i a j b−
=− =−

= + +∑∑ � (1)

where N  is the number of levels in the pyramid. The 
pixel in position ( ),i j  in image lg  is denoted by ( ),lg i j  
where 0 li r< <  and 0 lj c< <  and l lr c×   is the size of lg . The kernel 
( ) ( ) ( ),w a b w a w b=  is separable and symmetric. By considering 
( ) ( ) ( )0 , 1 1w m w w n= − = =  and ( ) ( )2 2w w p− = = , it can be shown 

that three constraints ( ) ( ) ( ) 10 , 1 1
4

w m w w= − = =  and ( ) ( ) 12 2
4 2

mw w− = = −  
are satisfied [30]. The shape of equivalent function is nearly 
similar to the Gaussian probability density function, and so, 
the sequence image 0 1, , , Ng g g…  is called Gaussian pyramid.  The 
Laplacian pyramid is also a sequence of differential images 

0 1, , , NL L L…  which are the difference between two sequential 
levels of Gaussian pyramid. So, we have:

( )1 1,1,1 ;0 1l l l l lL g expand g g g l N+ += − = − ≤ ≤ −  and N NL g=           (2)

which the expand  operation is the inverse of reduce  
operation where generally ,l kg  is the image obtained by 
applying the expand  operation to image lg , k  times, i.e., 

( ), , 1l k lg expand g k= − , that means:

( ) ( )
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, , 1
2 2

, 4 , ,
2 2l k l k

a b

i a j bg i j w a b g −
=− =−

+ + =  
 

∑∑                                                     (3)

B) Ratio of low pass pyramid (RP)
In the LP transformed based fusion methods, each of 

source images is firstly transformed into a set of primitive 
pattern elements and then, the elements of various sources 
are combined to generate a single fused image where the 
fused image can be reconstructed from its primitive elements. 
Necessarily, the LP transform cannot be a good choice for 
image fusion [31]. The construction of RP transform is very 
similar to that of LP transform. Firstly, the Gaussian pyramid 



99

M. Imani, AUT J. Model. Simul., 52(1) (2020) 97-116, DOI: 10.22060/miscj.2020.17306.5178

of the input source image is generated. Then, instead of 
computing the difference image between the successive levels 
in the Gaussian pyramid (as the construction of LP), the ratio 
of two successive levels is taken. The result of this operation 
is referred to ratio of low pass (RP) which is defined by [15]:

( )1/ ,1 ;0 1l l lR g expand g l N+= ≤ ≤ −  and N NR g=                                                 (4)

So, the ratio of two successive layers in the Gaussian 
pyramid generates each level of RP. In the RP image fusion, 
the relative importance of pattern elements depends on 
their local luminance contrast values. So, the RP transform 
fits models of the human visual system. The visual system of 
human is sensitive to the local luminance contrast. In other 
words, the visually important details of images are presented 
in the fused image. For image fusion through RP transform, at 
first, the source images are decomposed into a set of dark and 
light blobs on different resolution levels. Then, the absolute 
contrast values of blobs at corresponding locations and at 
corresponding resolution levels are compared. Eventually, 
by selecting the blobs with the highest absolute value of 
luminance contrast, the image fusion is done and the fused 
image is generated by reconstruction from the set of blobs.

C) Discrete wavelet transform (DWT)
In the pyramid transform based image fusion method, 

the basic idea is to construct the pyramid transform of the 
composite (fused) image from the pyramid transforms of the 
source images. By taking the inverse pyramid transform, the 
fused image is generated. In the decomposition process, the 
pyramid transforms cannot introduce the spatial orientation 
selectively. So, they result in blocking effects in the fused 
images. Compared to pyramid transforms, DWT can provide 
better spectral and spatial localization of image information 
and causes lower color distortions. A wavelet is a waveform, a 
wave like oscillating, with limited duration and average value 
of zero. The wavelets are generally symmetric and irregular. A 
wavelet divides a given signal into different scale components. 
A 1D wavelet transform decomposes a signal with each 
level corresponding to a lower frequency band and a higher 
frequency band through applying the low pass filters and 
high pass filters followed by a downsampling, respectively. 
The signal is reconstructed through upsampling and applying 
the low and high synthesis filters. For implementation of a 2D 
DWT, a 1D DWT firstly is performed along the rows of image 
and then along the columns to generate 2D decomposition 
of image. The result is a set of approximation coefficients in 
addition to three sets of details coefficients where they are 
represent the horizontal, vertical and diagonal directions of 
images. In other words, four sub images corresponding to 
outputs of low-low, low-high, high-low and high-high bands 
are provided. A 2D DWT of a given image ( ),f x y  with the 
size of M N×  can be expressed by [32]:

( ) ( ) ( )
0
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1, , , ,
M N

j m n
x y

F j m n f x y x y
MNϕ ϕ

− −

= =

= ∑∑ � (5)

( ) ( ) ( ) { }
1 1

, ,
0 0

1, , , , ; , ,
M N

i i
j m n

x y

F j m n f x y x y i H V D
MNψ ψ

− −

= =

= =∑∑                (6)

where 

( ) ( )/2
, , , 2 2 ,2j j j

j m n x y x m y nϕ ϕ= − − � (7)

( ) ( )/2
, , , 2 2 , 2i j i j j

j m n x y x m y nψ ψ= − −
�

(8)

and index i  indicates the directional wavelets. In 
addition, index i  is a superscript that gives the values of 
horizontal ( )H , vertical ( )V  and diagonal ( )D . 0j  denotes 
an arbitrary scaling scale and ( )0 , ,F j m nϕ  coefficients provide 
an approximation of ( ),f x y  at scale 0j . The ( ), ,iF j m nψ  
coefficients provide horizontal, vertical and diagonal details 
for scales 0j j≥ . Generally, 0j  is set as 0 0j =  and 2 jM N= = , 

0,1, 2, , 1j j= … −  and 0,1 , 2, , 2 1jm n= = … − . 
For fusion of two source images using DWT, the images 

are decomposed into wavelet transformed images. Then, 
the transform coefficients of source images are fused based 
on a fusion rule. Finally, the fused image is generated by 
performing the inverse wavelet transform. 

D) Dual tree complex wavelet transform (DTCWT)
DWT is an example of real valued wavelet transform 

whereas DTCWT is an example of complex wavelet transform. 
Although, the real valued wavelet transforms have better 
sparsely data representation and are computationally efficient; 
but, they suffer from shift variance, lack of directionality, 
absence of phase information, and aliasing. Shift variant means 
that a small change in the input signal results in a significant 
change in the energy distribution of wavelet coefficients at 
several levels of decomposition process. Downsampling in the 
decomposition process of DWT causes shift variance. DWT 
also suffers from lack of directionality because it supports just 
three directions of horizontal, vertical and diagonal. Many 
images contain edges oriented in random directions other than 
horizontal, vertical and diagonal. So, the real valued DWT 
may not be efficient for them. Phase information computed 
by both real and imaginary parts of complex valued signal, 
which gives the local behavior of a function, is absent in DWT. 
The downsampling operation which iteratively applied in the 
computation of real valued DWT causes aliasing that results 
in artifacts in the reconstructed image. To overcome to these 
problems, the complex wavelet transforms such as DTCWT 
have been introduced. DTCWT is implemented by using two 
real DWT in parallel where one of DWTs generates the real 
part and other one provides the imaginary part. Compared to 
DWT, DTCWT gives three sub images where each of them is 
in two quadrants, i.e., six sub images strongly oriented in the 
directions 15 , 45± ° ± °  and 75± °  are provided.  A 2D DTCWT can 
be defined by [17]:

( ) ( ) ( ),x y x yψ ψ ψ=                                                                     (9)
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where ( )xψ  and ( )yψ  denote two complex wavelets 
as follows [33]:

( ) ( ) ( )h gx x j xψ ψ ψ= +                                                                 (10)

( ) ( ) ( )h gy y j yψ ψ ψ= +                                                                 (11)

where ( )h xψ  and ( )h yψ  indicate the real wavelet transforms 
of upper and lower filter banks, respectively, and ( )g xψ  and 

( )g yψ  are the corresponding complex parts. Then, we have:

( ) ( ) ( ) ( ) ( ), h g h gx y x j x y j yψ ψ ψ ψ ψ   = + +   
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

h h g g

g h h g

x y x y

j x y x y

ψ ψ ψ ψ

ψ ψ ψ ψ

= − +

 + 
                                     (12)

E) Curvelet transform (CVT)
The Fourier transform is not able to handle the point 

discontinuities since a discontinuity point affects all the 
Fourier coefficients. In contrast to Fourier transform, the 
wavelet transform can well handle the point singularities. 
But, it is not able to handle curve discontinuities. To deal with 
this problem, the curvelet transforms (CVTs) are introduced. 
They are designed for representation of curved shapes using a 
small number of coefficients. To implement a CVT, the image 
is decomposed into a set of sub-bands by using the wavelet 
transforms. Then, each subband is analyzed by utilizing a local 
ridgelet transform. Mathematically, it can be considered as a 
wavelet analysis in the radon domain. The radon transform 
is a facility for shape detection. So, the ridgelet transform is 
also useful for detection of ridges and shapes of objects in 
an image. The ridgelet transform can efficiently handle the 
line singularities. The aim is to map a line singularity in 2D 
domain into a point one by applying the radon transforms. 
Therefore, a 1D wavelet is implemented to handle the point 
singularities in the radon domain. The ridgelet basic function 
is given by [18]:

1
1 22

, ,
   a b

x cos x sin ba
aθ

θ θψ ψ
− + − =  

 
                          (13)

 and the ridgelet coefficients are computed as follows:  

( ) ( ) ( ), , 1 2 1 2 1 2, , ,  ,  f a bR a b x x f x x dx dxθθ ψ=∬ � (14)

The ridgelet transform ( ), ,fR a b θ  can be represented in 
terms of radon transform ( ),fR tθ  by:

( ) ( )
1
2, , ,   f f

t bR a b R t a dt
a

θ θ
∞ −

−∞

− =  
 ∫ � (15)

where the angular variable θ  is constant while t  is varying 
and the radon transform of f , which is a collection of line 
integrals indexed by ( ) [ ), 0, 2t Rθ π∈ × , is given as follows [34]:

( ) ( ) ( )1 2 1 2 1 2, ,   fR t f x x x cos x sin t dx dxθ δ θ θ
∞ ∞

−∞−∞

= + −∫ ∫ � (16)

F) Nonsubsampled contourlet transform (NSCT)
NSCT is an example of overcomplete transform which 

is a shift invariant version of contourlet transform. Shift 
invariance, multi-direction and multi-scale are some good 
properties of NSCT in the process of image decomposition. 
An appropriate representation of contours is provided by 
NSCT. There are two main components in NSCT. The first is 
nonsubsampled pyramid filter bank structure for multi-scale 
decomposition. The second is a nonsubsampled directional 
filter bank structure for directional decomposition. 

To implement NSCT for image fusion, there are some 
main steps. First, NSCT is applied to the source images to 
acquire low pass subband coefficients at each of scales and 
directions. The non-subsampled pyramid filter bank and the 
non-subsampled directional filter bank are used to provide 
the multi-scale decomposition and the multi-direction 
decomposition, respectively. In the second step, according to 
a given fusion rule, the transformed coefficients are combined 
to obtain the NSCT coefficients of the fused image. Finally, 
by performing the inverse NSCT to the selected coefficients 
obtained from the previous steps, the fused image is 
reconstructed. 

3- PROPOSED METHOD
The proposed fusion method in this work utilizes the 

advantages of morphological operators for extraction of 
useful spatial structures from the source images. To this 
end, the closing operator is applied for extraction of local 
structures of the approximation image of MS and the opening 
operator is used for extraction of the sharp components, i.e., 
the details image, of PAN. The multi-scale structural elements 
(SEs) are used to provide a range of different SE sizes which 
result in appearance of spatial structures with different sizes 
in the final product.  Before detail description of the proposed 
method, a brief review of morphological operators and their 
properties is given in the following, and then, the proposed 
fusion method is described. 

A) Morphological operators and properties
The morphological filters can effectively extract 

appropriate features for modeling the spatial information of 
images. The basic operators in mathematical morphology are 
erosion and dilation where these operators are applied to a 
given image with a set of known shape called as SE. Applying 
the erosion operator to an image results in an output image 
that shows where SE fits the objects present in the images. In 
contrast, applying the dilation operator to an image provides 
an output image that shows where SE hits the objects present in 
the image. These operations are dual and other morphological 
operators can be expressed in terms of them. The opening and 
closing operators are two popular morphological operators 
where opening means to dilate an eroded image while closing 
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means to erode a dilated image. 
The opening and closing operators should be implemented 

by using a non-Euclidean metric, known as filtering by 
reconstruction. The family of operators by reconstruction 
can better preserve shapes than the classical morphological 
operators. The reason is that the shape of SE used in the filtering 
by reconstruction is adaptive with respect to the structures 
present in the image. An opening by reconstruction operator 
removes from a scalar image all those bright connected 
components that the SE does not fit in. Bright components 
mean the brighter components with respect to grey levels of 
neighboring regions. The opening operator does not distort 
the edges of regions. It just 

merges the flat regions while preserves the geometrical 
characteristics of the structures which do not remove from 
the image. By duality, a closing by reconstruction operator 
removes the dark connected components from the image. The 
opening γ  and closing ϕ  by reconstruction filter outputs of 
a grey level image f  are defined, respectively as follows [35]:

   
( ) ( )( )i i

R ff R fδγ ε=                                                                           (17)

( ) ( )( )i i
R ff R fεϕ δ=                                                                          (18)

where iε  and iδ  denote the erosion and dilation operators 

with a SE of size i , respectively and fRδ  and fRε  indicate the 
geodesic reconstruction by dilation and erosion, respectively. 

B) MP-MST fusion method
By applying the opening operators, the details of image are 

enlarged. In other words, more details of image are appeared 
in the opening components of an image. In contrast, by 
applying the closing operators, the spatial details have more 
tendency to become similar to the neighboring regions. We 
can use these useful characteristics of opening and closing 
operators for extraction of appropriate features from MS and 
PAN images. The closing and opening components of four 
bands of MS image (red, green, blue and near infrared) and 
also the PAN image of GeoEye dataset are shown in Fig. 1. 

The aim of pansharpening is to fuse the MS and PAN 
images to provide a fused image with both high spatial 
resolution of PAN and high spectral resolution of MS. In other 
words, we want to integrate the approximate information 
of MS with the details information of PAN to achieve the 
fused product. The MST methods are used for fusion of MS 
and PAN images in this paper. But, to highlight the main 
characteristics of MS and PAN images in the fusion process, 
the morphological operators by reconstruction are used. To 
decrease the redundant spatial details and noise from the MS 

 
Fig. 1. Three closing and three opening components of MS bands (Red, Green, blue and near infrared) and PAN image for GeoEye dataset. 

  

Mc3 Mc2 Mc1 MS-Red Mo1 Mo2 Mo3

Pc3 Pc2 Pc1 PAN Po1 Po2 Po3

Mc3 Mc2 Mc1 MS-Blue Mo1 Mo2 Mo3

Mc3 Mc2 Mc1 MS-Near Infrared Mo1 Mo2 Mo3

Mc3 Mc2 Mc1 MS-Green Mo1 Mo2 Mo3

Fig. 1. Three closing and three opening components of MS bands (Red, Green, blue and near infrared) and PAN image for GeoEye 
dataset.
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image, the closing by reconstruction operator is applied to the 
MS image. In contrast, to highlight the useful spatial details 
of PAN, the opening by reconstruction operator is applied to 
the PAN image.

Some spatial structures present in the image may have a 
high response for a special SE size and a lower response for 
other SE sizes depending on the interaction between the size 
of spatial structure and the SE size. So, to explore the spatial 
information of various structures with different sizes, it is 
appropriate to use a multi-scale approach based on a range of 
different SE sizes. This idea helps to utilize the best response 
of the structures in the image. The block diagram of the 
proposed fusion method is shown in Fig. 2. The MS image 
is fused with the PAN image band by band. Fig. 2 shows the 
fusion process of a band of MS with PAN. To fuse each band 
of MS with PAN, at first the MS image is upsampled to be 
as the same size of PAN. Then, N  closing by reconstruction 
operators are applied to MS to provide N  closing components 
of MS denoted by 

1MC , 
2MC , …, NMC . In duality, N  opening 

by reconstruction operators are applied to PAN to provide N  
opening components of PAN denoted by 1PO , 2PO , …, NPO
. Each corresponding pair of closing components of MS and 
opening components of PAN are fused together using a MST 
method. In other words, 1MC  and 1PO  are fused to obtain 1F
; 2MC  and 2PO  are fused to provide 2F , and so on.  The final 
fused product F  is obtained from the 1F , 2 F ,…,  NF  images by 

applying the maximum absolute (max(abs)) rule. In other 
words, in each pixel position, the value of ; 1, 2, ,iF i N= …  with 
the largest absolute value is chosen as the pixel value of the 
fused image F .

 In this paper, different MST methods are used to evaluate 
the performance of the proposed fusion method: LP, RP, 
DWT, DTCWT, CVT and NSCT. The proposed method is 
general is indicated by MP-MST where the names of different 
MST approaches can be replaced by MST, i.e., MP-LP, MP-
RP, MP-DWT, MP-DTCWT, MP-CVT and MP-NSCT. Some 
advantages of the proposed fusion method are presented in 
the following:

1) By applying the morphological filters to the source 
images before MST, useful local spatial features are extracted. 
Moreover, the noise and redundant spatial details which may 
cause local artifacts in the fused product is decreased.

2) The closing operator can provide a suitable 
approximation image of MS while the opening operator can 
achieve an appropriate detail image of PAN. The fuse of closing 
based transformed MS and opening based transformed PAN 
can provide a fused product with improved quality than the 
fuse of original MS and PAN images.  

3) By applying several closing and opening operators 
with different SE sizes, various structures with different sizes 
depending on the size of objects present in the image can 

 
Fig. 2. Bock diagram of the proposed MP-MST fusion method (the fusion of MS with PAN is done band by band. For simplicity, the subscript 

related to band k of MS is omitted. 
  

Fig. 2. Bock diagram of the proposed MP-MST fusion method (the fusion of MS with PAN is done band by band. For simplicity, the 
subscript related to band k of MS is omitted.
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be extracted. The use of max(abs) rule for integrating the 
information of different scales can provide the fused image 
with more spectral and spatial information with respect to the 
single scale with just a SE size.

4- EXPERIMENTS
The performance of the proposed fusion method, which 

is generally called MP-MST, is compared to widely used MST 
methods. Six different MST approaches, i.e., LP, RP, DWT, 
DTCWT, CVT and NSCT are assessed in this paper. The 
performance of MP-LP, MP-RP, MP-DWT, MP-DTCWT, 
MP-CVT and MP-NSCT is compared to MST themselves. 

A) Datasets and quality measures
Three MS and PAN image sources acquired by different 

remote sensors, GeoEye, QuickBird and IKONOS are used 
for doing experiments. The sizes of used MS and PAN images 
are 256×256 pixels and 1024×1024 pixels, respectively. The 
experimented MS images in GeoEye and IKONOS datasets 
consist of four bands of red, green, blue and near infrared 
while MS in the used QuickBird dataset has three bands. 
The MS and PAN images have the spatial resolution of.46 m 
and 1.84 m, respectively in GeoEye. In IKONOS, the spatial 
resolution of MS and PAN images are 0.82 m and 3.2 m, 
respectively and in QuickBird, the PAN image has 0.65 m 
pixel resolution.

Due to the lack of high resolution (HR) MS image, i.e., 
the fused product, as the reference image, the quantative 
evaluation of fusion results is an open and challenging 
problem. One of the most practical protocols to deal with this 
problem has been proposed by Wald [36]. This protocol uses 
the original HR image as the reference image. It degrades the 
original MS and PAN images with a scale equal to the ratio 
between scales of MS and PAN. The degraded MS and PAN 
images are fused to provide a HR MS image with the same 
scale of the original MS. Then, the fused product is compared 
to the original MS image as the reference. The Waldʼs protocol 
utilizes two main properties: consistency and synthesis. 
The consistency property means that the original MS image 
should be achieved by simply degrading the fused image. The 
synthesis property states that the pansharpened image has to 
reproduce characteristics of the original MS image at a higher 
resolution. 

Different quality indices are used to evaluate the 
performance of the proposed methods compared to others: 
root mean square error (RMSE), spectral angle mapper 
(SAM), degree of distortion (D), error relative dimensionless 
global error in synthesis (ERGAS), correlation coefficient 
( )ρ , and universal image quality index (UIQI). In addition, 
a non-reference quality metric called feature mutual 
information (FMI) is used to assess the quality of fused 
products without considering the reference images [37]. The 
concept of information contained in an image is represented 
by its features. The amount of information of these features 
conducted from the source images (MS and PAN) to the 
fused product (pansharpened image) can be a desirable 
criterion to evaluate the performance of the fusion methods. 

The mutual information measures the similarity of two 
variables and shows the amount of information that a random 
variable has about another. By considering x  and y  as two 
random variables, the degree of dependency between them is 
measured by Kullback-Leibler relation:

( ) ( ) ( )
( ) ( )2

,

,
, , log

x y

p x y
I x y p x y

p x p y
=∑ � (19)

where ( ),p x y  is the joint probability distribution 
function (joint PDF) while ( )p x  and ( )p y  are the marginal 
PDFs. Assuming A  and B  be the source images and F  is 
the fused image. To obtain the FMI metric, at first, a feature 
extraction method is used to extract the feature image of the 
source images and the fused image [38]. Each desirable feature 
extractor can be used. As proposed in [37], the gradient is 
chosen.  The gradient map contains useful information about 
contrast, texture, edges, pixel neighborhood and directions. 
After applying the feature extraction transform, the feature 
images are normalized to obtain the marginal PDFs ( )p a
, ( )p b ,  and ( )p f . To decrease the computational burden, 
small corresponding slide windows between the fused and 
source images are used to measure the regional FMI. The FMI 
metric between the source images A  and B  and the fused 
image F  can be obtained by:

( )
( ) ( )

( )
( ) ( )

,

1

; ;1 n
i iA B

F
i i i i i

I A F I B F
FMI

n H A H F H B H F=

 
= +  + + 
∑ � (20)

where n M N= ×  that M N×  is the size of image. ( );iI A F  
is the mutual information between images A  and F  for i th 
slide window. Similarly, ( );iI B F  is the mutual information 
between images B  and F . ( )iH A , ( )iH B  and ( )iH F  are the 
entropies of the corresponding windows from images A ,  B  
and F .

B) Assessment of pansharpening results 
One of the free parameters, which has to be set in MST 

methods, is the decomposition level. From one hand, to 
provide enough spatial details from the source images, the 
decomposition level should not be small. From the other hand, 
a large decomposition level causes that a coefficient in the low 
pass component has an impact on a large number of pixels in 
the fused product. So, if there is an error in the low pass band 
due to noise or mis-registration between given source images, 
serious artifical effects are appeared in the fused image. In 
addition, in the MST with a large decomposition level, the 
fusion quality of high pass bands is also sensitive to mis-
registration and noise. If the source images are not registered 
precisely due to different imaging parameters, choosing a 
large decomposition level is not reasonable.

In the proposed MP-MST fusion method, the rich spatial 
information of local structures with different sizes are provided 
by applying the opening and closing by reconstruction 
operators. So, even with choosing a small decomposition 
level, enough spatial features are provided from source 
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Fig. 3. Effects of decomposition level on the quality of fusion image in the MP-LP method. 
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Fig. 4. Effects of decomposition level on the quality of fusion image in the MP-RP method. 

  

Fig. 3. Effects of decomposition level on the quality of fusion image in the MP-LP method.

Fig. 4. Effects of decomposition level on the quality of fusion image in the MP-RP method.
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 Fig. 5. Effects of decomposition level on the quality of fusion image in the MP-DWT method. 
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Fig. 6. Effects of decomposition level on the quality of fusion image in the MP-DTCWT method. 
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Fig. 5. Effects of decomposition level on the quality of fusion image in the MP-DWT method.

Fig. 6. Effects of decomposition level on the quality of fusion image in the MP-DTCWT method.
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 Fig. 7. Effects of decomposition level on the quality of fusion image in the MP-CVT method. 
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 Fig. 8. Effects of decomposition level on the quality of fusion image in the MP-NSCT method. 
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Fig. 7. Effects of decomposition level on the quality of fusion image in the MP-CVT method.

Fig. 8. Effects of decomposition level on the quality of fusion image in the MP-NSCT method.
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images. Therefore, a small decomposition level can be a good 
choice in MP-MST to avoid the artifical effects due to mis-
registration between MS and PAN images. The quality of 
fusion image versus the decomposition level in terms of six 
quality measures for GeoEye dataset are shown in Figs. 3-8 for 
MP-LP, MP-RP, MP-DWT, MP-DTCWT, MP-CVT and MP-
NSCT, respectively. According to the experimental results, the 
best performance is obtained by a decomposition level of 1 for 
MP-LP, MP-DWT, MP-DTCWT and MP-CVT while the best 
quality measures for MP-RP is provided by a decomposition 

level of 7. The experiments show that MP-NSCT has no 
sensitivity to the decomposition level.

The comparison between six proposed methods in terms 
of RMSE, ERGAS, SAM, correlation coefficient ( )ρ , distortion 
(D) and UIQI are shown in Fig. 9 for GeoEye dataset. The 
experiments show that MP-RP and MP-DTCWT can provide 
the best fusion results. The numerical comparison between 
the conventional MST methods and the proposed MP-MST 
ones are shown in Tables 1-3 for GeoEye, QuickBird and 
IKONOS datasets, respectively. The first column of each table 

 

 
 

Fig. 9. Comparison between MP-MST methods in terms of RMSE, ERGAS, SAM, correlation coefficient, distortion and UIQI. 
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Fig. 9. Comparison between MP-MST methods in terms of RMSE, ERGAS, SAM, correlation coefficient, distortion and UIQI.
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represents the name of quality indices and the second column 
shows the optimum values of them. The best obtained quality 
index in each row of table is shown in bold.

In the GeoEye dataset, all methods have the same 
performance from the RMSE measure view point. In terms 
of other quality indices except SAM, the proposed MP-RP 
acquires the best results while the conventional version of it, 
i.e., RP provides the best value of SAM index. However, the 
SAM value of MP-RP is close to RP. In terms of ERGAS, after 
the MP-RP and RP methods, MP-DTCWT and MP-CVT are 
the best choices. The best values of correlation coefficient ( )ρ ,  
distortion (D) and UIQI are provided by MP-RP, conventional 
RP and then, MP-DTCWT. With a comparison between LP 
and MP-LP, RP and MP-RP, DWT and MP-DWT, DTCWT 
and MP-DTCWT, CVT and MP-CVT, NSCT and MP-NSCT, 
it can be found that generally the MP-MST methods can 
provide better results than the MST methods.

In the QuickBird dataset, the best RMSE is obtained by 
MP-DTCWT and MP-CVT. The best SAM index is acquired 
by MP-CVT, and in terms of other quality indices, i.e., 
ERGAS, ρ , D, and UIQI, MP-DTCWT is the best fusion 
method. Generally, after MP-DTCWT, MP-CVT can be the 
best choice for pansharpening in QuickBird data. Similarly, 

in IKNOS dataset, MP-DTCWT and MP-CVT rank first and 
second, respectively.

The visual inspection of different fusion methods are 
shown in Figs. 10-12 for GeoEye, QuickBird and IKONOS 
datasets, respectively. As indicated in these figures, the main 
disadvantage of MST methods is appearance of noise and 
redundant spatial information in the pansharpened images 
while this problem is significantly solved in the MP-MST 
methods. The proposed MP-MST methods due to applying the 
morphological by reconstruction filters reduce the complexity 
of image while preserve the geometrical characteristics of 
local structures. 

To better show the pixel difference between each reference 
(HR MS) image and the pansharpened image, the absolute 
value of difference of pixel values between the fusion image 
and the reference image is computed and shown for GeoEye, 
QuickBird and IKONOS datasets in Figs. 13-15, respectively. 
The difference value is calculated for each band and then, 
summed together to provide the total difference.  In the error 
images, in Figs. 13-15, brighter and heater colors mean higher 
difference while darker and colder colors are corresponding 
to a small difference between the pansharpened product and 
the reference image. In GeoEye dataset, the smallest color 

 
Optimu

m values 
LP RP DWT DTCWT CVT NSCT MP-LP 

MP-
RP 

MP-
DWT 

MP-
DTCWT MP-CVT 

MP-
NSCT 

RMSE 0 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 
ERGAS 0 0.0027 0.0022 0.0026 0.0025 0.0025 0.0027 0.0026 0.0021 0.0025 0.0024 0.0024 0.0026 

SAM 0 5.4097 4.8874 5.3141 5.1783 5.1627 5.5948 5.3547 4.9289 5.2809 5.1606 5.1505 5.5449 
𝜌𝜌 1 0.8081 0.8737 0.8196 0.8365 0.8343 0.7978 0.8221 0.8810 0.8285 0.8442 0.8413 0.8083 
D 0 0.0390 0.0337 0.0383 0.0367 0.0373 0.0395 0.0374 0.0326 0.0372 0.0358 0.0364 0.0381 

UIQI 1 0.7814 0.8648 0.8005 0.8235 0.8233 0.7663 0.8093 0.8767 0.8185 0.8386 0.8363 0.7904 

 Optimum 
values LP RP DWT DTCWT CVT NSCT MP-LP MP-

RP 
MP-

DWT 
MP-

DTCWT MP-CVT MP-
NSCT 

RMSE 0 0.0010 0.0010 0.0009 0.0009 0.0009 0.0010 0.0009 0.0009 0.0009 0.0008 0.0008 0.0009 
ERGA

S 0 0.0059 0.0057 0.0056 0.0054 0.0054 0.0062 0.0053 0.0054 0.0052 0.0049 0.0050 0.0056 

SAM 0 5.8817 5.8375 5.7118 5.6468 5.6305 6.0021 5.7990 5.7772 5.6641 5.5504 5.5358 5.9866 
𝜌𝜌 1 0.7431 0.7758 0.7687 0.7865 0.7868 0.7153 0.7881 0.7949 0.8032 0.8185 0.8180 0.7645 
D 0 0.0993 0.0934 0.0951 0.0923 0.0925 0.1038 0.0937 0.0897 0.0901 0.0875 0.0876 0.0978 

UIQI 1 0.7401 0.7637 0.7674 0.7859 0.7863 0.7101 0.7874 0.7782 0.8024 0.8171 0.8165 0.7640 

 
Optimu

m values LP RP DWT DTCWT CVT NSCT MP-LP 
MP-
RP 

MP-
DWT 

MP-
DTCWT MP-CVT 

MP-
NSCT 

RMSE 0 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0004 0.0005 0.0005 
ERGAS 0 0.0026 0.0025 0.0025 0.0023 0.0024 0.0026 0.0024 0.0024 0.0024 0.0022 0.0023 0.0025 
SAM 0 5.5583 5.3657 5.3835 5.2151 5.2229 5.6525 5.3981 5.2555 5.2453 5.0894 5.0906 5.4993 
𝜌𝜌 1 0.8811 0.8846 0.8888 0.9010 0.8968 0.8775 0.8945 0.8930 0.8979 0.9088 0.9051 0.8903 
D 0 0.0498 0.0472 0.0481 0.0458 0.0468 0.0499 0.0470 0.0454 0.0461 0.0441 0.0450 0.0473 

UIQI 1 0.8689 0.8748 0.8791 0.8917 0.8877 0.8646 0.8800 0.8839 0.8859 0.8963 0.8934 0.8757 

Table 1. Numerical results of the conventional MST methods and the proposed MP-MST methods for GeoEye dataset.

Table 2. Numerical results of the conventional MST methods and the proposed MP-MST methods for QuickBird dataset.

Table 3. Numerical results of the conventional MST methods and the proposed MP-MST methods for IKONOS dataset.
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 Fig. 10. Visual inspection of different fusion methods for GeoEye dataset. 
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Fig. 11. Visual inspection of different fusion methods for QuickBird dataset. 
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Fig. 10. Visual inspection of different fusion methods for GeoEye dataset.

Fig. 11. Visual inspection of different fusion methods for QuickBird dataset.
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Fig. 12. Visual inspection of different fusion methods for IKONOS dataset. 
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Fig. 12. Visual inspection of different fusion methods for IKONOS dataset. 

 

Fig. 13. Error images of different fusion methods for GeoEye dataset. 
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Fig. 14. Error images of different fusion methods for QuickBird dataset. 
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Fig. 13. Error images of different fusion methods for GeoEye dataset.

Fig. 14. Error images of different fusion methods for QuickBird dataset.
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Fig. 15. Error images of different fusion methods for IKONOS dataset. 
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Fig. 15. Error images of different fusion methods for IKONOS dataset.

distortion is related to RP while LP, MP-LP, NSCT and MP-
NSCT are related to the most color distortion. In QuickBird 
dataset, the smallest color distortion is obtained by MP-
DTCWT and MP-CVT. In IKONOS dataset, MP-DTCWT and 
MP-CVT result in the smallest color distortion, respectively 
while RP and MP-RP cause more color distortions compared 
to other methods. 

To assess the amount of spatial features, which can be 
either informative or redundant, the gradient energy maps are 
calculated for GeoEye, QuickBird and IKONOS datasets and 
shown in Figs. 16-18, respectively. The gradient energy maps 
are also shown for the HR MS, MS and PAN images. The 
gradient energies of different methods for three datasets are 
reported in Tables 4-6. As expected, the PAN image contains 

the most gradient energy and MS contains the smallest 
value. The HR MS, which is the reference image related to 
the fusion result of MS and PAN, has a gradient energy value 
between MS band PAN images. The obtained results show 
that generally MST methods have more gradient energy 
values compared to MP-MST ones. This is expected because 
the MP-MST methods by applying the morphological by 
reconstruction filters to the source images, i.e., MS and PAN, 
reduce the spatial 

redundant features and noise from the fused product. 
Among the MST methods, RP contains the smallest gradient 
energy value in all datasets. DWT contains the largest gradient 
energy value in GeoEye and NSCT contains the largest 
gradient energy value in QuickBird and IKONOS datasets. 

 

 

Fig. 16. Gradient energy maps of different fusion methods for GeoEye dataset. 
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Fig. 16. Gradient energy maps of different fusion methods for GeoEye dataset.
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The comparison between different pansharpening 
methods in terms of FMI metric is reported in Table 7. 
Generally, the MP-MST methods result in more FMI value 
with respect to MST methods. The MP-RP method provides 
the highest mutual information between the pansharpened 
image and the source images (MS and PAN).

The proposed schemes in [26], i.e., MF-TO-HPF, MF-
TO-HPM, MF-LA and MF-HG are also compared to the 
proposed methods in this paper. The proposed schemes 
in [26] are compared with MP-RP in GeoEye dataset and 
with MP-DTCWT in QuickBird and IKONOS datasets. The 
results are reported in Tables 8-10. Among MF-TO-HPF, 

 

 

  

 Fig. 17. Gradient energy maps of different fusion methods for QuickBird dataset. 
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 Fig. 18. Gradient energy maps of different fusion methods for IKONOS dataset. 

 

 

 

 

 

 

 

 

 

 

 

HR MS MS Pan LP RP

DWT DTCWT CVT NSCT MP-LP

MP-RP MP-DWT MP-DTCWT MP-CVT MP-NSCT

Fig. 17. Gradient energy maps of different fusion methods for QuickBird dataset.

Fig. 18. Gradient energy maps of different fusion methods for IKONOS dataset.



113

M. Imani, AUT J. Model. Simul., 52(1) (2020) 97-116, DOI: 10.22060/miscj.2020.17306.5178

Method Gradient 
energy Method Gradient 

energy Method Gradient 
energy 

HR MS 6.5670 e+03 LP 6.6027 e+03 MP-LP 6.0294 e+03 
MS 3.8803 e+03 RP 5.9674 e+03 MP-RP 5.5695 e+03 

PAN 9.0458 e+03 DWT 6.7894 e+03 MP-DWT 6.2986 e+03 

  DTCWT 6.2215 e+03 MP-
DTCWT 5.6612 e+03 

  CVT 6.4715 e+03 MP-CVT 5.7253 e+03 
  NSCT 6.4994 e+03 MP-NSCT 5.9808 e+03 

Method Gradient energy Method Gradient energy Method Gradient energy 

HR MS 6.6560e+03 LP 11.0770e+03 MP-LP 9.6156e+03 
MS 2.7040e+03 RP 9.6370e+03 MP-RP 8.7093e+03 

PAN 11.2130e+03 DWT 10.3250e+03 MP-DWT 9.3577e+03 
  DTCWT 10.0780e+03 MP-DTCWT 8.7859e+03 
  CVT 9.9200e+03 MP-CVT 8.8938e+03 
  NSCT 11.1340e+03 MP-NSCT 9.6085e+03 

Method Gradient energy Method Gradient energy Method Gradient energy 

HR MS 8.2548e+03 LP 8.8757e+03 MP-LP 8.0357e+03 
MS 3.6508e+03 RP 7.9145e+03 MP-RP 7.4853e+03 

PAN 8.4367e+03 DWT 8.7505e+03 MP-DWT 7.6461e+03 

  DTCWT 8.3321e+03 MP-DTCWT 7.6265e+03 

  CVT 8.4970e+03 MP-CVT 7.7365e+03 
  NSCT 9.0765e+03 MP-NSCT 7.8913e+03 

Table 4. Gradient energies of different pansharpening methods for GeoEye dataset.

Table 5. Gradient energies of different pansharpening methods for QuickBird dataset.

Table 6. Gradient energies of different pansharpening methods for IKONOS dataset.

 LP RP DWT DTCWT CVT NSCT MP-LP MP-RP MP-
DWT 

MP-
DTCWT MP-CVT MP-

NSCT 
GeoEye 0.8061 0.8230 0.8081 0.8073 0.8027 0.8033 0.8119 0.8275 0.8100 0.8117 0.8068 0.8111 

QuickBird 0.7771 0.7937 0.7796 0.7797 0.7761 0.7732 0.7915 0.8048 0.7870 0.7889 0.7861 0.7928 
IKONOS 0.8181 0.8241 0.8200 0.8185 0.8153 0.8198 0.8277 0.8320 0.8272 0.8279 0.8234 0.8303 

WV2 0.8732 0.8754 0.8695 0.8722 0.8663 0.8765 0.8721 0.8725 0.8687 0.8708 0.8672 0.8742 

Table 7. FMI values of different pansharpening methods.

 Optimum values MF-TO-HPF MF-TO-HPM MF-LA MF-HG Proposed (MP-RP) 

RMSE 0 0.0004 0.0004 0.0004 0.0004 0.0004 
ERGAS 0 0.0025 0.0026 0.0025 0.0025 0.0021 

SAM 0 5.2576 5.2722 5.2134 5.001 4.9289 
𝜌𝜌 1 0.8912 0.8823 0.9011 0.9053 0.8810 
D 0 0.0351 0.0362 0.0341 0.0338 0.0326 

UIQI 1 0.8913 0.8857 0.8923 0.8982 0.8767 

Table 8. Comparison results of the proposed MP- MST methods with the proposed schemes in [26] for GeoEye dataset.

 Optimum values MF-TO-HPF MF-TO-HPM MF-LA MF-HG Proposed (MP-DTCWT) 

RMSE 0 0.0009 0.0009 0.0008 0.0008 0.0008 

ERGAS 0 0.0055 0.0060 0.0053 0.0053 0.0049 

SAM 0 5.6018 5.6113 5.6012 5.5693 5.5504 
𝜌𝜌 1 0.8192 0.8189 0.8195 0.8201 0.8185 
D 0 0.0904 0.0912 0.0901 0.0875 0.0875 

UIQI 1 0.8168 0.8159 0.8169 0.8170 0.8171 

Table 9. Comparison results of the proposed MP- MST methods with the proposed schemes in [26] for QuickBird dataset.
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MF-TO-HPM, MF-LA and MF-HG methods, first MF-HG 
and then MF-LA provide the best results. As we can see, the 
proposed methods are generally provide better quality indices 
compared to MF-TO-HPF, MF-TO-HPM, MF-LA and MF-
HG methods although the MF-HG method could provide the 
highest correlation coefficient in GeoEye and QuickBird data. 

The running time of different pansharpening methods 
are reported in Table 11.  As seen, the use of MP-version 
of methods increases the computation time in all methods 
except LP and CVT. The increased time in RP, DWT, DTCWT 
and NSCT is not significant. The reason can be explained as 
follows: applying closing operators on MS image and opening 
operators on PAN image can improve or even simplify the 
fusion process using MST. 

5- CONCLUSION
A MP-MST method was proposed in this paper for 

pansharpening. The proposed method utilizes the useful 
characteristics of morphological by reconstruction operators 
to decrease the spatial redundancies, noise and distortion in 
the final fused product. Among different MP-MST methods 
(MP-LP, MP-RP, MP-DWT, MP-DTCWT, MP-CVT and 
MP-NSCT) generally MP-RP provides the best result in 
terms of quality indices with reference in GeoEye dataset 
while MP-DTCWT achieves the best values of quality 
indices in QuickBird and IKONOS datasets. In addition, the 
performance of MP-MST methods are assessed compared to a 
non-reference quality metric called FMI which measures the 
feature mutual information between source images and fused 
product. The results show that MP-RP provides the highest 
FMI value in all experimented datasets. It is worthful to note 
that the proposed MP-MST method can be implemented for 
fusion of other types of images in other fields although the 
performance of MP-MST is just assessed for remote sensing 
applications in this paper. 
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