[1] E. Björnson, J. Hoydis, L. Sanguinetti, Massive MIMO networks: Spectral, energy, and hardware efficiency, Foundations and Trends® in Signal Processing, 11(3-4) (2017) 154-655.
[2] C. Liaskos, S. Nie, A. Tsioliaridou, A. Pitsillides, S. Ioannidis, I. Akyildiz, A new wireless communication paradigm through software-controlled metasurfaces, IEEE Communications Magazine, 56(9) (2018) 162-169.
[3] E. Björnson, L. Sanguinetti, H. Wymeersch, J. Hoydis, T.L. Marzetta, Massive MIMO is a Reality-What is Next? Five Promising Research Directions for Antenna Arrays, arXiv preprint arXiv:1902.07678, (2019).
[4] S. Hu, F. Rusek, O. Edfors, Beyond massive MIMO: The potential of data transmission with large intelligent surfaces, IEEE Transactions on Signal Processing, 66(10) (2018) 2746-2758.
[5] Q. Wu, R. Zhang, Towards Smart and Reconfigurable Environment: Intelligent Reflecting Surface Aided Wireless Network, arXiv preprint arXiv:1905.00152, (2019).
[6] Y.-C. Liang, R. Long, Q. Zhang, J. Chen, H.V. Cheng, H. Guo, Large Intelligent Surface/Antennas (LISA): Making Reflective Radios Smart, arXiv preprint arXiv:1906.06578, (2019).
[7] C. Huang, G.C. Alexandropoulos, A. Zappone, M. Debbah, C. Yuen, Energy efficient multi-user MISO communication using low resolution large intelligent surfaces, in: 2018 IEEE Globecom Workshops (GC Wkshps), IEEE, 2018, pp. 1-6.
[8] Q. Wu, R. Zhang, Intelligent reflecting surface enhanced wireless network: Joint active and passive beamforming design, in: 2018 IEEE Global Communications Conference (GLOBECOM), IEEE, 2018, pp. 1-6.
[9] T.M. Cover, J.A. Thomas, Elements of information theory, John Wiley & Sons, 2012.
[10] M. Di Renzo, M. Debbah, D.-T. Phan-Huy, A. Zappone, M.-S. Alouini, C. Yuen, V. Sciancalepore, G.C. Alexandropoulos, J. Hoydis, H. Gacanin, Smart radio environments empowered by reconfigurable AI meta-surfaces: an idea whose time has come, EURASIP Journal on Wireless Communications and Networking, 2019(1) (2019) 129.
[11] C. Huang, A. Zappone, G.C. Alexandropoulos, M. Debbah, C. Yuen, Large intelligent surfaces for energy efficiency in wireless communication, arXiv preprint arXiv:1810.06934, (2018).
[12] S. Hu, F. Rusek, O. Edfors, Capacity degradation with modeling hardware impairment in large intelligent surface, in: 2018 IEEE Global Communications Conference (GLOBECOM), IEEE, 2018, pp. 1-6.
[13] E. Björnson, Ö. Özdogan, E.G. Larsson, Intelligent Reflecting Surface vs. Decode-and-Forward: How Large Surfaces Are Needed to Beat Relaying?, arXiv preprint arXiv:1906.03949, (2019).
[14] Q. Wu, R. Zhang, Beamforming Optimization for Wireless Network Aided by Intelligent Reflecting Surface with Discrete Phase Shifts, arXiv preprint arXiv:1906.03165, (2019).
[15] I. Krikidis, S. Timotheou, S. Nikolaou, G. Zheng, D.W.K. Ng, R. Schober, Simultaneous wireless information and power transfer in modern communication systems, IEEE Communications Magazine, 52(11) (2014) 104-110.
[16] C. Peng, F. Li, H. Liu, Optimal power splitting in two-way decode-and-forward relay networks, IEEE Communications Letters, 21(9) (2017) 2009-2012.
[17] H. Liu, K.J. Kim, K.S. Kwak, H.V. Poor, Power splitting-based SWIPT with decode-and-forward full-duplex relaying, IEEE Transactions on Wireless Communications, 15(11) (2016) 7561-7577.
[18] X. Wang, J. Liu, C. Zhai, Wireless power transfer-based multi-pair two-way relaying with massive antennas, IEEE Transactions on Wireless Communications, 16(11) (2017) 7672-7684.
[19] Y. Lou, Y. Zheng, J. Cheng, H. Zhao, Performance of SWIPT-Based Differential AF Relaying Over Nakagami-$ m $ Fading Channels With Direct Link, IEEE Wireless Communications Letters, 7(1) (2017) 106-109.
[20] Q. Li, Q. Zhang, J. Qin, Secure relay beamforming for SWIPT in amplify-and-forward two-way relay networks, IEEE Transactions on Vehicular Technology, 65(11) (2016) 9006-9019.
[21] J. Tang, D.K. So, N. Zhao, A. Shojaeifard, K.-K. Wong, Energy efficiency optimization with SWIPT in MIMO broadcast channels for Internet of Things, IEEE Internet of Things Journal, 5(4) (2017) 2605-2619.
[22] Y. Huang, M. Liu, Y. Liu, Energy-efficient SWIPT in IoT distributed antenna systems, IEEE Internet of Things Journal, 5(4) (2018) 2646-2656.
[23] A. Arafa, S. Ulukus, Optimal policies for wireless networks with energy harvesting transmitters and receivers: Effects of decoding costs, IEEE Journal on Selected Areas in Communications, 33(12) (2015) 2611-2625.
[24] A. Arafa, A. Baknina, S. Ulukus, Energy harvesting two-way channels with decoding and processing costs, IEEE Transactions on Green Communications and Networking, 1(1) (2016) 3-16.
[25] C. Qin, W. Ni, H. Tian, R.P. Liu, Y.J. Guo, Joint beamforming and user selection in multiuser collaborative MIMO SWIPT systems with nonnegligible circuit energy consumption, IEEE Transactions on Vehicular Technology, 67(5) (2017) 3909-3923.
[26] M. Abedi, H. Masoumi, M.J. Emadi, Power splitting-based SWIPT systems with decoding cost, IEEE Wireless Communications Letters, (2018).