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ABSTRACT:  Analysis of nonlinear autonomous systems has been a popular field of study in recent 
decades. As a noticeable nonlinear behavior, chaotic dynamics has been intensively investigated since 
Lorenz discovered the first physical evidence of chaos in his famous equations. Although many chaotic 
systems have been ever reported in the literature, a systematic and qualitative approach for chaos 
generation is still a challenging issue. Recently, we have developed an analysis tool which provides 
globally valid results about the qualitative behavior of some nonlinear systems based on their pseudo-
linear form of representation. In this paper, it is applied to generate conservative chaos by focusing on 
the essential qualitative attribute of conservative chaotic behavior. This feature is the continual stretching 
and folding of system trajectories which never settle down to a periodic regime. Indeed, it is tried to 
create this quality of behavior through the aforementioned qualitative analysis tool. The proposed 
approach helps us to generate a new class of chaotic systems with highly remarkable characteristics. 
The most elegant one is its almost parameter independency for chaos generation; There is no need for 
a trial-and-error mechanism to find the exact parameters’ values in order to produce chaotic behavior. 
It is shown that the system exhibits conservative chaotic dynamics for almost all parameters’ values. 
The chaotic behavior of the derived system is verified through the analysis of Lyapunov exponents and 
dimension as well. Besides, the frequency power spectrum analysis is also performed in order to put 
more emphasis on the chaotic behavior of the system.
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1. Introduction
As an interesting nonlinear behavior, chaotic dynamics has 

been intensively investigated since Lorenz discovered the first 
physical evidence of chaos in Lorenz, 1963. Afterward, various 
new chaotic systems have been reported in the literature. 
Although the main research in this area was the analysis and 
experimental confirmation of chaotic systems, other research 
areas such as chaos control, synchronization of chaotic systems 
and chaos generation were also explored. Similar to the 
mainstream research of controlling or suppressing chaos, the 
opposite direction of making a non-chaotic dynamical system 
chaotic, i.e., chaos generation has also recently attracted 
increasing attention especially in secure communications, 
resonance prevention in mechanical systems, material 
damage control in lasers, fluid mixing and nonlinear optics. 
In particular, within the biological context, Raiesdana and 
Goplayegani,  have shown in [1] that anti-control of chaos 
or chaotification has a great potential application in seizures 
control in an epileptic brain. A drawback in this research 
field is the existence of the aforementioned chaotic attractors 
usually indicated by numerical simulations or it is confirmed 
by physical circuits or by computer-assisted proofs. Although 
Shil’nikov theorem [2] has provided a rigorous theoretical 

tool for 3-dimensional continuous autonomous systems, the 
existence of chaotic attractors is still tough to prove since it 
is hard to satisfy the assumption that there exist homoclinic 
orbits or heteroclinic orbits. It seems that except for some 
exceptional cases, in general, there is no analytical method yet 
easily applicable for chaos generation in smooth autonomous 
nonlinear systems.

Motivated by the need for making chaos more suitable 
for real-world applications, this paper introduces an elegant 
analytical mechanism for generating chaos based on the 
concept of Eigen-structure analysis of nonlinear systems. The 
Eigen-structure analysis of nonlinear system based on their 
pseudo-linear (PL) form are fully described and presented 
in [3] and [4]. In addition, a dissipative chaotic flow and its 
dynamical analysis have been presented in [14], based on this 
method.

In this paper, we apply this PL form of representation 
for the synthesis of essential qualitative characteristics of 
a conservative chaotic system. Among these qualitative 
characteristics, we focus on the generation of a dynamical 
system with continual stretching and folding trajectories. 
This trend provides a qualitative and almost parameter 
independent chaos generation scheme. The rest of the paper 
is organized as follows. In section 2, the PL representation of 
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nonlinear systems is briefly introduced and the ability of this 
representation for the determination of qualitative behavior 
of nonlinear systems is discussed. Then, in section 3, the 
basic idea of this paper for chaos generation based on the 
qualitative analysis of nonlinear systems is presented. Section 
4 is devoted to analyzing the numerical simulation results, 
which highlight the strength of the proposed approach. 
Finally, concluding remarks and future work are presented in 
section 5.

2. Pseudo Linear systems; A brief review([3]-[4])
An autonomous nonlinear system is a system of nonlinear 

ordinary differential equations which does not explicitly 
depend on the independent variable. It is of the form:

( )t t=x( ) f x( )

 
(2.1)

 where x  takes values in n - dimensional Euclidian space 
and the independent variable t is usually time. Inspiring 

from the linear system theory, assuming that ( ) =f 0 0 , it is 
possible to transform an autonomous system (2.1) to a new 
form as:

( )d
t A t t

dt
=x( ) x( ) x( )

 
(2.2)

where n n nA ×→: 
.  This form is called pseudo-

linear (PL) and it was initially introduced in [5] to cope with 
the difficulty of designing nonlinear optimal control laws. 
After obtaining the PL form of (2.2), it would be possible 
to extend the Eigen-structure concept to these nonlinear 

systems. In other words, by defining λ(x)  and v(x)  as 
nonlinear eigenvalue (NEValue) and its corresponding 
nonlinear eigenvector (NEVector), one can write:

A λ=(x)v(x) (x)v(x)  (2.3)

Then, the nonlinear eigenvalues are achieved as the 
solution of the following equation:

0nA Iλ− =(x) (x)  
(2.4)

Based on these introductory definitions, some fruitful 
propositions, corollaries, comments and definitions are 
presented in the following. Applying these results, the 
qualitative analysis of some nonlinear dynamical systems is 
attainable. The proofs of all of them have been given in [3] 
and [4].

PROPOSITION 2.1 Consider a nonlinear system = (x)x f  
where n∈x  and n n n×→f :  with =f (0) 0 . This system 
may have infinite distinct PL forms. However, there are at 
most m possible PL forms as a basis set for these infinite PL 
forms in such a way that every PL form system matrix of this 

system can be obtained as a convex linear combination of this 
basis set. The number m is indeed calculated by

( ) 1

1 1

n

i
i i

n n k
k

i
i i

m m n n =

= =

∑
= = =∏ ∏

 
(2.4)

where ik  stands for the number of distinct terms in ( )if x
. Then, the infinite PL form system matrices are obtained from 

the basis set { }1 2( ), ( ),..., ( )mA A Ax x x as follows:

1 1
1 1 2

m m

j ji i ji
i i

B A jα α
= =

= = =∑ ∑(x) (x) ; , , , ...
       

(2.5)

For nonlinear system analysis, only the m  PL forms with 
system matrices of { }1 2( ), ( ),..., ( )mA A Ax x x are needed to 
be considered. Among these m PL forms, only the PL form 
which has state independent (SI) NEVectors must be used in 
Eigen-structure based analysis of the system. The reason is 
only a PL form with SI NEVectors certainly leads to correct 
qualitative results through its NEValues analysis.

PROOF: See [3]. 
In the light of the above proposition which clarifies the 

conditions for the correct determination of the qualitative 
behavior of nonlinear systems based on their PL forms, the 
following results are dedicated to the stability analysis of 
nonlinear systems, which is one of the key points of qualitative 
behavior.

PROPOSITION 2.2 For a nonlinear system ( )=x f x  
where n∈x  and n n n×→f :  with =f (0) 0 , a sufficient 
condition for global asymptotic stability of the origin is that 
the system has a PL form representation, ( )A=x x x , which 
satisfies the following conditions:

1. n∀ ∈x  | { }Re ( ) 0 ; 1,2,...,i i nλ < =x .
2. The geometric multiplicity of every multiple NEValue 

equals to its corresponding algebraic multiplicity.

3. All NEVectors of the matrix ( )A x  are SI. 
PROOF: See [4]. 
COROLLARY 2.1. Consider the system defined in 

Proposition 2.2. Then, sufficient conditions for instability of 
the origin are: 

1. n∀ ∈x  | { }Re ( ) 0 ; 1,2,...,i i nλ > =x .
2. The geometric multiplicity of every multiple NEValue 

equals to its corresponding algebraic multiplicity. 
3. All NEVectors of the matrix ( )A x should be SI.
PROOF: See [4]. 
Besides the propositions and corollaries mentioned 

above, in the sequel, some useful definitions and comments 
are presented, which play a crucial role in the eigenstructure 
analysis of nonlinear systems.

DEFINITION 2.1. Suppose there is an autonomous 
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dynamical system with zero equilibrium point presented by 
the differential equation ( )( ) ( )t t=x f x ,  in which n∈x   
and : n n→f   . Then, the region  n

AD ⊂   is called 
0-attracting if ( ) ,n∀ ∈x 0   all solution trajectories of the 
system move toward the origin, exponentially or spirally, 
when they are in the region n

AD ⊂  . Subsequently, the 
region n

RD ⊂   is called 0-repelling, if ( ) ,n∀ ∈x 0 

all solution trajectories of this system move away from the 
origin, exponentially or spirally, when the trajectories are in 

n
RD ⊂  . Indeed, the 0-attracting (repelling) region is a 

region in the phase space in which the distance from the origin 
is monotonically decreasing (increasing) in some norm. 

COMMENT 2.1. If a 0-attracting region includes the 
origin, it can be considered as the region of attraction for the 
origin equilibrium. Indeed, the origin could be conservatively 
considered as a locally asymptotically stable equilibrium 
point.

COMMENT 2.2. For a nonlinear system of order n
, transformable to a PL form with SI NEVectors, if the 
geometric multiplicity of every multiple NEValue is equal to 
its corresponding algebraic multiplicity, the 0-attracting and 
0-repelling regions could be respectively obtained as:

 { }{ }Re ( ) 0 , 1, 2, ,A i
nD i nλ= ∈ < =x x    and

{ }{ }Re ( ) 0 , 1, 2, ,R i
nD i nλ= ∈ > =x x  .

As a final remark, we should notice that all the results 
mentioned above are unquestionably applicable if there exists 
a particular class of nonlinear systems having SI NEVectors. 
This point is indeed more highlighted by introducing the 
pseudo linearizable form and the specific conditions provided 
by the following remark.

REMARK 2.1. A nonlinear system ( )=x f x  , with 
n∈x  and n n n×→f :  , is defined to be in pseudo 

linearizable form if it can be expressed as one of the following 
forms.

{ }

1 1 1

2 2 2

1

1 1

1 1 1

2 2 21:

( )
( )

: , 1,2,..., ,
( ) ;

, 1,2,...,
( )

( )

( )
( )

; : , 1,2,..., .

( )

2 :
n

i
j j j j j

j
j j j j j

n n n

n
i

n n n

x g x
x g x

g i n
x g x x

j n
x x g x

x g x

x g x
x g x

g i n

x g x

ω
ω

ω
+

+ +








=
 =


→ = = − ∈ ∈ = +

 =

=
=

→ =

=

x
x

x
x

x

x
x

x






 















 





Note that the system represented in case 1 certainly 
leads to real NEValues, while case 2 leads to both real and 

complex NEValues. For each pair of 1( , )j jx x +  there are a 
pair of complex NEValues. It is evident that in case 2, there 

is no constraint on the number of these pairs. Indeed, the 
main application of this remark is in the synthesis of some 
nonlinear systems with a desired qualitative behavior. 

 Remind that the possibility of being represented in pseudo 
linearizable form is only the sufficient condition for having 
SI NEVectors. Besides, having the pseudo linearizable form 
guarantees that for every multiple NEValue, its geometric 
multiplicity is equal to its algebraic multiplicity. Indeed, if 
a nonlinear system is in pseudo linearizable form, it has no 
generalized NEVectors.

So far, the sufficient ability for global qualitative analysis 
of a special class of nonlinear autonomous systems has been 
provided in the paper.  Though the condition of SI NEVectors 
is highly restrictive, the main benefit of this Eigen-structure 
based analysis tool could be in the generating or synthesizes 
some systems with desired qualitative behavior. Now, in the 
next section, this elegant ability is applied to generate chaotic 
systems systematically.

3- Main problem; Chaos generation
It is well known that the occurrence of chaotic behavior 

is related to the interplay between local instability and global 
boundedness. The local instability is responsible for the 
exponential divergence of nearby trajectories, while the global 
boundedness folds trajectories within the finite volume of 
the systems phase space. In addition, these trajectories never 
settle down to a periodic regime. The combination of these 
two mechanisms results in the high sensitivity of the system 
trajectories to the initial conditions. 

This description may also include the torus (quasi-
periodic) dynamics; however, it can easily be distinguished 
from a chaotic trajectory by considering its frequency 
spectrum or its dimension. Chaotic trajectories have a 
continuous frequency spectrum and non-integer dimension, 
while the periodic and quasi-periodic trajectories have a 
discrete Fourier spectrum and integer dimension. In this 
paper, as a golden key to generate conservative chaos, we 
focus on this fundamental qualitative characteristic of chaotic 
behavior; locally unstable and globally bounded.

3-1- Golden qualitative feature of a chaotic system: Stretching 
and folding

As is well known, continual stretching and folding is also 
one of the fundamental properties of chaotic dynamics. To be 
more precise, local instability is due to this stretching while 
the folding is responsible for global boundedness. Knowing 
the fact that synthesis of a hysteresis pattern by smooth 
nonlinear functions, at least is not so facile, this subsection 
is concentrated on synthesizing some nonlinear functions 

( ) , 1,2,3i iλ =x  to generate the continual stretching and 
folding property in the system dynamics.

Again by the help of pseudo linearizable form, it is possible 
to produce such a behavior by a proper selection of NEValues. 
The following NEValues are designed to satisfy this qualitative 
behavior. This approach may lead to different choices of 
NEValues which satisfy the desired qualitative behavior; one 
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of these choices is the following:

2 2
1,2 3

2 2 2
3 1 2

( ) ( )
( )

x h j
r ax bx

λ ω
λ

 = − ±
 = − − 

x
x

 

(3.2)

in which, r , b , a , ω  and h  are positive arbitrary real 
numbers. By applying remark 2.1, the following pseudo 
linearizable system can be obtained by these NEValues:

2 2
1 3 1 2

2 2
2 1 3 2

2 2 2
3 1 2 3

( )
( )

( )

x x h x x
x x x h x
x r ax bx x

ω
ω
 − − 
   = + −  
   − −   







 

(3.3)

The NEValuses of (3.2), as the qualitative behavior 
indicator of the system, dictate the desired continual 
stretching and folding on the system dynamics. It is just tried 
to get the system trajectories trapped in a cyclic manner. 
Indeed, this arbitrary pattern is selected to make the stability 

of spiral behavior in the 1 2x x  plane to be locked to the 

exponential behavior along the 3x  axis.  The spiral behavior, 
which represents the complex NEValues, is the necessary 

component of a chaotic system. Selected NEValues are such 
that the system trajectories stretch along the 3x  axis within 

3h x h− ≤ ≤  and then fold when they reach the boundary 
of this region. Regarding non-uniqueness of this NEValues, 

 in  could be exchanged with   or every 
other function of   which behave similarly in the sense of 
sign change pattern. Similarly, in the  ,  
could be substituted by  or 
every other function of  and  with the same qualitative 
behavior. This behavior is to change sign across one closed 
region in the 1 2x x plane. However, for the next of the paper, 
the system (3.3) is considered.  

To be more precise, the NEVectors of the system (3.3), 
which are surely SI, are obtained as:
,  and . Based on the 
real parts of NEValuse, the state space of this system can 
be partitioned into four regions. The system’s qualitative 
behavior in each region is given in Table 1. The validity of 
this type of analysis is based on the results of section 2 
which is entirely given in [3]. The graphical illustration of 
the qualitative behavior of the nonlinear system (3.3) is also 
presented in Fig 3.  Based on comment 2.2, the regions 2 and 
4 of this nonlinear system are 0-attracting and 0-repelling, 
respectively. For chaos generation, the existence of these two 
regions both is necessary to ensure the stretching and folding 

 

Table 1. Qualitative analysis of system (3.3) 

 

 

 

 
Region 

Sign of
 Re (x)  

Qualitative Behavior 

Region 1  3 2 2 2 3 2
1 2 3| &ax bx r x h +  x  

 1,2Re ( ) 0 x  2 2
1 2( ) 0d x x

dt
+   

Spiral 

 3Re ( ) 0 x  3( ) 0d x
dt


 

Exponential 

Region 2  3 2 2 2 3 2
1 2 3| &ax bx r x h +  x  

 1,2Re ( ) 0 x  2 2
1 2( ) 0d x x

dt
+ 

 

Spiral 

 3Re ( ) 0 x  3( ) 0d x
dt


 

Exponential 

Region 3  3 2 2 2 3 2
1 2 3| &ax bx r x h +  x  

 1,2Re ( ) 0 x  2 2
1 2( ) 0d x x

dt
+ 

 

Spiral 

 3Re ( ) 0 x  3( ) 0d x
dt


 

Exponential 

Region 4  3 2 2 2 3 2
1 2 3| &ax bx r x h +  x  

 1,2Re ( ) 0 x  2 2
1 2( ) 0d x x

dt
+ 

 

Spiral 

 3Re ( ) 0 x  3( ) 0d x
dt


 

Exponential 

Table 1. Qualitative analysis of system (3.3)
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of system trajectories. However, the sufficient condition is 
indeed the proper arrangement of these regions so that the 
cyclic and bounded qualities of system trajectories could be 
guaranteed. This condition is assured in the system (3.3), by 
the assistance of the regions 1 and 3, which complete the circle 
of system trajectories evolution. From these results, it can be 
deduced that the evolution of the system trajectories is based 
on the pattern illustrated in Fig. 4.

By this arrangement, it can be noticeably realized that the 

stretching of trajectories occur along the 3x axis direction 
followed by the folding action and this pattern occurs 
repeatedly.

Qualitative analysis results of the system trajectories 
summarized in table 1 and Figs. 3-4, simply approve the 
system’s almost global boundedness, which is thoroughly 
investigated in the next section. It worth mentioning that the 
proposed approach is primarily qualitative, so, without any 
quantitative manipulation, it is merely expected to generate 
a continual stretching and folding behavior. Consequently, 
it is expected that the synthesized system with differential 
equation (3.3) may have chaotic dynamics no matter what 
the system parameters’ values are.  For more elaboration, 
in the next section, through numerical simulation studies, 
the chaotic behavior of this system is approved and some 

interesting features of this chaotic system are revealed as well. 

4- Analysis of numerical simulations
This section is devoted to showing the validity of the 

proposed qualitative approach for chaos generation through 
numerical simulations. Because our approach is essentially 
qualitative, the precise values of the parameters do not matter; 

hence, the following values are arbitrarily taken: 5a = , 1b =
, 50ω = , 5h = and 10.r =  By this assignment, the simulated 
3D phase space of the system is given in Fig. 5. Since the  
is the invariant manifold of the system (stable manifold of the 
origin), system trajectories cannot cross it.

From these Figs, one can observe the chaos-like behavior 
of the system in some sense. The dynamic Lyapunov exponents 
of the system trajectories shown in Fig. 7 indicate the chaotic 
regime. The calculation of Lyapunov exponents is based on 
the well-known method proposed in [8].

The almost equality of absolute values of the positive 
and negative Lyapunov exponents means that the expansion 
power of trajectories is nearly equal to their contraction 
power. Indeed, this could be a clue of a conservative chaotic 
behavior, which can be more highlighted by calculating the 
dimension of the time series generated by the system.

The dimension of a strange attractor is a measure of its 
geometric scaling properties or its complexity and has been 
considered as the most fundamental property of an attractor. 
Numerous methods have been proposed for characterizing 
the fractional dimension of the strange attractors produced by 
chaotic systems. These methods fall into two broad categories; 
those derived from the topology, and those derived from the 
dynamics. Perhaps the most common of the former metrics is 
the correlation dimension popularized by [9] while the most 
common of the latter is the Lyapunov dimension proposed 
by [10]. Kaplan and Yorke introduced a quantity defined 
in terms of the Lyapunov exponents, , 1,2,...,iLE i n=
, where the subscript labeling of the iLE is chosen so that 

1 2 nLE LE LE> > > . The quantity introduced by Kaplan 
and Yorke is commonly called the ‘Lyapunov dimension’ and 
is given by:

11

1 k

L j
jk

D k LE
LE =+

= + ∑
 

  

where k  is the largest integer for which 
1 2 0kLE LE LE+ + > .
Based on this relation, the Lyapunov dimension of the 

chaotic system trajectories, shown in Fig.5, is 2.9974LD =
. This almost integer Lyapunov dimension verifies the 
conservative nature of the system behavior. The time series 
plot of 1( )x t  is also illustrated in Fig. 8. As expected for a 
conservative chaotic dynamics, there is no transient in the 
system response. Indeed, while the system is in the chaotic 
regime for all times, its response will never settle down to an 
attractor. To be more precise about the chaotic behavior of 

 

Fig. 3. Graphical illustration of the qualitative behavior of the system (3.3) 

  

 

Fig. 7. Dynamic Lyapunov exponent of system trajectories depicted in fig. 6. 

  

Fig. 3. Graphical illustration of the qualitative behavior of the 
system (3.3)

Fig. 4. Cyclic evolution of solution trajectories of the system (3.3)
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this derived system, its frequency spectrum is illustrated in 
Fig. 9.

As was expected, the continuous power spectrum verifies 
the qualitative analysis results about the chaotic behavior of 
the system. It is worth mentioning that this system may have 
even a larger Lyapunov exponent for some other parameters’ 

values. In addition, the shape of the system’s 3D trajectory can 
be arbitrarily changed by an arbitrarily tuning of the system 
parameters. For example, to make the global 3D trajectory 
more stretched along the 3x axis, the parameter h  should be 
larger and the similar reshaping along the 1 2x x plane should 
be made too,  via parameters r , a   and b .

The other elegant feature of this chaotic system 
is that the chaotic behavior is obtained for almost all 
parameters’ values and for all initial conditions except 
those located on the manifold{ }3

3| 0x∈ =x 
, the stable 

manifold of the origin and those located on the manifold
{ }3

1 2| 0 & 0x x∈ = =x 
, which is indeed the unstable 

manifold of origin.
The major drawback of a conservative chaotic flow may 

be the possibility of its unboundedness due to the lack of an 
attractor. Indeed, this lack of attractors is both a simplification 
and a complication. Since there are no attractors, there is 
no worry about transients; that is, it is not needed to let the 
trajectory runs for some time so that it settles down onto the 
appropriate attractor. This trait usually simplifies the process 
of finding the appropriate solution for the trajectories. On 
the other hand, the lack of attractors means that trajectories 
starting with different initial conditions may behave quite 
differently as time goes on; there is no universal attractor onto 
which they settle down. However, for the proposed system, 
except those trajectories with initial conditions located 
precisely on the stable and unstable manifolds, all other 
trajectories will have the almost same qualitative behavior. 
Specifically, with the selected parameter’s values, the system 
behavior is similar to the almost the same characteristics. 
That is why the initial conditions are not mentioned in the 
simulation results. In the sequel, the global boundedness of all 
trajectories for all other initial conditions is assured.

Based on the qualitative analysis of the system (3.3) 
depicted in Table 1, Fig. 3 and Fig.4, the system trajectories 
will be unbounded if either the initial conditions are located 
exactly on the unstable manifold of origin, i.e. { }3

1 2| 0 & 0x x∈ ℜ = =x 

 )مقاله انگلیسی( شدهآراییاصلاحات مدنظر نویسندگان پس از مطالعه کامل مقاله ویراستاری و صفحه: بجدول 
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curly bracket 6 2 

k  is correct. Paragraph 7, line 6 7 3 
) ,typed in a, b, omega, h, rThe parameters’ value (

, are not aligned. Mathtype Paragraph 3 7 4 
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   7 
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   9 
   10 

 

{ }3
1 2| 0 & 0x x∈ ℜ = =x 

, or there exists some finite time #t  
such that the system trajectory will intersect the unstable 

  

Fig. 6.  3D phase plane plot of the system (3.3); Left: 𝒙𝒙𝟑𝟑(𝟎𝟎) > 𝟎𝟎 , Right: 𝒙𝒙𝟑𝟑(𝟎𝟎) < 𝟎𝟎 
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Fig. 7. Dynamic Lyapunov exponent of system trajectories depicted in fig. 6. 

  

 

Fig. 8. Time series plot of 1( )x t ; for system trajectories depicted in fig. 6. 
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Fig. 9. The frequency spectrum of system trajectories depicted in fig. 6. 

  

manifold, the 3x  axis, at that time. The first case can be 
simply prevented by excluding this manifold from permitted 
initial conditions while the second one will never happen as 
will be shown below. The qualitative behavior of the nonlinear 
system in the 1 2x x - plane is a spiral with an amplitude of 
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 and with an angular frequency of ω  
while the parameters h and ω  are arbitrarily selected. Even 
if the exponent term, i.e. 2 2

3( ) tx h− , is negative for all 0t ≥  
, the system trajectory approaches the 3x  axis as t  goes to 
infinity. However, in our case, the exponent term is negative 
only for some finite time t ⊗  at which the system trajectory 
intersects the planes 3x h= ±  and eventually leaves the region 
3. Thus, as depicted in the graphical illustration of the system 
behavior in Fig. 3, the system trajectory converges to the 

3x  axis in region 3 and then, at some time say t ⊗ , it leaves 
this region to enter region 4 and finally it diverges from the 

3x  axis in region 4. In short, even if the initial conditions 
are located very near to - but not precisely on - the unstable 
manifold, the system trajectory does never cross the 3x  axis. 

The last point, which worth mentioning is that based 
on the proposed qualitative analysis, the system (3.3) 
can also generate some torus-like chaotic dynamics. This 
phenomenon is observed when the system parameters are 
chosen symmetrically so that the resulting system trajectory 
has a symmetric shape. For example, if the parameters a  and 
b  are selected identically the same, the system may produce 
something like torus dynamics. Similar behavior may be 
obtained by equal selecting of the parameters h  and r . 
Indeed, as stated in section 3, this behavior is again expected, 
due to the fact the presented approach for generating chaos is 
mainly based on the continual stretching and folding without 
settling down to a periodic orbit, which is also the essential 
characteristic of the torus-like behavior. On the other hand, 
it is known that an autonomous torus could be destroyed 
and transformed into chaos by applying a perturbation or by 
destroying its symmetry, [11]. 

Indeed, it is only needed to break down the 
aforementioned symmetries to have a chaotic behavior. That 
is one reason for the specified parameters’ values selected for 
the first simulations. To highlight this point better, we take 
the following symmetric parameters’ values: 5a = , 5b =
, 50ω =  , 10h =  and 10r = . The results given in Fig 10, 
Fig. 11 and Fig. 12 facilely illustrate the generated torus-like 
chaotic behavior.  The shape of the 3D trajectory plot in Fig. 
10 and the frequency spectrum of the system trajectories 
depicted in Fig. 12 indicate that this type of behavior is very 
similar to a torus dynamics. 

Based on the KAM theorem [12], this chaotic behavior 
indicated by the very small positive Lyapunov exponents for 
symmetric parameters’ values, though presented in principle, 

Fig. 9. The frequency spectrum of system trajectories depicted in fig. 6.

 

Fig. 10. Torus generated by the system (3.3) with: 5a = , 5b = , 50 = , 10h = and 10.r =  
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may not be noticeable at a practical level.     
As stated earlier, the destruction of symmetry of 

parameters’ values could be considered as a perturbation 
applied to the torus-like chaotic dynamic with symmetric 
parameters and makes the system non-integrable and then 
chaos emerges more obviously. This chaos generation scheme, 
to some extent, corresponds to the well-known KAM theorem 
([13]).

All in all, this paper aimed to employ the previously eigen-
structure analysis method to generate some nonlinear system 
with really complex behavior. The lowest level of complexity 
which could be obtained is some torus-like behavior, and the 
highest one is a conservative chaotic behavior with a very 
high positive Lyapunov exponent. Indeed, it was tried to 
highlight the ability to force some nonlinear systems to behave 
in desired quality through well-known chaos generation 
problem. However, there are many other challenging issues 
in nonlinear control theory, which might be tackled by this 
privileged ability. As an example, another dissipative chaotic 
system generated by this method and its dynamical analysis 
have been proposed in [14] as well as its eigen-structure based 
synchronization problem. 

5- Conclusion and remarks
Qualitative analysis of nonlinear autonomous dynamic 

systems for chaos generation was the basic idea of this paper. In 

this regard, for a particular class of nonlinear systems named 
as pseudo linearizable form, sufficient tools for eigenstructure 
analysis were fully developed with the help of some new 
concepts of NEValuse and NEVectors. The approach proposed 
in the paper, under some sufficient conditions, guarantees to 
reach the globally valid results. Since the continual stretching 
and folding could be considered as the essential qualitative 
characteristic of chaotic behavior, the final and primary 
step of this paper was dedicated to synthesizing this chaotic 
qualitative characteristic by the help of the aforementioned 
qualitative analysis tools. This approach led to a nonlinear 
autonomous system with apparently chaotic behavior. The 
systematic generation approach proposed in this paper 
possesses an elegant feature that there is no trial and error 
process to find the parameters’ values of the derived chaotic 
system. Indeed, except for some symmetric arrangement 
of parameters’ values leading to some torus-like chaotic 
dynamics, almost for all parameters and all initial conditions, 
the derived system exhibits different levels of chaotic behavior. 
This parameter independency of this chaos generation scheme 
is owed to the qualitative attribute of the proposed approach. 
Although the resulting chaotic system was conservative, its 
global boundedness along with its property of not settling 
down to a regular attractor can be guaranteed. Indeed, 
the conservative feature of the obtained chaotic system is 
because of the fact that merely the continual stretching and 
folding feature is tried to be synthesized; without forcing the 
trajectories to settle down to an attractor.  In fact, applying 
the proposed global qualitative analysis tool helps us generate 
different nonlinear systems with desired qualitative behaviors. 
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