[1] S. Barquera, A. Pedroza-Tobías, C. Medina, L. Hernández-Barrera, K. Bibbins-Domingo, R. Lozano, A.E. Moran, Global Overview of the Epidemiology of Atherosclerotic Cardiovascular Disease, Archives of Medical Research, 46(5) (2015) 328-338.
[2] A. Javadzadegan, A. Moshfegh, H.H. Afrouzi, M. Omidi, Magnetohydrodynamic blood flow in patients with coronary artery disease, Computer Methods and Programs in Biomedicine, 163 (2018) 111-122.
[3] A. Javadzadegan, A. Moshfegh, M. Behnia, Effect of magnetic field on haemodynamic perturbations in atherosclerotic coronary arteries, Journal of medical engineering & technology, 42(2) (2018) 148-156.
[4] S. Glagov, C. Zarins, D. Giddens, D. Ku, Hemodynamics and Atherosclerosis, Insights and perspectives gained from studies of human arteries, Archieves of Pathology and Laboratory Medicine 112 (1988) 1018–1031, C1016 References C1021 Author addresses, 1.
[5] L. Zhong, J.-M. Zhang, B. Su, R. San Tan, J.C. Allen, G.S. Kassab, Application of patient-specific computational fluid dynamics in coronary and intra-cardiac flow simulations: Challenges and opportunities, Frontiers in physiology, 9 (2018).
[6] R.A. Malinauskas, P. Hariharan, S.W. Day, L.H. Herbertson, M. Buesen, U. Steinseifer, K.I. Aycock, B.C. Good, S. Deutsch, K.B. Manning, FDA benchmark medical device flow models for CFD validation, ASAIO Journal, 63(2) (2017) 150-160.
[7] P.D. Morris, A. Narracott, H. von Tengg-Kobligk, D.A. Silva Soto, S. Hsiao, A. Lungu, P. Evans, N.W. Bressloff, P.V. Lawford, D.R. Hose, J.P. Gunn, Computational fluid dynamics modelling in cardiovascular medicine, Heart, 102(1) (2016) 18-28.
[8] S.A. Berger, L.-D. Jou, Flows in Stenotic Vessels, Annual Review of Fluid Mechanics, 32(1) (2000) 347-382.
[9] K. Perktold, M. Resch, H. Florian, Pulsatile Non-Newtonian Flow Characteristics in a Three-Dimensional Human Carotid Bifurcation Model, Journal of Biomechanical Engineering, 113(4) (1991) 464-475.
[10] D. Kumar, R. Vinoth, V.S. Raviraj Adhikari, Non-Newtonian and Newtonian blood flow in human aorta: a transient analysis, (2017).
[11] T.J. Pedley, The Fluid Mechanics of Large Blood Vessels, Cambridge University Press, 2008.
[12] F.J.H. Gijsen, F.N. van de Vosse, J.D. Janssen, The influence of the non-Newtonian properties of blood on the flow in large arteries: steady flow in a carotid bifurcation model, Journal of Biomechanics, 32(6) (1999) 601-608.
[13] D.S. Sankar, K. Hemalatha, A non-Newtonian fluid flow model for blood flow through a catheterized artery—Steady flow, Applied Mathematical Modelling, 31(9) (2007) 1847-1864.
[14] L. Goubergrits, E. Wellnhofer, U. Kertzscher, Choice and Impact of a Non-Newtonian Blood Model for Wall Shear Stress Profiling of Coronary Arteries, in, Springer Berlin Heidelberg, Berlin, Heidelberg, 2008, pp. 111-114.
[15] B.M. Johnston, P.R. Johnston, S. Corney, D. Kilpatrick, Non-Newtonian blood flow in human right coronary arteries: Transient simulations, Journal of Biomechanics, 39(6) (2006) 1116-1128.
[16] B. Liu, D. Tang, Influence of non-Newtonian properties of blood on the wall shear stress in human atherosclerotic right coronary arteries, Molecular & cellular biomechanics : MCB, 8(1) (2011) 73-90.
[17] Y. Jiang, J. Zhang, W. Zhao, Effects of the inlet conditions and blood models on accurate prediction of hemodynamics in the stented coronary arteries, AIP Advances, 5(5) (2015) 057109.
[18] K.R. Kensey, Y.I. Cho, M. Chang, Effects of Whole Blood Viscosity on Atherogenesis, The Journal of invasive cardiology, 9(1) (1997) 17-24.
[19] W.L. Siauw, E.Y.K. Ng, J. Mazumdar, Unsteady stenosis flow prediction: a comparative study of non-Newtonian models with operator splitting scheme, Medical Engineering & Physics, 22(4) (2000) 265-277.
[20] J. Suo, Y. Yan, J. Oshinski, A. Tannenbaum, J. Gruden, D. Giddens, Flow Patterns and Wall Shear Stress Distributions at Atherosclerotic-Prone Sites in a Human Left Coronary Artery - An Exploration Using Combined Methods of CT and Computational Fluid Dynamics, in: The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2004, pp. 3789-3791.
[21] J. Jung, A. Hassanein, R.W. Lyczkowski, Hemodynamic Computation Using Multiphase Flow Dynamics in a Right Coronary Artery, Annals of Biomedical Engineering, 34(3) (2006) 393.
[22] Y.H. Kim, P.J. VandeVord, J.S. Lee, Multiphase non-Newtonian effects on pulsatile hemodynamics in a coronary artery, International Journal for Numerical Methods in Fluids, 58(7) (2008) 803-825.
[23] V.A. Nosovitsky, O.J. Ilegbusi, J. Jiang, P.H. Stone, C.L. Feldman, Effects of Curvature and Stenosis-Like Narrowing on Wall Shear Stress in a Coronary Artery Model with Phasic Flow, Computers and Biomedical Research, 30(1) (1997) 61-82.
[24] Abdulrajak Buradi, A. Mahalingam, Numerical Simulation Of Pulsatile Blood Flow In An Idealized Curved Section Of A Human Coronary Artery, International Journal of Mechanical and Production Engineering (IJMPE), (Special Issue 2016) (2016) 15-19.
[25] W.-d. Qin, S.-h. Mi, C. Li, G.-x. Wang, J.-n. Zhang, H. Wang, F. Zhang, Y. Ma, D.-w. Wu, M. Zhang, Low shear stress induced HMGB1 translocation and release via PECAM-1/PARP-1 pathway to induce inflammation response, PLoS One, 10(3) (2015) e0120586.
[26] F. Gijsen, A. van der Giessen, A. van der Steen, J. Wentzel, Shear stress and advanced atherosclerosis in human coronary arteries, Journal of biomechanics, 46(2) (2013) 240-247.
[27] A.C. Guyton, J.E. Hall, Textbook of Medical Physiology, Elsevier Saunders, 2006.
[28] D.A. Cooley, G.W. He, Arterial Grafting for Coronary Artery Bypass Surgery, Springer Berlin Heidelberg, 2006.
[29] B.M. Johnston, P.R. Johnston, S. Corney, D. Kilpatrick, Non-Newtonian blood flow in human right coronary arteries: steady state simulations, Journal of Biomechanics, 37(5) (2004) 709-720.
[30] J. Soulis, G. Giannoglou, Y. Chatzizisis, T. M Farmakis, G. Giannakoulas, G. E Parcharidis, G. Louridas, Spatial and phasic oscillation of non-Newtonian wall shear stress in human left coronary artery bifurcation: An insight to atherogenesis, 2006.
[31] J.V. Soulis, G.D. Giannoglou, Y.S. Chatzizisis, K.V. Seralidou, G.E. Parcharidis, G.E. Louridas, Non-Newtonian models for molecular viscosity and wall shear stress in a 3D reconstructed human left coronary artery, Medical Engineering & Physics, 30(1) (2008) 9-19.
[32] R. Torii, N.B. Wood, N. Hadjiloizou, A.W. Dowsey, A.R. Wright, A.D. Hughes, J. Davies, D.P. Francis, J. Mayet, G.-Z. Yang, S.A.M. Thom, X.Y. Xu, Fluid–structure interaction analysis of a patient-specific right coronary artery with physiological velocity and pressure waveforms, Communications in Numerical Methods in Engineering, 25(5) (2009) 565-580.
[33] A. Santamarina, E. Weydahl, J.M. Siegel, J.E. Moore, Computational Analysis of Flow in a Curved Tube Model of the Coronary Arteries: Effects of Time-varying Curvature, Annals of Biomedical Engineering, 26(6) (1998) 944-954.