RNAL
NG AND
ATION

SIMUL

AUT Journal of Modeling and Simulation

AUT J. Model. Simul., 51(2) (2019) 103-110
DOI: 10.22060/miscj.2019.14999.5119

The Exact Solution of Min-Time Optimal Control Problem in Constrained LTI
Systems: A State Transition Matrix Approach
V. Ghaffari

Department of Electrical Engineering, School of Engineering, Persian Gulf University, Bushehr, Iran

Review History:

Received: 2018-09-18
Revised: 2019-07-01
Accepted: 2019-07-28
Available Online: 2019-12-01

ABSTRACT: In this paper, the min-time optimal control problem is mainly investigated in the linear
time invariant (LTI) continuous-time control system with a constrained input. A high order dynamical
LTI system is firstly considered for this purpose. Then the Pontryagin principle and some necessary
optimality conditions have been simultaneously used to solve the optimal control problem. These
optimality conditions would usually lead to some complicated equations while some integral terms
may be presented. Then a systematic procedure based on state transition matrix will be addressed to

overcome and simplify the mentioned complexities. Therefore the state transition matrix would be used  Keywords:

to determine the exact solution of the min-time control problem in a typical LTI system. The min- Constrained LTI system

time problem would be converted to some algebraic nonlinear equations by using of the state transition timal control
. . . . . . optimal contro
matrix. These algebraic equations are depended on some definite parameters. Hence the required design p‘ '
parameters as well as switching times and the possible minimum time would be analytically determined min-time problem

in the minimum-time optimal control problem. Thus the min-time control signal would be explicitly ~state transition matrix
determined by computing of the switching times and also some other constants. The proposed control

scheme is applied in some typical dynamical examples to show the effectiveness of the suggested control

method.

1- Introduction

The optimal control problems have attracted the attention
of many researchers and engineers in the last decades [1, 2]. In
the optimal control theory, the input signal would be selected
such that a predefined cost function is minimized while
some constraints are presented. Such a cost function maybe
a physical quantity like energy, fuel, final time and the others.
Many optimal control problems could be mathematically
formulated by deriving of some necessary and sufficient
optimality conditions. But there is not a systematic way to
find the exact solution of the optimal control problems either
analytically or numerically. Hence the approximated solutions
have been interested in the control applications [3, 4].

Sometime the optimal control problem may have not a
unique solution. In other words, they maybe have either many
solutions or no solution exists. There are some examples
which the optimal control law does not exist. For an example,
the min-time problem has not an optimum solution in
unconstrained LTT system. There would be a unique solution
to the optimal control problem in the unconstrained LTI
systems. But determination of the exact optimum solution via
analytical way maybe have some mathematical difficulties due
to emerge of two-point boundary value problem [1, 5]. Beside
of such a complexity, sometimes it is preferred to look for a
suboptimal or a near-to-optimal control rather than the exact
*Corresponding author’s email: vghaffari@pgu.ac.ir

solution [6, 7]. The numerical method as well as the wavelet
functions may be used to find an approximated solution [8].

The min-time problems have been increasingly interested
in some applications like aerospace, teleportation and the
others [9, 10]. In such problems, the input signal is designed
such that the goal would be satisfied in a minimum feasible
time [11-13]. The well-known bang-bang control usually
leads to a min-time control [14]. The solution of the min-
time problem may have some mathematical complexities in
comparing with the other optimal control problem as well
as minimum fuel or energy. The well-known phase plane
drawing methods would be a graphical approach to find the
min-time control law in a simple second order dynamical
system. Although the phase plane method is very helpful but
it could not be extended to the high order systems [1].

There are some control applications as well as the
guidance system which may be treated as a typical LTI system
[15, 16]. Hence the exact solution computation would be
useful in such min-time optimal problem. Lately the min-
time problem has been formulated in the continuous-time
LTI systems with real poles. Then the optimal control signal
may be numerically found in the LTI system [17]. This study
motivates the author to develop an analytical and systematic
framework to the exact solution of the min-time control
problem. Therefore a systematic procedure based on the state
transition matrix is addressed in this paper. For achieving
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this goal, firstly, the min-time problem is mathematically
formulated in the constrained LTI system. Then it is converted
to an algebraic nonlinear equation which depends on some
parameters like the switching times and also some other
constants. The switching times and also the minimum time
would be calculated by the solution of the proposed equation
analytically or numerically. Therefore the optimal control
signal can be explicitly determined in a typical LTI systems.

The rest of this paper is organized as follows: the min-time
control problem is firstly formulated in the next Section. Then
the main results are presented in Section 3. Three numerical
examples are investigated in Section 4. Some concluding
remarks are places is the last Section.

2- Problem Statement
Consider the following constrained LTT system:

5(1) = Ax(t)+ Bu(t),

u(t) <1 (1)

where x(t) € R™ denotes the system state and u(t) € R is
a control input. The constrained LTT system (1) is considered
for formulation of the min-time problem. Then it is desired to
find a piecewise-continuous control signal u(t), t € [t,, tf}
such that the system states can be driven from an initial state
x(ty) = x, to a final state x(t;) = x; in a minimum possible
time. It is trivial that without loss of generality the initial time
t; may be set as zero. In order to formulate the min-time
problem, the following assumption is considered:

Assumption: The pair (4,B) is controllable in the
dynamical system (1).

By considering of the optimality conditions (for more
detail see [1]), it is shown that there exists at most 1 — 1
switching times in the input signal [17]. The Pontryagin
principle implies |u(t)| = 1 in order to obtain a min-time
control law [18]. Then the switching times may be defined as
tip k=12,...,n — 1. Let define a pulse function P, ;(t) as
the following:

1 1, St<t,

) (2)
R, (1) 0 t<t and t>t,

Then the control signal u(t) could be represented as
follows:

u(t)= ZZ:)“kPk,kﬂ (1) (3)

where @, =+1,k=0,1,2, ...,n— 1. It is desired to
drive the system states from an initial point x to the final state
X; in a minimum possible time. It is easy to check that there
exists at most 2™ signal profiles for the control input u(t). The
min-time problem would be solved in the constrained LTI
system (1) if the switching times t;, k = 1,2,...,n — 1 and
some constants @, = +1,k =0,1,2,...,n — 1 are suitably
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found. Next, a systematic procedure is suggested to determine
the optimal signal u(t) in the min-time problem.

3- Main Result

The min-time control problem of the constrained LTI
system (1) would be solved in this Section by using of the state
transition matrix. For this purpose, the min-time problem is
converted to an algebraic nonlinear equation which depends
on the switching times t;, and also some constants a;,. Since
already |a,| = 1 then there exists at most 2" signal profiles
for the control input u(t). The algebraic nonlinear equation
could be solved explicitly or numerically by assuming e;. to be
some constant values.

Theorem 1: Suppose that the matrix A is invertible and
the constants a, = +1,k=0,12,...,n—1 are given. If
there exists a solution to the following algebraic equation:

>o(6)B=x, @

where @(t) denotes the state transition matrix and the
parameters tp, B, and x¢ are defined as:
t, =t —t, k=0,1,2,..,n-1
B, =x,+a,A"'B
B =(a,—a, ) A" B,k =12,....n—1

'

_ -1
X=X, +a A B

n-1

then the minimum feasible time t,, = t; and the switching
times t,, k = 1,2,...,n — 1 would be determined. Therefore
u(t) = ¥1z2a, Py, (£)would be a min-time control which
moves the dynamical system (1) from the initial condition
x(ty) = xg to the final state x(t,) = x;.

Proof: The system equation which described by the
differential equation (1) is written as the following [19]:

%(e/”x(t)) =e "Bu(r) )

By integrating both sides of Eq. (5) fromt = t tot = t;. 4
with considering u(t) = ay, t;, =t < t;,, we have:

e—Atx(t) |§/;+1 — _ake—Al‘A—lB |;I;+l (6)

Then Eq. (6) is simplified as follows:
e "ix(t,)-e x(t)=ae ™A' B-ae 4B (7)
Then x(t,,,)in term of x(t,) could be obtained as:

x(thrl ) _ eA(thvtk)x(tk ) I akeA(tk+1 -4) )

A'B-a, A'B,k=0,1,2,...n—1

It is seen that the term x(t,), corresponding to k = 0,
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may be written as:
x(l‘1 ) = )y (to ) + OcOeA(t1 4B a, A'B ©
It can be simplified as follows:

x(1,)= e (170) (x(t0)+a0A_lB)—a0 A'Ba (10)

Similarly the vector x(t,) is obtained as:
x(t,)

It may be rewritten as follows:

x(t2 ) = g lth) ()c(t0 ) + aOA’lB) +
(o, ~a,)e" ™A 'B—a, A'B

="y () r e A B—ay 4B (1)

(12)

The vector x(t;) can also be obtained as:
x(t,)=e""x(t,) + e A B—a, A'B (13)
Then

x(f3) = eA(t3—t0) (_x(to)—i- aOA_lB)—i-(al —a, )eA(t3—t])‘
A'B+(a,-a,) ) B g 4B "

Finally the term x(t,, ) will be formulated as:

x(tn):6'4(1"7/“)(x(t0)+aoAilB) (e, 0!0)6 i /A BJr(az a)e Alty ) (15)
AilB+(a3ia2)eA(/ui/;)Ai‘B+“'+( a, an—z) A 'B— a, A'B

By considering x(t,) = xz, Eq. (15) would be rewritten
as follows:

—ay)e W aps  (16)

A'B+(ay—a,)e ™ A B+ (e,

X, +a,, A'B=" (xn + anA"B) +(o

(O[2 —a, )eA(!,,’/z) -a,, )eA(/,,—r,, ) 4B

Let define some variables as follows:
=t —1,k=012,..,n-1

By =x,+a,A"'B

Bi=(a,—a, )4 Bk=1,2,....n—1

1
/.—x,+a A B

n—1
Thus Eq. (16) would be written as:

x, =By re fret fre Bvrep (17)

The state transition matrix @(t) is found as the following

[19]:

D(t)=e"=L" {(sl,, —A)fl} (18)

Hence the following equation would be concluded:
X, =0(1) B,+@(1) B +0(6) B+ () B +...+0(1,,) B, (19)

Then Eq. (4) can be obtained. It completes the proof.

It is clear Eq. (19) would actually be a set of the n
-nonlinear equations and n-unknown variables. Therefore
t,, k=0,12,..,n—1 can be computed explicitly or
numerically. Hence the switching times t;, k = 1,2, ...,n and
also the min-time t,, = t; would be obtained.

Algorithm 1: Min-time control solution with invertible 4

Step 1: Choose a suitable combination of the constants
@, =+1,k=0,1,2,...,.n—1.

Step 2: Construct the vectors xf, t; and f,
k=0,12,..,n—1

Step 3: Compute state transition matrix ®(t).

Step 4: Solve the algebraic equation x; = Y123 &(¢t},)fy.

Step 5: Check the switching times tg, k = 1,2, ...,n are
correctly obtained else go to the step 1 and tries with another
combination of the constants &, k = 0,1,2,...,n — 1.

Remark 1: There would be no switching time in a special
case gy =y =@y =~ = @,_y» and Eq. (19) may be
simplified as follows:

x,+a, A'B=0(t,)(x,+a,4"'B) (20)

Then only the minimum time t,, = t; could be computed.
Remark 2: In the first order systems, the minimum time
tr may be calculated as follows:

Axy+a,B

i, va, B (1)

t,=A"In(

where @y = +1or ag = —1la; = —1.

In Theorem 1, a systematic method is suggested to the
min-time control problem in the constrained LTT system. The
results of Theorem 1 would be failed when the matrix 4 is not
invertible. Hence Theorem 1 would be extended in the next
subsequent.

Theorem 2: Suppose a;, = +1, k=0,12,...,n—1 are
some known constants. The minimum feasible time ¢, = t;
and the switching times t,, k=12,...,n —1 would be
determined if there exists a solution to the following algebraic
equation:

> 7Q(n)=% (22)

where Q(t) = f ®(7)Bdt, ®(t) is the state transition
matrix and the parameters t4, ;, and s are defined as:
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t,=t —t,k=01,2,..,n-1
Yo =&

Ve =0~ k=

X, =x _q)(tf)xo

L2,...,n—-1

Therefore the signal u(t) = Y¥=3ay, Py 1.1 (t) would be a
min-time optimal control.

Proof: Let integrate both side of Eq. (5) from t = t;, to
t =t and consider u(t)=ay, t,=t <t, 4 Then
x(ty41) in term of x(t,,) is obtained as follows:

x(tM) = Al 7'*)x(tk ) +a, I?”e/{(“*ﬂ)Bdr, k=0,1,2,...,n—1 (23)
The term x(t, ) may be written as:

X(tl ) _ eA(tl—to)x(tO ) + aOJ‘fl

)

e Bdr (24)

It can be simplified as follows:

x(1,)= eA('l_t‘))x(to )+ aoj.zftoeA’BdT (25)

Similarly the vector x(t, ) is obtained as:

x(1,)

ety (1) +a, _[z_toeA(’f"”)BdT +, J.'ZeA(tﬂ)BdT (26)
]

It may be rewritten as follows:

x(tz) _ eA(trtu)x(tO ) " aoj‘trtoedeT " alj‘;rtleA(rz—r)BdT 27)

[
The vector x(t3} can be also obtained as:

x(t,)= eA(’r’z)x(t2 )+a, erA(W)Bdr (28)

Then

x(1;) = ey (1) +a, Jﬁrtoe’”Bdr +a, I: je””Bdr +a, J.;ﬁze“Bdr (29)

=0

Finally the term x(t,, ) will be formulated as:

t,—h

x(tn ) = €A(["7’°)x(t0 ) + OCOJ‘:":jOeATBdr +a, Jl _tleATBdr +£ |
" e 30
e"Bdr+a, J.:_t”"eATBd T

h=h 4 b=l
a2J. e"Bdr+..+a,,
] b=ty
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Eq. (30) would be rewritten as follows:
X, :(I)(tf)x(to)+onQ(t'0)+(ocl —aO)Q(t{)+ (1)
(a,—a,) Q(t;)+...+(an_l—an_z)Q(t;,_l)

Then Eq. (22) can be obtained. It completes the proof.
Algorithm 2: Min-time control solution in general form
Step 1: Choose a suitable combination of the constants
a,=+1,k=0,1,2,...,n— 1.

Step  2: Construct the vectors i, t; and ¥,
k=0,12,..,n—1

Step 3: Compute state transition matrix @(t) and vector Q1(t).

Step 4: Solve the algebraic equation Y33 ¥, () = 7.

Step 5: Check the switching times t, k = 1,2, ...,n are
correctly obtained else go to the step 1 and tries with another
combination of the constants &, k = 0,12, ...,n — 1.

Remark 3: There would be no switching time in a special
case @ty = @y = @ = - = @,_4. lhen Eq. (22) may be
rewritten as follows:

aOQ(tf)+d)(tf)x0 =X, (32)

Then the minimum time t,, = t, can be computed.

Remark 4: The vector Q(t) = (et — e4%)A™'B would
be found when the matrix 4 is invertible. Hence the results of
Theorem 1 can be imagined as a special case of Theorem 2 with
invertible A.

Next the proposed procedure is applied in some numerical
examples.

4- Numerical Simulation
In this Section, the proposed procedure is used in some
dynamical examples (i.e. the LTT systems with real poles, complex
poles and imaginary poles) to find a min-time control signal.
Example 1. Consider the following continuous-time LTI
system:

P(6)+39(1)+2y (1) =u(z) (33)

The initial and final conditions of the dynamical system
(33) are selected as follows:

$(0)=13(0)=0.x(t,)=0.5(t,) =0

It is desired to find a min-time optimal control u(t). Then
0 1

2 el

The poles of the LTI system (33) are some real values.
Hence the algorithm 1 can be used in this example. The terms
Bo» By and x are determined as follows:

A
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2-a, 1 a,—a, | 1 1
= , = — ’x =——0
ho="3 Mﬁ‘ 2 o] 270

The state transition matrix @(t) may be computed as:

971"
o()=e" =1’
2 s+3
Then
2 B 1 1 B 1
@(t):L_l s+1 s+2 s+1 s+2 _
-2 2 -1 2
+ +
s+l s+2 s+1 s+2

26*1 _ele e*[ _e72t
e +2e —e ' 427

The min-time control problem can be solved by
constructing of the following equation:

x]’c = cb(t(’))ﬁo + Cb(ti)ﬁl

where t; =t, = 0and t] = t, — t; = 0. Then

(34)

It can be written as follows:

2e ™ — e

1 Qe — g0 -
Q [O} =(a, —2){ y N }+(0¢l —ao)[ y 2[] (35)
—2e " +2e " —2e " +2e "

Eq. (35) would be simplified as:
(@p — 2)(2et0 — e~2t0) +
(a — ap)(2e™t —e724) = a;
(ao — 2)(—2e~%0 + 2¢2t0) +
(@, — ap)(—2e~t1 + 2e7%11) = 0

(36)

In this example, there are 4 different cases for the constants
oty and ;. The solution of Eq. (36) can be only computed with
&y = —1 and @y = 1. In this case, Eq. (36) would be written
as follows:

(—6e_t3 +3e 2t 4
4e~th — 27201 =1

6e~to — Ge2to — (37)
4e t 4 4e72t =
It can be rewritten as:
—th o —tl _
{ 2e ! 3e ° = 1 (38)
2e7%t1 — 3720 =1
Thus it is not hard to show that t; = Ln (\@H) & 0.3119

and t} = Ln(2y/3 + 3) ~ 1.8663 are the unique solutions.
In the other cases, Eq. (36) has not a real solution. It can be
simply checked as follows:

In the second case @y =way =1, Eq. (36) would be
simplified as:

2e7t —e72t0 41 =0
(39)

—2e7t0 4+ 2e2t0 = ()

It is seen that Eq. (39) has not a non-trivial solution. In the
third case @y = 1 and @y = —1, Eq. (36) could be written as:

{Ze"t{) — e 260 4 4e~t1 — D72t = 1

e_t(’) — e—Zf(’) + ze—t{ _ ze—Zt{ =0 (40)
Then

{ Ze_t’1+e—t6 =1 (41)

2e-2t 1 e=2th — 1

It is clear that Eq. (41) would have not a real solution.
Finally, in the last case @y = @y = —1, Eq. (36) could be
simplified as:

{ 2t — g=2t0 =1
3

) , (42)
—2e7fo 4 2¢7%0 =0

It can be also shown that there would not be any real
solution for Eq. (42). Hence the final time is calculated as
ty =ty = 18663 seconds and also the switching time
is determined as t; =ty —t;=Ln(y3+3)= 15544
seconds. Then the optimal control signal u(t) would be
represented as follows:

-1
+1

0 <t<15544

u(®) = { 1.5544 < t < 1.8663

(43)

Therefore the signal u(t) would be a min-time optimal
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control in the dynamical system (33).
Example 2: Consider the following second order
system:

X = [_02 _12]x + [2]” (44)

The initial and final conditions are selected as
x(0) =[1 0]" and x(tf) = [0 0]7. The poles of the LTI
system (44) are complex. Hence the algorithm 1 would be used
in this example. The vectors ff, f; and x; are determined as
follows:

By = z—zao [(1)] , By = _a1;a0 [é], xp = —%dl [é]

The state transition matrix ®(t) may be determined as
follows:

e~ t(cos(t) + sin(t))

e~ tsin(t) ]
—2e~tsin(t)

o(t) = [ e~*(cos(t) — sin(t))

The min-time control problem can be solved via the
following equation:

xp = O(tg)fo + P(t1)f1

where: t) = t, > 0and¢; =t, — t; = 0. Then

1 ! 1 ! 1
& [o] = (@ =20 [ | + (@ — @@ ] @s)
It can be rewritten as follows:

17, . [e"*(cos(ty) + sin(t}))
“ [0] = (@ -2) l —2e~t sin(t}) (46)
~t1(cos(t]) + sin(t}))

—2e~t1 sin(ty)

(a1 — ap) le

Eq. (46) may be simplified as follows:

(ap — 2)e~t cos(t]) +
(a; — ao)e_ti cos(t;) = a;
(ap — 2)e~ % sin(t)) +

(a; — ag)e T sin(¢]) =0

(47)

In similar way, Eq. (47) has a solution in condition which
oy = —1 and @y = 1. It can be checked that Eq. (47) has not
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a feasible solution in the other cases. Then the solution of Eq.
(47) is computed as t; = 1.6026 and t] = 0.5518. Therefore
the final time is calculated as t; = t3 = 1.6026 seconds and
also the switching time is found as t; = ty —tj = 1.0507
seconds.

Example 3: Consider the following third order LTI system:
X 1= X3
Xy = X3 (48)
X 3=U
The matrix 4 is not invertible in the dynamical system (48).
Hence the algorithm 2 can be used in this example. The initial

and final conditions are chosen as x(0) =[1 —1 1]% and
x{:tf) = 0. In the algorithm 2, we have:

t(’)=tn;t1=tn_t1 atéztn_tZDYO=a07
Yo = Qg, V1 = Q1 — Qg, V2 = Ay — Ay, Xf :xf—d)(tf)xo

The state transition matrix ®©(t) may be determined as
follows:

1t
PM=10 1 ¢
00 1

Then the vector Q(t) is computed as:
L
¢
Q) = fto ®(1)Bdr = % £2
t

Eq. (22) may be rewritten as the following:

YoQ(to) +v1Q(t]) +v.Q(t;) = %y (49)
Then
1 /3 1 13
~t -t
60 61 (50)
1 1
(o) Etéz + (a; — ayp) gtiz +
t) ty
1 ,3
slz | [1—tp+2¢2
(ap = ) L2 [ + G | =0
a; aq t -1 + tf

It can be simplified as follows:
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aoty’ + (ay — ap)t;’ +
(@ — a)ty’ + 6 — 6ty +3t2 =0
aoty’ + (ay — ap)t;” +
(@ —a)ty? —2+2t; =0
oty + (a; — ap)ty +
(a—apt; +1=0

(51)

Eq. (51) would have a solution when a,=-1,a =1 and
a, =-1.Itisnot hard to check that Eq. (51) has not a feasible
solution in the other cases. The solution of Eq. (51) is calculated
as , =2.3735, t, =1.3942 and ¢, = 0.7074 . Therefore the final
time is calculated as ¢ : =1,=1.6026 seconds and also the
switching times are determined as t, = t(', _tl' =0.9793 and
t,=t,—t,=1.6661 seconds.

5-Conclusion

The exact solution of the min-time problem is analytically
investigated in the constrained continuous-time dynamical
system. The min-time control problem is firstly formulated
in the LTI system with input constraint. Then a systematic
procedure based on the state transition matrix is proposed to
determine the min-time control signal explicitly. The min-time
control signal would be explicitly determined by computation
of the switching times and also some other constants. Finally
the optimal control input is represented as a switched signal.
Such a control policy is used in a second order system to show
the effectiveness of the proposed method.
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