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ABSTRACT:  In this study, a novel control algorithm, based on a P300-based brain-computer interface 
(BCI) is deployed to control a 2-DoF robotic arm. Eight subjects, including five men and three women, 
perform a 2-dimensional target tracking in a simulated environment. Their EEG (Electroencephalography) 
signals from the visual cortex are recorded and P300 components are extracted and evaluated to deliver 
a real-time BCI-based controller. The volunteer’s intention is recognized and will be decoded as 
an appropriate command to control the cursor.  The final processed BCI output is used to control a 
simulated robotic arm in a 2-dimensional space. The results show that the system allows the robot’s 
end-effector to move between arbitrary positions in a point-to-point session with the desired accuracy. 
This model is tested and compared on the Dataset II of the BCI competition. The best result is obtained 
with a multi-classifier solution with a recognition rate of 97 percent, without channel selection before 
the classification.

Review History:

Received: 2019-01-02
Revised: 2019-05-31
Accepted: 2019-06-08
Available Online: 2019-12-01

Keywords:

Brain-computer interface (BCI)

 EEG

 P300 Potential

Classification

2-DoF robotic arm

153

*Corresponding author’s email: hamed_ghane_s@aut.ac.ir

                                  Copyrights for this article are retained by the author(s) with publishing rights granted to Amirkabir University Press. The content of this article                                                  
                                 is subject to the terms and conditions of the Creative Commons Attribution 4.0 International (CC-BY-NC 4.0) License. For more information, 
please visit https://www.creativecommons.org/licenses/by-nc/4.0/legalcode.

1. Introduction
“Pay attention” to something is an act that is frequently 

performed in daily life. This behavior occurs at the 
spontaneous electrical activity EEG by the appearance of 
a wave called P300. This wave was first reported in 1965 
[1]. It appears as a positive deflection in the EEG signals 
approximately 250−500 ms following the presentation of a 
rare, deviant or target stimulus. P300 has been widely utilized 
in studies on brain activity disorders [2], [3], memory illusion 
and lie detection [4], [5], [6] and as the input of a BCI system 
[7]. In order to detect the P300 wave in noisy EEG signals, 
feature extraction methods combined with robust classifiers 
are generally used to extract hidden information from such 
signals and to classify them accurately.  Utilizing electrical 
activity of neuron cortex ensemble to control a robotic arm 
was a winning goal that attracted researchers to study about 
BCI. Generally speaking, BCI makes a direct connection 
between man and an external tool [8]; however, for practical 
usages of this system, BCI can be defined as a system that 
establishes a connection between a man and his surrounding 
environment, which can be practiced through the brain [9].

Nowadays, the interface of brain and computer is a far-
reaching topic; On the other hand, deleting this interface and 
installing a chip inside the human brain can be potentially 
harmful and only a few experiments have been done on the 
mice [10], [11], [12]. These systems can be used in various 

applications such as helping patients who are relatively 
mentally healthy but have moving troubles, like patients with 
Amyotrophic Lateral Sclerosis (ALS) and Spinal Cord Injury 
(SCI) or those with disorders that impair the movement of 
their organs in connection with the environment [13], [14]. 
Also, BCI systems can be used to simplify the connection of 
user with other objects and devices such as gaming consoles 
and smartphones [15]. 

Designing a proper BCI experiment that has high 
speed and accuracy in detecting P300 is vital. Visual test 
designs for P300 detection generally have two patterns; In 
the first pattern named as the oddball paradigm, there is a 
6×6 matrix of English alphabet letters and numbers that 
each row and column of this matrix is switched on and off 
randomly. The signal is typically measured most strongly 
by the electrodes covering the parietal lobe. The presence, 
magnitude, topography and emergence time of this signal are 
often considered as metrics of cognitive function in decision-
making processes. The detection of a P300 wave is equivalent 
to the detection of where the user had been looking 300 ms 
before its detection. In a P300 speller, the main goal is to 
detect the P300 peaks in the EEG, accurately and instantly. 
The accuracy of this detection will ensure a high information 
transfer rate between the user and the machine [8], [10]. 

 The second pattern is used in applications such as 
choosing the desired direction, 2-D cursor control [17], [18], 
games [19], and general applications in which a user faces 



G. Garakani et al., AUT J. Model. Simul., 51(2) (2019) 153-162, DOI: ﻿ 10.22060/miscj.2019.15569.5136

154

some choices. In this pattern, There are some bulbs and each 
one indicates one choice and is randomly switched on and off 
in each round. The attention of the user to one of these bulbs 
makes P300 detectable in EEG. This pattern is applied in the 
paper and then the output of the BCI is used to actuate the 
end-effector of a simulated robotic arm.

Here, the EEG signals are used to control a simulated 
2-degrees of freedom (DoF) robotic arm in a point-to-point 
real-time session. The robot comprises two revolute joints 
make it possible for the end-effector to move across a plane. 
The output of BCI is classified into four main decisions that 
make the robot to move in four main directions: up, down, 
left and right. The output of BCI is fed into a pre-processing 
unit and this unit reads the last brain decision and translates 
it into a reference position for the robotic arm. Eventually, the 
end-effector moves to follow user’s directional orders. 

The whole BCI task is performed in four steps, as shown in 
Fig. 1. The first step is to design a test associated with the final 
goal. The second one is to record the EEG signals, followed 
by a prompt and accurate detection of P300 waves. The third 
is to process the recorded data. Since brain signals are of low 
domains, the event-related potentials (ERPs) have a small 
signal to noise ratio (SNR); therefore, by applying a band-
pass filter, almost all noises could be removed. Then through 
a Wavelet and Hilbert transforms, features are collected. 
In order to detect the subject command, the input data are 
classified utilizing K-nearest neighbors (KNN) and support 
vector machine (SVM) classifiers [24], [25], [26]. Finally, the 
fourth step is to establish a protocol in order to obtain an 
efficient connection between the brain and external tools.

The rest of the paper is organized as follows: Section 
2 describes the recording data process and the primary 
key factors to improve the results. Section 3 focuses on 
preprocessing and filtering the recorded data. Section 4 
discusses EEG signal feature extraction, and section 5 presents 
the classification algorithms. Section 6 proposes the robotic 
structure and control algorithm as the final application. 
Simulation results are illustrated in section 7. Finally, the 
conclusion is presented in Section 8.

2. Data Acquisition
In this section, the protocol for designing the task and 

performance of the recording device are introduced.

2-1- Task design
Task design is an essential part of every BCI experiment. 

More complicated tasks can result in more desirable outputs; 
however executing this complicated task can be very difficult 
in practice. Therefore, there should be a tradeoff between the 
simplicity of the task and accuracy of the outputs. In addition, 
factors such as age, gender, education, or every other feature 
which could potentially affect the results should be carefully 
considered. Besides, an isolated location, barren of any 
distraction and noise distortion, should be assigned for the 
task. 

In this study, based on the information about the time 
of the task and distance of the bulbs given in the protocols 
of [27], [28], the primary task has been designed and has 
performed on subjects. Due to the possible downsides, some 
corrections like tuning the bulbs’ distance have been applied 
after repeating the task several times. The task has carried out 

 

Fig. 1.: The procedure of controlling a robot by a BCI system. 

  

Fig. 1.: The procedure of controlling a robot by a BCI system.

 

Fig. 2.: The designed GUI for controlling robotic arm (a) four bulbs as the four directions, (b) beginning the task with a 

counter, (c) target and non-target definition. 

  

Fig. 2.: The designed GUI for controlling robotic arm (a) four 
bulbs as the four directions, (b) beginning the task with a counter, 

(c) target and non-target definition.
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on eight subjects (three women and five men) and the essential 
data for the research has been obtained. In order to achieve 
the best results, the primary test data has been ignored and 
the final protocol data has been used. 

First, four bulbs are shown on XY axes with the same 
distance on a gridded screen, as shown in Fig. 2a. The bulbs 
that are labeled by 1, 2, 3 and 4 represent four main directions. 
In order to efficiently attract the subject’s attention, the 
experiment begins on the screen with five seconds countdown 
that is shown in Fig. 2b. First, a bulb will be randomly switched 
on and remain on for 100 ms while the other three bulbs are 
off as depicted in Fig. 2c. When the first bulb switches off, the 
second bulb will be switched on after 150 ms and will remain 
on for the next 100 ms. This sequence repeats for all bulbs and 
after 1000 ms, the next round will start. To help the subjects to 
concentrate more, they are asked to select one bulb and count 
its flashes. For recognizing the selected bulb and consequently 
selected direction of the subject, this procedure will be 
repeated five epochs. A subject during the data recording is 
shown in Fig. 3 a. Left laptop displays test while the right one 
is connected to BCIs to record brain data.

2-2- Recording Device
Clinical EEG devices usually have 8, 16, 32, ... or 512 

channels and an electrode is implemented to each channel. 
Typically, electrodes will be placed on the subject’s head, 
which convey the critical potential to a preamplifier. Received 
signals will be amplified and filtered; then they can be recorded 
for further processing such as frequency spectrum analysis, 
classification, diagnostic algorithms and analog-to-digital 
conversion. In this project, the EEG device used to record 
data is Starstim made in Spain. This device can transfer data 
via eight channels. Transferred data is a 10 × N matrix. First 
eight columns are the output of channels; the ninth column 
is the trigger and the last column is the simulation run-time. 

The Neuroelecterics Instrument Controller (NIC) is a 
universal software solution that gives full control of Starstim 
device. NIC provides a user-friendly interface pack with 
a variety of features. One can manage recordings, launch 
recording sessions, stream data over the network and receive 
network triggers with NIC. This software is also able to send 
the data recorded by Starstim to MATLAB software by using 
TCP-IP protocol, simultaneously.  Brain signals recording 
require some necessary prerequisites. By considering the 
brain’s map that is shown in Fig. 4, primarily, the channels’ 
locations should be specified. Then, the impedances should be 
checked in order to record the data with the highest quality. 

2-3- Channel Selection
Different stimulated brain regions in different subjects, 

shown in Fig. 5, emphasize the necessity of a crucial channel 
selection. There are various methods for channel selection, 
depending on the environment and users conditions. 
Incomplete and improper selection causes difficulties in 
dimension reduction. 

Here, certain bounds of channels in target and non-target 
signal categories are selected. Then, the correlation for the 

selected target signals is computed for all channels. Finally, 
channels with the lowest correlation are ignored [37]. Due to 
its high speed and accuracy, this method perfectly matches 
with real-time objectives. The final selected channels are 

 and .

3. Data Preprocessing
The next step after data recording is data processing. This 

step focuses on the quality and statistic assessment of the 
recorded signals and extraction of their content. In similar 
studies, the analysis of the training phase has a noticeable 
effect on the accuracy and efficiency of results. This effect 
emphasizes the importance of training and testing phase.

Band-Pass filtering is necessary to eliminate the noises of 
signals. However, to avoid a zero output and to prepare the 
signal for further preprocessing, offset trend, shown in Fig. 
6a, should be removed. The signal with removed trends is also 
depicted in Fig. 6b. Then, the signal is filtered to eliminate all 
environmental noises, including blinking through a band-pass 

 

Fig. 3: EEG signals recording. 

  

Fig. 3: EEG signals recording.

 

Fig. 4: The electrodes placement for eight channels. 

  

Fig. 4: The electrodes placement for eight channels.

 

Fig. 5: Brain activity of five subjects during the test. 

  

Fig. 5: Brain activity of five subjects during the test.
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filter [30]. Sometimes, when the Electrooculography (EOG) 
and EEG signals amplitude surpass the threshold, there is no 
need to filter and the extracted parts must be excluded from 
the process. Because P300 components are observable at a 
frequency band between 1 to 15 HZ, the band-pass filter is 
designed to maintain these frequencies. After filtering, the 
signal is extracted to smaller parts based on the beginning of 
stimulation. 

Increasing the accuracy and simplifying the computing 
are other advantages of using this frequency range. Afterward, 
the EEG signal is divided into epochs. Each epoch consists 
of 600 ms of EEG data after the stimulus onset. Every five 
successive epochs for each stimulus will be averaged to 
increase the SNR and enhance the accuracy of P300 detection. 
The output averaged epochs are shown in Fig. 7.

4. Feature extraction
Features usually reflect distinguishing characteristics, a 

noticeable measurement or a functional element obtained 
from data in hand. Extracted features are used to minimize 
and also simplify the number of resources needed to represent 
a large set of data accurately. Generally, the performance of 
a BCI system highly depends upon a suitable selection of 
both features and feature extraction techniques. Here, signal 
amplitude, Hilbert Huang and wavelet transform coefficients 
have been assigned as the features. Besides, principal 

component analysis (PCA) is used to reduce dimension of the 
feature space. 

4-1- Hilbert Huang transform
Hilbert Huang transform (HHT) has been primarily 

developed for the analysis of the nonlinear and non-
stationary signals. HHT is a way to decompose a signal into 
so-called intrinsic mode functions (IMF)  along with a trend 
and to obtain the instantaneous frequency data [31]. IMF was 
introduced by Huang et al. [32] as the result of the Empirical 
Mode Decomposition (EMD). It is a necessary intermediate 
step toward computing instantaneous frequency through the 
Hilbert Transform or any other method. Technically, an IMF 
is a function that satisfies two conditions: (1) In the whole 
data set, the number of extrema and the number of zero 
crossings must be either equal or differ at most by one; and (2) 
At any point, the mean value of the envelope defined by the 
local maxima and the envelope defined by the local minima 
is zero [32]. These features guarantee a well-behaved Hilbert 
transform.

EMD method is used to decompose the signal into several 
IMF components. Then, the Hilbert Transform is applied 
to create an analytic signal and to obtain instantaneous 
frequencies and instantaneous amplitudes. So, the original 
features would be obtained.

 The first IMF has the most similar frequency content and 

 

                                                                           a                                                             b 

Fig. 6: Recorded data from channel 3. a: The raw signal,  b: Signal after removing trends. 

  

Fig. 6: Recorded data from channel 3. a: The raw signal,  b: Signal after removing trends.

 

Fig. 7: The average of five consecutive epochs in range of 600 milliseconds for the first subject. 

  

Fig. 7: The average of five consecutive epochs in range of 600 milliseconds for the first subject.
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it also has more zero-crossing points in comparison to the 
other functions. This fact makes the first function, the best 
alternative to calculate the instantaneous frequency of the 
input signal. In short,  the instantaneous frequency calculation 
using the IMF is known as the Hilbert-Huang transform.

4-2- Wavelet transform
Among all time-frequency-transformations, wavelet 

is more operative on ERPs [33]. In ERP analysis, the signal 
phase must be considered and their frequency characteristics 
require processing in the time-frequency domain. The wavelet 
coefficients are used in 0 − 4 Hz and 4 − 8 Hz frequency bands 
that are named as Delta and Theta respectively. The quality 
of decomposition has a direct relation with the compatibility 
of signal and wavelet transform. In this study, the B-Spline 
wavelets are used because these types of wavelets are sub-
optimal time-frequency localizer. They are also semi-
orthogonal and have compact supports. These abilities make 
them quite prevalent.

4-3- Feature space reduction
Practically, only a small part of the features is essential 

and discriminative. Indeed, the feature space defined on the 
original signals may contain redundant information that does 
not have a significant influence on the features categorizing. 
Dimension reduction is applied to preserve more valuable 
information. Accordingly, the computation efforts drop and 
the system generalization capacity rises.

As a scale-invariant method [32], in this paper, PCA is 
applied for dimension reduction procedure. First, PCA sorts 
the eigenvalues of training covariance matrix from largest 
to smallest. Then, based on the problem definition, only 
information related to some of the largest eigenvalues are 
maintained. Finally, using their corresponding eigenvectors, 
the dimension of the secondary features space is reduced 
comparing to the primary one. Therefore, most of the initial 
features information will be kept in the secondary space. 
In Fig. 8, scatter plots for two components with the highest 
value in PCA are shown. These plots show how much one 
component is affected by another.

5. Classification
In BCI systems, classifiers are used to organize data based 

on their extracted features. There are so many methods which 
have been used for EEG signals classification. The k-nearest 
neighbors algorithm ( k-NN) and support vector machine 
(SVM) are two classifiers which are used in this project.

5-1- Support vector machine ( SVM )
In P300 BCI research, SVM is regarded as one of the 

most accurate classifiers [32]. A basic definition of SVM is 
provided in [35]. The main idea of a linear SVM is to find 
the separating hyperplane, between two classes such that 
the distances between the hyperplane and the closest points 
from both classes are maximal. In other words, we need to 
maximize the margin between the two classes. Although 
SVM is generally a two-class classifier, it can be developed 

for a multi-class application. Besides the linear classification, 
SVM can also perform a non-linear one by using kernel trick. 
Non-linear SVM can map their inputs into high-dimensional 
feature spaces. The two-dimensional feature space of training 
data set for the first subject is shown in Fig. 9. The target and 
non-target data are not utterly separable. Depending on the 
subject and the test, there are two or more target groups. As 
shown in Fig. 9, the targets are in two separate domains of 
the feature space. These two groups of targets have different 
characteristics, but they must be classified as one target group. 
This classification is indeed, independent of data distribution; 
therefore, realizing the training data distribution in the feature 
space is a necessary preliminary task.

Regardless of using some two-class or a multi-class SVM, 
a desirable performance is not always guaranteed. So, the 
k-NN algorithm, as an alternative solution and possibly better 
one is also tried.

5-2- The k-Nearest Neighbors Algorithm ( k-NN )
 k-NN is a training or supervision algorithm. Generally, 

this algorithm is utilized for two main purposes: (1) the 
distribution estimation of the training density function and 
(2) data classification according to the training template. The 
k-NN is used to classify the test data according to the training 
patterns. This algorithm is compatible with all types of data 
distribution. As shown in Fig. 9, our data are classified into 
two groups. These two groups are not entirely distinct in 
certain areas. Therefore, it is better to use a multi-class SVM. 
Mostly, selecting the two-class or multi-class character of the 
relevant samples related to the first category - which is the 
group in question- depends on the person or the decided 
exam. Indeed, using the multi-class SVM requires knowing 

 

Fig. 8: Dimension reduction procedure. 

  

 

Fig. 9: Classification of learning data by SVM with optimized Gaussian center for the first subject. 

  

Fig. 8: Dimension reduction procedure.

Fig. 9: Classification of learning data by SVM with optimized 
Gaussian center for the first subject.
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the methods of data distribution of the training features. On 
the other hand, applying KNN would eliminate this problem 
and is compatible with all distribution forms of traits.

Using one neighbor does not lead to suitable results and 
even may face errors, especially at the edge of the borders. 
Likewise, using five neighbors may cause the same errors. The 
experimental results show that using three neighbors is the 
best possible option for this project. The results for different 
classifiers considering two sets of data are compared in Fig. 10. 
The BCI competition Ⅱ database, Berlin 2002, is used in Fig. 
10a. Also, Fig. 10b is based on the recorded data of subjects.

As stated before, it is seen that if we utilize the one 
neighbor approach, we cannot achieve good results in the 
edges of the two groups and then we might face some errors. 
On the other hand, if we use five or more vicinities in certain 
areas, usually close to the edges, we might encounter some 
other difficulties. Our tests indicate that three neighbors will 
yield the best possible result. After comparing the results, you 
can see that the best results are of our database and has the 

nearest neighboring with the classifier in table.1.
The comparison results show that the best results come 

from our database by the k-NN classifier. 

6.  Robotic structure
Modeling and control of robotic arm have been paid 

tremendous attention in the field of mechatronics over the 
past few decades and the quest for a new development of 
robot arm control continues.  Here, we are proposing some 
kind of cognitive robotic control. 

In order to evaluate the proposed neuro-cognitive 
algorithm, the output of BCI is fed to a simulated 2-DoF 
robotic arm, shown in Fig. 11. The robot can move in a two-
dimensional space (x-z plane) which provides an ability to do 
a variety of two-dimensional tasks including drawing shapes 
on a flat board, engraving on all kinds of surfaces or grabbing 
and moving any objects over a flat surface like playing chess 
or checkers. In this section, the dynamics and the control 
scheme of the robotic arm will be presented.

a)   

b )  

Fig. 10:  Different classifier results for two groups of data sets; (a) BCI competition Ⅱ, (b) recorded 
from subjects. 

  

Fig. 10:  Different classifier results for two groups of data sets; (a) BCI competition Ⅱ, (b) recorded from subjects.

 

    

 

Table. 1: Statistical analysis . The experiments have shown that three neighboring has the best results in our project. 

 

Table. 1: Statistical analysis . The experiments have shown that three neighboring has the best results in our project.
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6-1- Reference input 
The output of the BCI module as the final subject decision 

is translated as a reference input to the robot control module. 
Indeed, by recognizing the subject’s directional decision (up, 
down, left, or right), the robot will follow that movement 
correctly and consequently the control of the robot’s end-
effector would be realized. For example, if the initial position 
of robot’s end-effector is ( , )x z  and the confirmed command 
from the BCI is detected as the up direction, the desired 
position (x ,z )d d  would be ( , )x z h+  where h  is the 
minimum resolution of the robot’s movement. Similarly, for 
moving down, right and left, the desired position for the 
robot end-effector would set as ( , - )x z h , ( , )x h z+  and 
( - , )x h z , respectively. By this method, the subject will be 
able to control the position of the end-effector at each step in 
a real-time and point-to-point mode. In the next subsection, 
the dynamic of the robot would be presented.

6-2- Dynamics of the robotic arm
The target simulated robot is a robotic arm with two 

degrees of freedom. Dynamics of the proposed robotic 
structure is expressed by [36] as

( ) ( , ) ( )M C g uθ θ θ θ θ θ+ + = 

�
(1)

where ( )M θ is the 2 2×  inertia matrix of the manipulator. 
The index ijm describes the effect of the acceleration of joint 
i on joint j . The inertia matrix is a symmetric positive 
definite matrix, whose indices are conFiguration dependent. 
C can be interpreted as the damping term in the model and 
g  corresponds to the moment generated by the gravitational 
pull at each link and actuator. [ ]1 2

Tθ θ θ= is the angular 
displacement of revolute joints and [ ]1 2

Tu u u= is the input 
torque vector to each joint.

6-3- Inverse dynamics control
This control algorithm is based on the exact linearization 

of all nonlinear dynamics of the system. It includes additional 
terms, actively providing the system with a spring-damper 
behavior. For tracking a given desired trajectory, (1) can be 
rewritten as:

( ) ( , )M h uθ θ θ θ+ = 

� (2)

 

Fig. 11: A 2-DoF robotic arm. 

  

where ( , ) ( , ) ( )h C gθ θ θ θ θ θ= +  . An inverse dynamics 
linearizing control signal  can be obtained as

( ) ( , )u M v hθ θ θ= + 

� (3)

which will lead to the following system of double 
integrators

vθ = � (4)

The new control signal v can now be chosen in such a way 
that the end-effector position, x follows the desired trajectory 

dx . This robotic arm has only two translational degrees of 
freedom as  [ ]Tp x y= , i.e., the end-effector orientation is 
fixed. The end-effector’s linear velocity is obtained by the help 
of Analytical Jacobian matrix as:

1 2

1 2

( )A

x x

p J
y y

θ θ
θ θ

θ θ

∂ ∂

∂ ∂
= =

∂ ∂

∂ ∂

 
 
 
 
  





�

(5)

Here 2p ∈  describes the position of the end-effector 
and ( )AJ θ is the so-called Analytical Jacobian. Indeed, ( )AJ θ  
corresponds to the mapping between the joint velocities and 
linear velocity of end-effector. By time differentiation of (5), 
the acceleration of end-effector can be expressed by:

( ) ( , )A Ap J Jθ θ θ θ θ= +  



�
(6)

where 
2

2( , )A

p
J θ θ θ

θ

∂
=
∂

  .  By the help of (4) and (6), a new 
control signal v  can now be designed, in such a way that p  
tracks a given desired trajectory dp  as follows:

( )1( ) ( , )A d D P Av J Jp K e K eθ θ θ θ−= + + −  

 

�
(7)

In which PK and DK  are positive definite diagonal 
matrices and ( )de p p θ= − . Correspondingly, the error 
dynamics can be described by

0D Pe K e K e+ + = 

� (8)

The diagonal positive definite property of matrices PK and 
DK assures that the desired trajectory dp would asymptotically 

be reached. By tuning the control parameters 
PK and 

DK , the 
different dynamic behavior of the system is acquired.  The 
simulation model of the robot arm with implemented Inverse 
Dynamics Control is illustrated in Fig. 12.

7. Simulation
In this section, a simulation in MATLAB is given to 

evaluate the ability of BCI robotic structure. The task is to 

Fig. 11: A 2-DoF robotic arm.
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draw some desired shapes on a vertical board via the BCI 
system which connects the user’s brain to the 2-DoF robotic 
arm of  Fig. 10. The robot’s end-effector is attached to a 
marker for drawing. The subject imagines the desired shape 
in his mind and based on the required movements, at each 
step, focuses on the corresponding directions bulb in the BCI 
panel to move the tip of marker (attached to the end-effector). 
Indeed, BCI reads the confirmed direction, translate it for the 
robot controller as reference input and finally, the robot will 
draw the desired shape like a robotic hand.

As an example, drawing a letter like G is considered in 
details. The first step is to move the end-effector to the up 
direction. To achieve the first movement, the user must focus 
on the upper bulb. By that, the BCI system reads the brains 

signal, processes it, and sends the confirmed decision to the 
robot input unit. 

This unit provides the desired reference input for the 
robot controller, corresponding to the robot fixed resolution. 
Then, the end-effector is moved in a way to reach the desired 
position by the control law. In Fig. 13, the initial position of 
the robot and BCI panel are shown. After receiving the first 
detected decision, the robot end-effector follows the controller 
inputs to meet the desired path, as shown in Fig. 14. In the 
next step of drawing letter G, the subject has to focus on the 
left flashing bulb. Then, by correspondingly focusing on the 
appropriate flashing bulbs in each step, letter G will be drawn 
on the board. Considering the counterclockwise handwriting, 
the sequence of subject concentrations is up-left-down-right-

 
Fig. 12: Inverse dynamics control. 
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Fig. 13:  Initial state (a) Simulated robotic arm, (b) The BCI panel. 
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Fig. 13:  Initial state (a) Simulated robotic arm, (b) The BCI panel.

 

 

 

 

 

Fig. 14: After the first detected decision ( a ) Simulated robotic arm, (b) The BCI panel. 
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Fig. 14: After the first detected decision ( a ) Simulated robotic arm, (b) The BCI panel.
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up-left. The resulting output of the BCI panel is shown in Fig. 
15b. The output trajectory of the simulated robotic arm is also 
depicted in Fig. 15 a.

Regarding the data acquisition method, the drawn letter G 
is sharp-cornered and is not smooth. In this study, there were 
only four directions bulb, which finally lead to four distinct 
directions. Therefore, the robot movements are limited to 
these four directions, which cause hard corners in output 
shapes.

8. Conclusion
In this paper, recording methods, stimulus presentation 

paradigms, feature extraction, and classification algorithms 
of a P300 based BCI system were studied. We reached high 
accuracy in classification. The last stage of designing a BCI 
system is establishing a protocol for fast, accurate and efficient 
connection between brain, applications and external tools. 
In order to test the proposed algorithm, the BCI system was 
connected to a 2-DoF robotic arm. The overall structure 
comprises of BCI as the input and robot end-effector as the 
output. In this case, the user can control the robot’s end-
effector position by focusing on the desired direction’s bulb. 
According to the mentioned applications of BCI systems, 
offline use of this type of systems is not functional and the 
main goal is being practiced in a real time application.

Further work and success of this research would lead to 
the development of robotic systems that can be deployed by 
disabled users, and thus improve their mobility, independence, 
and quality of life. In this regard, we are currently working 
on developing some robotic manipulators which are more 
compatible with BCI systems and improving the quality of 
attention detection based control schemes.
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