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ABSTRACT:  In this paper, dynamic modeling of a Vestas 660 kW wind turbine and its validation 
are performed based on operational data extracted from Eoun-Ebn-Ali wind farm in Tabriz, Iran. The 
operational data show that the turbine under study, with a classical PI controller, encounters high 
fluctuations when controlling the output power at its rated value. The turbine modeling is performed 
by deriving the non-linear dynamic equations of different subsystems. Then, the model parameters are 
identified such that the model response matches the actual response. In order to validate the proposed 
model, inputs to the actual wind turbine (wind speed, pitch angle and generator torque) are fed to the 
model in MATLAB as well as FAST tool, and the output powers are compared. In order to improve 
the control performance and alleviate fluctuations in the full-load region, considering the nonlinear 
and complex behavior of the system, a neuro-fuzzy controller is designed and simulated to control the 
pitch angle. In this controller, neural network is used to adjust the membership functions of the fuzzy 
controller. Simulation results of the designed neuro-fuzzy controller indicate the improved performance 
of the closed-loop system compared to the actual and simulated results from the classical PI controller.
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1. Introduction
Due to environmental, social and economic benefits, using 

wind energy is increasingly growing against other energy 
resources, particularly fossil fuel energies. Also, the significant 
advances in the wind turbines industry have accelerated the 
interest in the utilization of wind energy. 

In the partial load region, where the wind speed is less 
than the rated value, extracting the maximum energy from 
wind is the goal of control. Many studies have been conducted 
to achieve this goal in this region. Moodi and Bustan.[1] 
proposed a novel T-S model with nonlinear consequent 
parts. Then, a robust H∞ observer based fuzzy controller is 
designed to control the turbine using the estimated wind 
speed. Also, two networks are used to accurately model the 
aerodynamic curves. Velastimir et al. [2] utilized an advanced 
fuzzy controller for controlling wind turbine. In this paper, 
a model also analyzed and combined with a stochastic wind 
model for simulation purposes. Karabacak et al. [3] used a 
neural network structure to control a wind turbine. In this 
way, wind direction has been predicted and the wind turbine 
turns in this direction to extract the maximum energy of 
the wind. Yaakoubi et al. [4] presented the intelligent MPPT 
by using FLC (fuzzy logic control) due to its ability to cope 
with various problems. In the full-load region, extra loads 
have negative effects on different parts of the wind turbine. 

Therefore it reduces the turbine lifetime. Hence, in wind 
speeds above the rated value, the objective of the control 
system is to reserve the output power at its rated value, not to 
derive the maximum energy out of the wind [5-8]. 

The data from the Eoun-Ebn-Ali wind farm in Tabriz, Iran 
and the simulated results, demonstrate that the output power 
of these turbines have significant fluctuations and exceed 
the rated power frequently. This has negative effects on the 
turbine structure and can cause serious damages to different 
parts of the turbine. This is due to the poor performance of 
the classical controllers in controlling the blades pitch angle 
in the wind speeds higher than the rated value. Employing 
a deficient controller also increases vibrations and causes 
damages to mechanical parts of the turbine such as gearbox 
and blades. The controller should work as a damper in 
vibration modes in order to reduce the frequency loads and 
failure risk due to fatigue. Therefore, in this paper, an adaptive 
neuro-fuzzy controller has been designed in order to solve 
this problem and keep the output power at its rated value. 

Different controllers from simple PI to advanced and 
intelligent controllers have been presented to adjust the pitch 
angle of the turbine blades and to limit the turbine power, 
in the full-load area. Hwas and Katebi [9] asserted a PI 
controller to control the pitch angle of wind turbine blades. 
This paper suggested two analytical and simulation-based 
methods to calculate the gains of a PI controller for a 5 MW 
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wind turbine. Sheikhan et al. [10] proposed an optimal fuzzy 
PI controller to capture the maximum power of the wind. A 
PI torque controller was proposed where its optimal gains 
were obtained from a particle swarm optimization algorithm 
and fuzzy logic theory. Rudion and Styczynski [11] modeled 
a wind turbine, then by controlling the pitch angle, kept 
the power at its rated value in the full-load region. Girsang 
et al. [12] designed a Multi-Input-Multi-Output (MIMO) 
Individual Pitch Controller (IPC) based on the knowledge of 
mitigated blade load at a yawed inflow condition. Lin et al. 
[13] proposed a Nonlinear PI (N-PI) controller for variable 
pitch wind turbines. The proposed N-PI did not require 
the accurate model and used only one set of PI parameters 
to provide a global optimal performance under wind speed 
changes. 

Application of intelligent techniques to control wind 
turbines in the full-load region has also been considered 
in recent years. Guo et al. [14] proposed the pitch control 
algorithm of a wind turbine based on fuzzy and PID control. 
Lasheen and Elshafei [15] proposed a new fuzzy predictive 
algorithm for collective pitch control of large wind turbines. 
Habibi and Yousefi-Koma [16] used an adaptive fuzzy 
controller in the full-load operation. This has been done by 
two adaptive fuzzy controller units, including power and 
speed controllers. Adaptive rules used in the fuzzy controller 
were defined based on the errors of the generated power and 
angular velocity. Goyal et al. [17] considered power generation 
control in variable pitch wind turbines, using an adaptive 
fuzzy-PID controller. Shahnazi et al. [18] used an Radial Basis 
Function (RBF) neural network based PI pitch controller 
for a class of 5-MW wind turbines using particle swarm 
optimization algorithm. Yishuang and Meng [19] proposed 
the application of fuzzy PID controller to control the pitch 
angle of the wind turbine. They used a fuzzy controller to 
improve the system response time and reduce the overshoot.

Here, an adaptive neuro-fuzzy controller is designed to 
keep the output power at its rated value. In this controller, 
neural network is used to adjust the membership functions 
of the fuzzy controller. The neuro-fuzzy controller has 
a combination of fuzzy systems and neural networks 
advantages which uses fuzzy theory for presenting knowledge 
and employs the capability of learning from neural network 
to optimize the parameters [20-24]. The rest of the paper 
is organized as follows. In section 2, the wind turbine 
performance is discussed. In section 3, a model of the wind 
turbine is presented. Model validation with operational 
or actual data is done in section 4. The controller design is 
discussed in section 5 and simulation results are presented in 
section 6. Finally, the last section concludes the paper.

2. Wind turbine performance
The amount of energy that are absorbed by blades, 

depends on the area of rotor, air density, blades design and 
wind speed as follows.

31       
2wind windP AVρ=                                          (1)                                    

a P windP C P=                                                        (2)

When wind blows through the turbine blades with 
sufficient speed, blades move and cause the low speed shaft 
rotation. This shaft is connected to a gearbox to increase 
rotational speed. When high speed shaft reaches rated speed 
of generator, it drives the generator and produces electrical 
energy [25,26].

Typically, to explain the performance of wind turbines, 
non-dimensional characteristic curves can be used to indicate 
the actual performance of the wind turbine in different 
operating conditions. These curves are described as below.

2.1. PC λ−   Performance curve
A common method to show the performance of wind 

turbines is the dimensionless curve of power coefficient-blade 
tip speed ratio. In variable speed wind turbines the maximum 
amount of power coefficient is approximately equal to 0.48 
obtained at a blade tip speed ratio of 8.1[27-29]. In Fig. 1, this 
curve is depicted for a modern three-blade turbine. 

2.2. Variable speed wind turbine performance regions
Variable speed wind turbine performance regions are 

shown in Fig. 2. Accordingly, wind turbines have been divided 
into three different regions. 

Region 1: in this region, the turbine is not working because 
of the cost considerations.  

Region 2 (low speed region): in this region, torque 
controller would be activated for control generator torque to 
extracting the maximum energy of the wind. 

Region 3 (high speed region): when the wind speed 
reaches a rated value, pitch angle control will be activated in 
order to regulate the generator speed and power at their rated 
values [30].

3. Wind turbine modeling
Here, in modeling of the wind turbine the following 

assumptions have been considered.

Fig. 1 3D diagram of ( ),PC λ β
 

 

      

 

Fig. 1 3D diagram of 𝐶𝐶𝑃𝑃(𝜆𝜆, 𝛽𝛽)  
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· Nonlinear modeling was considered and no linearization 
was performed in subsystems. 

· Wind turbine blades were assumed to be perpendicular 
to the wind direction.

· The phenomenon of the wind shear was ignored.
In this paper, the variable speed wind turbine is divided 

into aerodynamic, drivetrain, electrical and pitch angle 
actuator subsystems.

3.1. Aerodynamic subsystem
Equation (3) shows the available power in the wind. It can 

be inferred from Eqn. (4) that power coefficient is a function 
of tip-speed ratio and pitch angle.

31                                                                   
2wind windP AVρ=  

 (3)       

( ), a
P

wind

PC
P

λ β =                                                                     (4)

The absorbed aerodynamic power by rotor can be 
calculated by Eqn. (5).

( )2 31 ,
2a P windP R C Vρπ λ β=                                            (5)

The relationship between power and aerodynamic torque 
is stated in Eqn. (6). The thrust force and the rotor torque can 
be obtained from Eqn. (7). 

a a rP T ω=                                                                           (6)
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In Eqn. (8), torque coefficient  QC can be obtained by 
Eqn. (8).

( ) ( ),
, P

Q

C
C

λ β
λ β

λ
=                                                             (8)

3.2. Mechanical subsystem
In order to model drivetrain, the dynamics of low speed 

shaft is modeled by Eqn. (9).
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Also, the dynamics of the high speed shaft is given by Eqn. 
(10). 

 ارائه معادلات دارای اشکال به همراه شماره معادله در متن مقاله: ججدول 
 MathTypeمعادله تایپ شده در  شماره معادله  مورد 

1 7 𝑇𝑇𝑎𝑎 = 𝜌𝜌𝜌𝜌𝑅𝑅3

2 𝐶𝐶𝑄𝑄 ( ω𝑟𝑟𝑅𝑅
𝑉𝑉𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤

, 𝛽𝛽) 𝑉𝑉𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤
2  

2 9  𝐽𝐽𝑟𝑟
𝑑𝑑2

𝑑𝑑𝑑𝑑2 𝜃𝜃𝑟𝑟 = 𝑇𝑇𝑎𝑎 − 𝑇𝑇1 − 𝐵𝐵𝑟𝑟
𝑑𝑑
𝑑𝑑𝑑𝑑 𝜃𝜃𝑟𝑟 

3 10  𝐽𝐽𝑔𝑔𝑔𝑔𝑤𝑤
𝑑𝑑2

𝑑𝑑𝑑𝑑2 𝜃𝜃𝑔𝑔𝑔𝑔𝑤𝑤 = 𝑇𝑇ℎ − 𝑇𝑇𝑔𝑔𝑔𝑔𝑤𝑤 − 𝐵𝐵𝑔𝑔𝑔𝑔𝑤𝑤
𝑑𝑑
𝑑𝑑𝑑𝑑 𝜃𝜃𝑔𝑔𝑔𝑔𝑤𝑤           

4 16 𝑇𝑇1 = 𝐾𝐾𝑠𝑠𝛿𝛿𝜃𝜃 + 𝐵𝐵(𝜔𝜔𝑟𝑟 −
𝜔𝜔𝑔𝑔𝑔𝑔𝑤𝑤
𝑁𝑁𝑔𝑔𝑔𝑔𝑎𝑎𝑟𝑟

) 

5   
6   
7   
8   
9   
10   

          (10)                     

Then, gearbox is modeled as a gear ratio in Eqn. (11).

1
h

gear

TT
N

=                                                                           (11)                                        

Torsion of drivetrain subsystem is modeled by a torsional 
spring and damping coefficient.

 1 s
dT K B
dt

δθ δθ= +                                                        (12)                              

gen
r

gearN
θ

δθ θ= −                                                            (13)

 gen
r

gearN
ω

δω ω= −                                                         (14)  

( )  gen
r

gear

d
dt N

ω
δθ δω ω= = −                                             (15)

By replacing Eqn. (15) in (12), Eqn. (16) is obtained.
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By replacing Eqn. (12) in (9), Eqn. (17) is obtained. 
Similarly, by replacing Eqn. (12) in (11), and then in (10), 
Eqn. (19) is gained. Finally, the dynamics of the drivetrain is 
defined by Eqns. (17) to (19).

 
( )r r r s
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dt
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ω
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       Fig. 2 wind turbines performance regions [20] 
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( )1
gen gen s gen

gear

dJ k B T
dt N
ω δθ δω

 
= + − 
  

                  (19)              

Note that the viscous damping of low and high speed 
shafts are considered to be ignorable.

3.3. Electrical subsystems
The generator is investigated in this research, which is in 

the class of Wound Rotor Induction Generator (WRIG). The 
feature of this generator allows a variable slip. This generator 
reduces fluctuations in output power and torque by selecting 
optimum slip value. These generators have a variable external 

rotor resistance, which is controllable by slipping. Also, their 
stator is directly connected to the power network [5, 31, 32].   

The output power of wind turbine can be obtained by Eqn. 
(20).

 e gen gen genP Tη ω=                                                  (20)

Finally, the dynamics of the generator subsystem is 
modeled by Eqn. (21). 

( ),
1

gen g ref gen
gen

T T T
τ

= −                                       (21)

In this paper, two mass modeling is used to model wind 
turbine, which is demonstrated in Fig. 3 in details. 
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                  Fig. 4 Wind speed curve obtained from Eoun-Ebn-Ali wind power plant  
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3.4. Pitch actuator subsystem
The pitch actuator is a nonlinear servo system, which is 

compatible with the rotation of the whole or a part of blades. 
The control system uses the pitch actuator to prevent excessive 
loads on wind turbine structure in region 3 and keep the 
generator speed and power constant at their nominal values 
[7, 8, 33]. The dynamic behavior of the pitch actuator working 
in a linear range is given by

1 1
optβ β β

τ τ
= − +                                                   (22) 

4. Model validation with actual data and FAST tool
In this section, in order to validate the model in section 

3, acquired actual data (wind speed, pitch angle, generator 
torque and output power) from Eoun-Ebn-Ali wind power 
plant are used. Curve depicted in Fig.4 , obtained from Vestas 
660 kW wind turbine of Eoun-Ebn-Ali wind power plant.

In order to validate the proposed model, inputs to the real 
wind turbine (wind speed, pitch angle and generator torque) 
were considered as inputs to the model in MATLAB software 
as well as FAST tool, and the output powers were compared. 
The wind speed profile shown in Fig. 4 has been used to 
simulate the wind turbine performance. As shown in the 
Fig. 5, the output power of the real wind turbine, simulation 
results and FAST match with proper accuracy. The Root Mean 
Square Error (RMSE) between the actual data & Simulink 
output, and FAST & Simulink outputs are also calculated to 
be as follows.

RMSE of actual & Simulink data = 33.5418 kW
RMSE of FAST & Simulink data = 23.3247 kW

5. Controller design 
The Adaptive Neuro Fuzzy Inference System (ANFIS) 

is an artificial intelligent technique which creates a fuzzy 
inference system based on input and output information of 
the model. This system combines neural network and fuzzy 
system. ANFIS has the advantage of having both numerical 
and linguistic knowledge. ANFIS also utilizes the ability of 
ANN to classify data and identify patterns. Compared to the 
ANN, the ANFIS model is more explicit to the user and causes 
less memorization errors. Consequently, several advantages of 
the ANFIS exist, including its adaptation capability, nonlinear 
ability, and rapid learning capacity.

ANFIS can be used in a wide range of applications in 
modeling, decision making, and signal processing and control. 
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Fig. 5 Comparison of wind turbine output power in Simulink, FAST and real curves 
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This system is a class of adaptive networks which is a function 
of fuzzy inference system. The ANFIS algorithm combines 
neural network and fuzzy logic with 5 layers utilizing different 
node functions for learning and setting fuzzy inference system 
parameters. After learning, considering constant parameters, 
least square estimation method is used to update results 
[34-38]. The ANFIS system is a Sugeno type fuzzy model 
which is in the framework of an adaptive system in order to 
facilitate adaption and learning capabilities. Furthermore, 
this capability makes fuzzy controller more regulated and less 
dependent on expert knowledge. 

As shown in Fig. 6, ANFIS has 5 layers. First and fourth 
layers are constructed from adaptive (settable) nodes and 
other three layers are constructed from constant (non-
settable) nodes. 

First layer (fuzzification): each node is adaptive in this 
layer. The output of this layer is the degree of membership of 
inputs which is stated as follows. 

( ) ( )1
 ,              1, ,   1, ,  ij ijO x i P and j nµ= = … = …  (24)

( )1
ijO are outputs of each nodes in each layer which 

represent ith node in first layer, in proportion to input j. For 
instance, a bell membership function at first layer is obtained 
as follows.

( ) 2 2

1 1

1 1
ij ijij j b b

j ij j ij

ij ij

x
x c x c

a a

µ = =
 −  −+  +      

                                                
 (25) 

While parameters a1, b1 and c1 are for first implication of 
first layer and the rest of similar parameters are for second to 
fourth implication of the first layer. 

Second layer (rules layer): each node in this layer is a 
constant node and non-adaptive and shown with circle. The 
output of each layer is equal to the multiplication of its inputs 
which is demonstrated as follows.

Fig. 6 shows the equivalent structure of ANFIS for Sugeno 

model. 

2              1, , i i ik
k

O w i Pµ= = = …∏                                          (26)   

The output of each node (wi) is the firing strength of each 
rule. In this layer, instead of multiplier operator, any fuzzy 
operator satisfying AND can be used. 

Third layer: each node in this layer is constant. The output 
of ith node is equal to the ith firing strength divided by the total 
firing strength of all rules. Outputs of this layer are known as 
normalized firing strength.

3

1

             1, , i
i i P

kk

wO w i P
w

=

= = = …
∑

                                         (27)

Fourth layer (defuzzification layer): each node in 
this layer is adaptive. An output of this layer is consisted of 
multiplying later first order Sugeno fuzzy command in   iw
coefficients. 

4

1

         1, ,            
n

i i i i ik k i
k

O w f w q x r i P
=

 
= = + = … 

 
∑   (28)             

where,   iw is normalized firing strength that is obtained 
from third layer.

Fifth layer (summation neuron): the sole node in this 
layer is constant which the final output is from the summation 
of all outputs from fourth layer.

5               1, , i ii
i i

i ii

w f
O y w f i P

w
= = = = …∑∑ ∑

 (29)     

It is worth mentioning that the second, third and fifth 
layers are constant, while the first and fourth layers are 
adaptive. In other words, learning of the network is changing 
the parameters of these two layers to reach desired results. 
ANFIS structure is learned automatically by the least square 
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method and back propagation algorithm, or hybrid learning. 
In this controller, Takagi-Sugeno model is used. In Fig. 

7 a block diagram of the designed neuro-fuzzy controller is 
illustrated. 

As shown in Fig. 7, the fuzzifier unit converts crisp 
information to linguistic variables which enter the rules 
block as inputs. A set of rules based on previous knowledge 
of system is written in rules block. Then, learning algorithm 
block for leaning neural network is placed to select a proper 
set of rules. For control signal this stage is critical. Finally, 
the output of the neural network is defuzzified and linguistic 
functions are converted to crisp form. 

In this paper, a systematic approach for creating adaptive 
neuro-fuzzy controller is presented. This controller have self-
organized and self-adaptive capabilities in accordance to its 
internal structure for learning control knowledge required to 
improve the performance of the control system. 

If the wind speed is lower than nominal speed of wind 
turbine, the pitch angle is kept at its ideal value. When the 
wind speed exceeds the nominal value, controller becomes 
active and keeps the turbine power at its nominal value by 
changing the pitch angle to prevent excessive loads on turbine 

structure. 
In this research, the generator speed error and its 

derivative are inputs and the pitch angle is output for this 
controller. These values are calculated by Eqns. (30) and (31), 
respectively. 

( ) _gen gen nome t ω ω= −                                                   (30)

( ) _( )gen gen nomdde t
dt dt

ω ω−
=

                                                  
(31)          

When the output power of turbine is lower than nominal 
value, the error signal has a negative value and the pitch angle 
remains at its optimal value. When the output power exceeds 
the nominal value, the error signal becomes positive and the 
controller sets a new value for the pitch angle. 

In this paper, the following steps were done for designing 
the neuro fuzzy controller to control the pitch angle: 

· A fuzzy controller with Takashi-Sugeno model was 
designed.

· The designed controller was implemented on the model 
and simulated in MATLAB software.

Fig. 8 training data obtained from fuzzy controller based on Sugeno model 

 

 

Fig. 9 comparison of training data with output of designed fuzzy controller in ANFIS editor 
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· Inputs (generator angular speed error and its derivative) 
and output (blade pitch angle) of the simulation were acquired 
as training data.

· In the ANFIS editor, the training data was loaded as 
shown in Fig. 8.

· The designed fuzzy controller was loaded using FIS part 
in the ANFIS editor.

· Finally, using the ANFIS editor, the designed controller 
was trained. By adjusting the weight of neural network 
interfaces, the system parameters (membership functions, 
linguistic variables) were chosen to be close to the desired 
values by reducing the generator angular velocity error. 
Therefore, the controller performance was improved as 
shown in Fig. 9.

 

Fig. 10 inputs and outpu structure of designed controller 
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Fig. 11 membership functions of generator angular speed error 
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Fig. 12 membership functions of generator angular speed derivative error 
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In Fig. 10, the structure of the designed neuro-fuzzy 
controller has been shown.

In Figs. (11) and (12), membership functions of inputs 
to the designed controller have been shown. As shown in 
these Figures, triangular membership functions were used 
for inputs. Also, the range of variation for inputs has been 
determined. In these membership functions the following 

linguistic variables were used: Large Negative (LN), Medium 
Negative (MN), Medium Positive (MP), and Large Positive (LP).

Figure 13 represents the rules used in the neuro-fuzzy 
controller.

6. Simulation results
In this study, simulations are performed for a variable 

 

 

Fig. 13 avereage of rules used in designed neuro-fuzzy controller 
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speed wind turbine using MATLAB software (Simulink). 
The dimensions of the model are exactly similar to a Vestas 
660kW wind turbine located in Eoun-Ebn-Ali wind farm in 
Tabriz. This turbine has three main components including 
rotor, tower and nacelle. Rotor has three blades and hub. 
Tower is a cylindrical pile, which holds the nacelle. Nacelle is 
a case where drivetrain is placed in it. The drivetrain system 
includes low-speed shaft, gearbox, high-speed shaft and the 
generator. 

In the simulation, for the partial load or low speed region 
a classical PI controller has been used and we have focused 
on designing the controller for the full load or high speed 
region. Therefore, the designed neuro-fuzzy controller is 
implemented on the model in the full load region in MATLAB 
software. Then, the PI controller used in Vestas 660 kW wind 

is implemented on the model and simulated in MATLAB 
software. Finally, the results of the simulation with the neuro-
fuzzy controller is compared in different diagrams with PI-
controller and actual data obtained from Eoun-Ebn-Ali wind 
farm in Tabriz, Iran. Numerical values of real and simulated 
wind turbines parameters are listed in Table 1.

In order to simulate the wind turbine in this section, the 
wind speed curve shown in Fig. 4, has been used. As shown 
in Figs. 14 and 15, the output power in actual and simulated 
results of the classical controller have high fluctuations. 
Therefore, this causes negative effects on turbine structure 
and reduces the turbine lifetime.

However, according to the Fig. 16, using the designed 
neuro-fuzzy controller, fluctuations can be significantly 
reduced and the output power in the high speed region was 
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Fig. 14 Output power of the real wind turbine 
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Fig. 15 Output power by using PI controller 
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controlled at its rated value. Due to this favorable performance, 
structural loads on turbine can be reduced in wind speeds 
higher than the rated value.

Figure 17 shows the comparison of actual and simulated 
results of the classical PI controller with the designed neuro-
fuzzy controller. As it can be seen, actual data and classical 
PI controller encounter high fluctuations around the rated 
power, while the designed Neuro-Fuzzy controller improved 
the control performance of the closed-loop system and 
alleviated fluctuations. 

The Root Mean Square Error (RMSE) between the ANFIS 
& rated value, actual values & rated value and PI controller 
& rated value were calculated for the high speed region and 

 

 

 

          Fig. 16 Output power by using designed Neuro-Fuzzy controller         
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As it can be seen, the proposed ANFIS controller has 

reduced the RMSE compared to the classical PI controller and 

 

 

 

 

 

 

 

            Fig. 17 Outputs power of designed neuro-fuzzy controller, PI controller and actual data     
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          Fig. 16 Output power by using designed Neuro-Fuzzy controller        

           Fig. 17 Outputs power of designed neuro-fuzzy controller, PI controller and actual data    

Table 2 
Comparison of RMSE between the ANFIS & rated value, actual values & rated value and PI controller & rated value 
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V. Fazlollahi et al., AUT J. Model. Simul., 51(2) (2019) 139-152, DOI:   10.22060/miscj.2019.15315.5130

150

actual values, 90% and 94%, respectively.

7. Conclusions
In this research, a Vestas 660 kW wind turbine was 

modeled and the model was validated using operational 
data obtained from Eoun-Ebn-Ali wind farm in Tabriz-
Iran. Moreover, a neuro-fuzzy controller was designed to 
control the output power at its nominal value in the full-
load region. Actual data indicated that the turbine with a 
classical PI-controller, had high fluctuations around the 
rated output power, which exerted additional loads on the 
turbine structure. A neuro-fuzzy controller was designed to 
improve the control performance in the full-load region. The 
designed controller was then applied to the turbine model in 
Matlab/Simulink software. Simulation results showed that, 
the proposed ANFIS controller has significantly improved the 
control performance compared to the classical PI controller 
and real values.
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