
AUT Journal of Modeling and Simulation

AUT J. Model. Simul., 51(1) (2019) 67-80
DOI: 10.22060/miscj.2019.13906.5085  

A Combined Learning Approach for Credit Scoring Using Adaptive Hierarchical 
Mixture of Experts: Iranian Banking Industry
D. Dadmohammadi, A. Ahmadi*

Department of Industrial Engineering & Management Systems, Amirkabir University of Technology, Tehran, Iran.

ABSTRACT: Traditional methods for granting credit to loan applicants are based on personal judgment. 
Nevertheless, the current financial crisis alongside the efforts of banks and financial institutes for 
decreasing the percentage of overdue loans emphasis the importance of Credit Scoring (CS) models. 
This paper provides a credit scoring model by means of Modular Neural Network (MNN) established 
upon combined hybrid-ensemble learning. The proposed model is composed of four powerful neural 
networks that construct collectively the Adaptive Hierarchical Mixture of Experts (AHME). Training 
process is a hybrid way for learning the modular model and adaption to the CS model based on the 
modulation of learning rules specific to each module and particular HME online learning algorithm. 
Binary Particle Swarm Optimization (BPSO), using Taguchi reasoning scheme for tuning the governing 
parameters, is also applied for reducing dimensionality and decomposing the problem among the various 
modules. The proposed model’s performance is compared with that of Multi-Layer Perceptron (MLP) 
and Laterally Connected Neural Network (LCNN) models. The aforementioned models are evaluated 
using the data obtained from one of the Iranian banks. Results demonstrate that the AHME outperforms 
other methods in terms of prediction accuracy as well as the Area Under the ROC Curve (AUC) and the 
Mean Squared Error (MSE) rate.
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1. Introduction
Today, process of globalization and competition between 

financial institutions in local and global markets has growingly 
increased the necessity to enhance and revise systems in 
financial and capital enterprises throughout the world. It is 
thus natural that banks are no exceptions. Making a balance 
between supply and demand in banking resources and loans, 
managing and reducing delayed payments, and getting rid of 
security-based system are more incorporated into discussions 
that highlight the necessity for the implementation of rating 
system in banking system than anything else. For this reason, 
given the growing credit volume of financial sector, many 
of different CS models have been developed by banks and 
researchers in order to measure the credit of loan applicants 
(Limsombunchai et al. 2005). Banks and other financial 
organizations are seeking profit in order to make money 
for their shareholders. Loan granting process is one of the 
principle services which still considers the base of the income 
to such organizations. When wrong decisions, regarding the 
loan application, are taken; credit risk arises. If credit risk 
evaluation is wrong, defaulters may increase and it may cause 
banks’ bankruptcy (Kambal et al. 2013). 

CS models are based on statistical techniques, operational 
research, Artificial Intelligence (AI) methods, and data mining. 

The most popular techniques are traditional models based on 
statistical analysis as well as advanced techniques. A variety 
of models and methods are available in order to appraise bank 
customers, including Linear Discriminant Analysis (LDA), 
Linear Regression Analysis (LRA), Multivariate Adaptive 
Regression Splines (MARS), Classification and Regression 
Tree (CART), Support Vector Machine (SVM), Genetic 
Algorithm (GA), and Artificial Neural Network (ANN), 
though they are not limited to these methods only (Akkoç 
2012; Ayouche et al. 2017; Kambal et al. 2013; Li et al. 2013; 
Limsombunchai et al. 2005; Ong et al. 2005). 

The CS is a binary classification that classifies or rates 
customers into predefined “good” and “bad” credit applicants. 
Therefore, the task of CS process is to rate borrowers to 
approximate the ability of refunding the associated loan. 
This process uses quantitative measures of past loans to 
predict future loans (Ayouche et al. 2017). Therefore, in 
order to examine credit applications, new techniques should 
be developed to predict credits more thoroughly. A well-
designed model should carefully achieve a high accuracy of 
classification into account in order to classify new available 
applicants or customers as honouring or dishonouring clients 
(Han et al. 2013). 

Although a large number of new approaches have 
been suggested, many other issues should be taken into *Corresponding author’s email: abbas.ahmadi@aut.ac.ir

                                  Copyrights for this article are retained by the author(s) with publishing rights granted to Amirkabir University Press. The content of this article                                                  
                                 is subject to the terms and conditions of the Creative Commons Attribution 4.0 International (CC-BY-NC 4.0) License. For more information, 
please visit https://www.creativecommons.org/licenses/by-nc/4.0/legalcode.



D. Dadmohammadi and A. Ahmadi, AUT J. Model. Simul., 51(1) (2019) 67-80 DOI: 10.22060/miscj.2019.13906.5085

68

consideration to increase the accuracy of CS (Ong et 
al. 2005). Henli and Hend summarized the underlying 
statistical methods; the methods seemed relatively easy for 
implementation. They were able to produce correct and 
easily interpreted results. However, statistical methods have 
plenty of problems including less resistance, hypothesis 
based quality, low adjustability with new environment,  and 
inefficiency in large-scale problems (Han et al. 2013; Kambal 
et al. 2013). Therefore, researchers often seek streamlined 
methods to tackle the above-mentioned problems. 

Back in two decades ago, ANN was concluded as an 
important alternative to financial prediction studies, and 
it has received the attention of many researchers due to its 
high capability to learn nonlinear phenomena as well as high 
prediction accuracy. Unlike statistical methods, ANN needs 
no assumption (Akkoç 2012). On the one hand, ANN has 
been open to criticism of researchers, amongst which we can 
refer to long learning process and lower prediction accuracy 
for problems including many variables and their inability to 
break down problems into sub-problems in order to minimize 
big problems such as CS models of banks and financial 
institutions (Rafiee Vahid & Ahmadi 2016). On the other 
hand, due to their broadness, easiness, and effectiveness, 
they offer extraordinary computational abilities that help 
to discover various competitive hypotheses simultaneously 
(Kiruthika, 2015). Their disadvantage and advantage have led 
researchers to use some algorithms simultaneously in order 
to remove their deficiencies. In this regard, Modular NNs 
(MNNs) are relatively new combined algorithms developed 
by ANN and some evolutionary algorithms concurrently. 
MNNs are made up of subnetworks that may be separated 
according to categories based on different structures and 
functionalities; each subnetwork is combined with another. 
Each subnetwork represents a different neural network, 
which can perform individual subtasks. Various learning 
algorithms can also be mixed with each other.  Better training 
of neural network is achieved by combining the best learning 
algorithms for a special task. Basically, different approaches 
to modularization used in integration with each other to get 
an optimum combination of a hybrid network structure and a 
learning algorithm (Yarushev & Averkin 2017).

The accuracy of classification is very important and 
sensitive in CS. Because failure to consider this axiom 
would cause irreparable damages to banks, we improve 
the accuracy of CS model through a hybrid model and the 
dimension reduction process. In feature subset selection 
problem, prediction accuracy of the selected subset depends 
on the size of the subset and the selected features as well. 
This difficulty necessitates developing efficient heuristic 
technique to manage the computational complexity as well as 
to induce models by high prediction accuracy (Unler & Ulper 
2010). Therefore, the novel approach is to use an adaptive 
hierarchical hybrid modular model called AHME along with 
BPSO. It reduces the dimensions of input data and optimizes 
the structure of experts in order to perform CS of customers 
for one of the Iranian state banks. 

As a matter of fact, the innovation of research lies in both 

the use of AHME model for CS of customers and the new 
method for how to train the hierarchical network. Training 
the hierarchical networks including HME is often undertaken 
along with the use of Expectation-Maximization algorithm 
(EM) or online algorithm using techniques of recursion 
estimation theory (Jordan and Jacobs 1994), which involves 
lengthy and difficult probable complicated computation. It 
causes learning process to take a lot of time. For this reason, 
by using a hybrid-ensemble learning approach, training 
algorithm of each module and online algorithm of HME 
training as well as addressing the foregoing deficiency, we 
could achieve a high rate of accuracy in order to predict 
customer’s credit behaviour via CS model.

In the proposed method, in addition to reducing a large 
quantity of intricate computations, probable interpretation of 
model resulting from EM method is obtained. Accordingly, 
four powerful neural networks can be used as a combined 
model for CS problem, together with BPSO algorithm to 
build a strong hierarchical network. To decompose the model 
amongst modules, dimensions of input data on each module 
is broken via BPSO algorithm and the structure of each 
expert is optimized, in the first phase. The innovation lying 
in this paper is to use a super powerful hierarchical network 
for special problem of bank customers’ CS, as well as the new 
approach to train this type of network. 

The rest of this paper is organized as follows. Initially, 
we review the literature and previous studies. Then, AHME 
model and its training process will be explained. Later on, 
the applied dataset and Taguchi method are expressed. 
Accordingly, the results of applying the proposed model are 
presented and compared with those of other models. Finally, 
paper findings and future research directions are provided.

2. Background
Research in the field of bank customer’s CS is divided 

into two major groups; studies and research conducted based 
on statistical methods and those conducted based on AI 
techniques and relevant approaches. Although there are no 
convincing results suggesting which one is decisively better, 
given the review of literature conducted in both foregoing 
areas, the second class has received greater attention of 
researchers. In this paper, the focus of the literature review in 
the field of CS problems is directed to AI methods and relevant 
approaches including the combined multiple classifiers, i.e. 
ensemble learning (Rafiee Vahid & Ahmadi 2016).

In the beginning, DA and regression were the only methods 
used in the field of CS models. Winigton utilized logistic 
regression for credit scoring for the first time. Gerabowsky 
and Tally used DA and Probit for scoring applicants of main 
chain stores in the US. Data mining techniques, which have 
been recently developed including neural networks, Genetic 
Programming (GP), and SVM, can properly carry out 
classification task. Additionally, these methods also achieved 
better performance than traditional statistical methods. 
Limosbanchi et al. used Logit model and two kinds of ANN, 
i.e. Probabilistic Neural Network (PNN) and MLP, in order to 
estimate the scoring model of agricultural loans in Thailand. 
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entire multiple classifiers regarding England’s credit data 
(Akkoç 2012). Disay, Krook and Overstreet examined MLP, 
MOE, and linear DA, and logistic regression with respect to 
scoring applicants of credits in credit union industry. Their 
methodology included two-part field data of Cross Validation 
(CV) obtained from three credit unions with the assumption 
that identical expenditures are both good and bad for credit 
risks. They concluded that ANN models were slightly better 
than logistic regression models (Ong et al. 2005). 

Unler & Upler (2016) investigated the feature subset 
selection problem for the binary classification problem using 
logistic regression model. They developed a modified discrete 
PSO algorithm for the feature subset selection problem. They 
compared their approach by two other competitive heuristic 
strategies namely Tabu Search (TS) and Scatter Search 
(SS), using publicly available datasets and demonstrated the 
effectiveness of their proposed methodology. The discrete 
PSO approach has recently gained more attention for 
solving the feature subset selection problem in terms of both 
classification accuracy and computational performance.

Babaoglu et al. (2010) explored the efficiency of BPSO 
and Genetic Algorithm (GA) techniques as feature selection 
models on determination of Coronary Artery Disease (CAD) 
based on Exercise Stress Testing (EST) data. Their dataset 
having 23 features was obtained from patients who had 
performed EST and coronary angiography. Classification 
results of feature selection technique using BPSO and GA 
were compared with each other and also with the results of 
the whole features using simple SVM model. The results 
indicated that feature selection technique using BPSO is 
more successful than feature selection technique using GA on 
determining CAD. 

For all the discussed methods, either in statistical 
techniques or in AI ones, it is observed that high accuracy 
along with model’s low error rate is a key and important 
issue that researchers are unanimously agreed upon. It is 
evident that subsequent to statistical methods, AI methods 
particularly neural networks have received a great deal of 
interest in the field of CS problems. As per our knowledge, 
it can be declared that almost no study has been carried out 
in the application of the hierarchical combination of ANNs 
for bank customers’ CS, but the application of this network 
is vastly utilized in signal processing, time series analysis, 
and the estimation of speech quality. Therefore, for the above 
reasons, it is difficult to say which method can offer the 
best result when using diverse dataset in different nations. 
Accordingly, efficiency and accuracy of CS model can be 
tangibly boosted using a reliable and powerful model such 
as AHME. Moreover, BPSO is selected to enhance the 
efficiency of feature selection mode.

3. Proposing hybrid-ensemble learning based modular 
model

The classification of customers is done by the network 
which has modular based training and structure. A recursive 
process in such architectures uses separate models for 
estimating various parts of a problem. The general approach is 

The results indicated that PNN model is generally more 
powerful to predict accurately in comparison with other two 
models (Limsombunchai et al. 2005; Wang et al. 2016). 

Since AI approaches including ANNs, GA, and expert 
systems have been designed and introduced, their application 
in CS and financial studies have become widespread and have 
been developing rapidly. Ang et al. used GP to inventively 
and autonomously determine sufficient discriminant 
functions and valid features simultaneously. They utilized 
two numerical samples to compare rate of error with other CS 
models including ANN, Decision Tree (DT), rough sets, and 
logistic regression. According to the results, they concluded 
that GP can outperform other models (Ong et al. 2005).

In most studies, researchers compare ANN with 
traditional statistical methods such as DA, LR, Probit 
regression, Naive Bayes (NB), Classification and Regression 
Tree (CART), and KNN. ANN achieved better performance 
than these techniques, hence it was considered to be the 
proper alternative to these conventional techniques in credit 
scoring (Kambal et al. 2013). These studies have highlighted 
the use of several ensemble classifiers in building credit-
scoring models. Tsai and Wu (2008) tested the performance 
of single NN classifier and compared it with multiple and 
diversified NN classifiers. The results showed that there is 
no dominant classifier. West et al. (2005) used three NN-
ensemble strategies (cross-validation, bagging and boosting), 
the results showed that NN-ensembles are more accurate, 
robust and superior than single NN. Nanni and Lumini (2009) 
investigated the performance of several ensemble classifiers. 
The obtained results showed superiority of ensemble in terms 
of classification accuracy. Twala (2010) investigated five 
classifiers with different noise levels of attributes, and tried to 
improve the accuracy of their ensembles. The results revealed 
that ensemble classifiers are more accurate at different noise 
levels (Alaraj et al. 2014).

Hasieh developed behavioural rating models with respect 
to credit cards data by means of Self-Organizing Map (SOM). 
In this research, bank clients were classified in three major 
beneficial groups, and the results of the study can be used 
in the development of marketing strategies. In another 
study, it was concluded that cluster analysis can promote 
the performance of CS models with respect to ANN (Akkoç 
2012). 

In recent years, ensemble classifiers have been suggested 
for improving the performance of CS models. The key 
idea of ensemble classifiers is to integrate a number of 
classifiers into a single multiple classifier. Ju et al. found that 
combination of ANN and SVM can work better than single 
classifiers. Similarly, in a study by Nani and Lumini, ANN 
was determined to be the best single classifier, but the best 
performance as a whole was obtained from the quasi-classifier 
group with a Lowenberg’s neural network model (Shayeghi 
et al. 2010). Hasieh and Howang developed CS models of 
ensemble classifiers after they separated Germany’s credit 
data in good, bad, and marginal classes with cluster analysis. 
Finlay, they compared the performance of multiple classifiers, 
and found that error trimmed boosting outperforms the 
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to divide the problem into a set of sub-problems and allocate 
a set of experts to each sub-problem.  Different approaches 
use different methods and outputs of experts to divide the 
problem into a sub-problem and calculate the best solution 
(Waterhouse & Robinson 1994). 

The proposed model, named Adaptive HME (AHME) has 
modular structure and is composed of the ANNs. In fact, it 
combines the learning rules of each module and the HME’s 
original learning rule. All the classifiers, including the gating 
and the expert networks are trained concurrently. Usually, 
the modular structure is formed either on the data or on the 
features of the data. On the other hand, in one approach, the 
data is broken and is used in different modules of the network; 
in another approach, the subsets of features are chosen and 
introduced to different modules of the network. 

In this paper, the second approach is considered. Three 
gating networks, which function to integrate the outputs of 
each level, are generalized linearly. The expert networks are 
feed-forward ANNs. Accordingly, the following ANNs are 
used:

1. MLP neural network (Karray et al. 2004): 
2. RBF neural network (Ahmadi et al. 2010; Tran & 

Duong 2017)
3. Laterally Connected Neural Network (LCNN) (Kothari 

and Agyepong 1996)
4. Learning Vector Quantizer (LVQ) Neural Network 

(Tang et al. 2007)
The main reason of applying these networks is their 

reputation and power in classifying problems of previous 
studies done in this field. Of course, the LCNN is selected 
because of its novelty in the field of CS models.

The way the expert networks are placed alongside each 
other is based on their ability in dealing with the underlying 

problems. This assumption causes the equilibrium to be 
established at the output of left and right modules. In this 
study, due to high volume of computing, we assume the same 
structure for all expert networks in all layers. All networks, 
including the gating and the experts have input units according 
to the number of features (customers’ characteristics). The 
number of output units in the expert networks is the same 
as the number of categories, while it is equal to the number 
of the expert networks in each module in gating networks 
(Valdovinos et al. 2006, Alaraj et al. 2014). The hidden layer 
equals to unity and has variable number of neurons regarding 
the review of related works. Furthermore, each network’s 
hidden layer structure is optimized through the several runs 
of individual network.

4. The AHME model training process
4.1. Particle Swarm Optimization (PSO)

The PSO algorithm is an evolutionary and meta-heuristic 
search algorithm that uses two strategies to find the best 
local and global solution. Two strategies are exploration and 
exploitation. The first one is the ability of expanding search 
space, whilst the next is the ability of finding the optimum 
throughout a good solution (Behesti et al. 2015).

PSO method begins with a population of particles in 
M-dimensional space and proceeds through a number of 
iterations to find an optimal solution. Each particle k ∈[1… 
R] is distinguished from other particles via velocity vector 
and its position, denoted by skm  and pkm , respectively. In 
order to select a new velocity, each particle considers three 
components; previous velocity, individual best position, and 
global best position. The individual best and global positions 
are called pkm

b  and pkm
*, respectively (Ahmadi et al. 2012). 

Accordingly, new velocity vector and positions are updated 

 
Fig. 1. Topology of the proposed modular model. 
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as follows: 

where w is the inertia weight, c1 and c2 are cognitive 
and social components, respectively; r1 and r2 are generated 
randomly using a uniform distribution in interval [0,1]. In 
addition to c1 and c2 parameters, implementation of initial 
algorithm requires a limit for vector velocity i.e., smax 
(Chuang et al. 2011; Netjinda et al. 2015; Unler and Alper 
2010; Hamada & Hasan 2018). 

4.1.1. BPSO algorithm
For binary space, researchers adjusted PSO for searching 

in binary spaces by using a sigmoid convertor to convert 
velocities into zero and one to induce the values of particle 
positions to take up zero or one values. For selecting a subset 
of features, we determine the position of a particle as a 
binary vector. Accordingly, m represents the total number of 
features in the main dataset (Unler & Alper 2010; Vieira et 
al. 2013). The binary vector is pkm

(t) = (pk1(t), pk2(t),…,pkm(t)) 
where pkm(t)=1  if feature m is included in the feature subset; 
zero, otherwise (Unler and Alper 2010; Vieira et al. 2013). 
Therefore, the equation of updating position in continuous 
PSO is replaced by following equations:

where skm(t) indicates the probability that the mth bit in 
pkm(t) is one. Now, the updating equation of the position of the 
particle in the BPSO is as follows:

where r3  is a uniform random number in interval [0,1].
Inertia weight has a direct impact on diversity. As the 

most common application of continuous and binary PSO 
implementation, it begins with a large quantity and then 
reduces in a fixed rate as the algorithm proceeds (Unler & 
Alper 2010). For each iteration of the algorithm, it is kept 
updated by: 

where wmax  and wmin  are the limits on the w and Q is the 
maximum number of iterations.

The process of data introduction to the network starts by 
revealing the structure of expert networks and the gating one. 

In this model, features are distributed among the four expert 
networks based on the “soft split” method (Waterhouse and 
Robinson 1994). To do this, as shown in Fig. 1, firstly the 
dimension reduction or feature selection process via the BPSO 
algorithm (Babaoglu, et al. 2010; Vieira et al. 2013) for each 
network is done; then, the obtained features are introduced to 
AHME (Vieira et al. 2013; Xue et al. 2014).  Meanwhile, the 
structure of each expert would be optimized. A pseudocode 
for exerting BPSO procedure onto the each expert network is 
provided in the following algorithm(s). 

4.2. AHME learning  
The topology of AHME network, shown in Fig. 2, is 

a tree where gating networks are placed in non-terminal 
nodes of the tree. They receive input vector x and generate 
scalar outputs that are fraction of a unit in each node (Jordan 
and Jacobs 1994; Waterhouse and Robinson 1994). Expert 
networks are placed as the leaves of the tree. Each expert 
network generates the output vector Фij for each input vector 
which continues up the tree and is combined by the outputs of 
gating network. Expert network (i, j) generates the output Φij  
as the generalized linear function from the input x: 

where “∈” _”ij”  and f (.) are selected as an initial weight 
matrix and a continuous non-linear function, respectively. 
The expert network outputs are clarified as the log chance 
of “success” under a Bernoulli distribution (Jordan & Jacobs 
1994). The gating networks at next level are generalized 
linear. Intermediate variables ζij are defined as follows: 

like before, νij is selected as an initial weight matrix of 
gating networks. Then, the output of each gating network at 
second level is:

where φj|i  is the output of jth  unit in the ith  gating network 
at the second level of the network structure. It should be 
noted that the φj|i s are positive and summation of them for 
each x is equal to one. Finally, at the top level of the network, 
we define intermediate variables ζi for gating network 0 as 
before:

where νi  is a weight vector and the top level gating 
network ith  output is actually the “softmax” function of the 
Eq. (9) (Jordan & Jacobs 1994):
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As before, φis are always positive and because of their 
nature, their total for each x equals one. It can be also 
determined as a fraction of the input space. At each non-
terminal point, as illustrated in Fig. 2, the output vector is the 
weighted output of the expert networks. Thereupon, in the 
second layer of the two level trees, the output at the ith  non-
terminal node is defined as follows:

The top-level output of the tree is as following equation: 

Note that both φ and “Φ”   depend on input x, even if the 

total output is a non-linear function of x (Jordan & Jacobs 
1994). 
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Algorithm 1:  Pseudocode for MLP, RBF, LVQ and LCNN training based on BPSO 

initialize a swarm of size R 

repeat 

   for each particle 𝑘𝑘 ∈ [1, … , 𝑅𝑅]  
        if 𝑝𝑝𝑘𝑘𝑘𝑘

 (𝑡𝑡)>rand then 

           𝑝𝑝𝑘𝑘𝑘𝑘
 (𝑡𝑡)=1 else 

           𝑝𝑝𝑘𝑘𝑘𝑘
 (𝑡𝑡)=0 

      end if 

      for each bit 𝑚𝑚 ∈ [1, … , 𝑀𝑀]  
            if 𝑝𝑝𝑘𝑘𝑘𝑘

 (𝑡𝑡)=0 then 

               0 ← 𝒙𝒙𝑖𝑖 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖 ∈ [𝑚𝑚𝑚𝑚𝑖𝑖𝑚𝑚 𝑑𝑑𝑚𝑚𝑡𝑡𝑚𝑚𝑑𝑑𝑒𝑒𝑡𝑡]  
           end if  

      end for  

train the MLP network using back propagation learning algorithm,  
train the RBF network using two-stage learning strategy algorithm, 

train the LVQ network using LVQ1 learning algorithm and  

train the LCNN network using straight forward back propagation learning algorithm with 𝒙𝒙𝑖𝑖 

  do update position and velocity 

       if MSE(𝑝𝑝𝑘𝑘𝑘𝑘(𝑡𝑡 + 1))<MSE(𝑝𝑝𝑘𝑘𝑘𝑘
𝑏𝑏 (𝑡𝑡)) then 

          𝑝𝑝𝑘𝑘𝑘𝑘
𝑏𝑏 (𝑡𝑡 + 1) ← 𝑝𝑝𝑘𝑘𝑘𝑘(𝑡𝑡 + 1) 

       end if 

     end for 

𝑝𝑝𝑘𝑘
∗  (𝑡𝑡 + 1) min

𝑝𝑝𝑘𝑘𝑘𝑘
𝑏𝑏 (𝑡𝑡)

 {𝑀𝑀𝑀𝑀𝑀𝑀(𝑝𝑝𝑘𝑘𝑘𝑘
𝑏𝑏 (𝑡𝑡))|𝑘𝑘 ∈ [1, … , 𝑅𝑅]} 

until termination condition is met 

obtain the selected features and optimum structure of the MLP, RBF, LVQ and LCNN 
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the mean Φij  is the conditional probability of grouping the 
input as “success”. Equation (13) by replacing the Bernoulli 
distribution will be as follows: 

Thus, the log likelihood of a dataset [x(t), γ(t)]  is achieved 
with respect to the log of the product for N distributions of the 
above equation, which results in the subsequent expression:

Now, the purpose is the minimization of this function. 
There are various methods for which one can refer to the EM, 

least-squares algorithm and gradient descent. In this paper, 
the gradient descent method is used for training the network 
(Jordan & Jacobs 1994). 

By differentiating l(ϑ;x), the gradient descent learning 
rule will be obtained for the weight matrix 
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 : 

where “ω”  is a network learning rate. This learning rule 
for the ith weight vector in the gating network at the highest 
level is obtained as:

Similarly, that is for the jth weight vector in the gating 
network at the other levels as follows:

 

Fig. 2. A hybrid-ensemble learning credit scoring system. 
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In equations (16), (17) and (18), λi and λj|i  are the posterior 
probabilities by using Bayes’ rule at the nodes of the tree 
given by: 

and

It is worth mentioning that φi  and φj|i  are the prior 
probabilities because they are calculated on the basis of the 
input x without any knowledge of the related target output γ. 
A posterior probability is also delineated once, based on both 
the known target input and output (Jordan & Jacobs 1994; 
Waterhouse & Robinson 1994). 

Now, according to the previous sections, input vector x 
is the same for all networks. The task of gating networks is 
learning from a suitable harmonious fusion of expert networks 
for each input vector. The training procedure is performed on 
the basis of a hybrid approach. Expert and gating networks 
undergo training simultaneously, in the sense that hybrid 
learning process begins after application of BPSO algorithm 
in each expert network and the selection of superior features 
for the network. Through this way, each expert network 
based on algorithms specialized for each expert network, 
i.e. back propagation algorithm for MLP network, two-stage 
learning strategy for RBF network, straight forward back-

propagation algorithm for LCNN, and LVQ1 algorithm for 
LVQ network yields the initial output of each expert. The 
gating networks in right order together with expert on the 
basis of forward learning algorithm of each network produce 
the output. In what follows, using Eq. (11) coming from each 
of non-terminal points of the tree in the second layer and Eq. 
(12), the final output of network is obtained at the highest 
level of the tree. Up to this point, a training epoch is past 
for AHME learning, and the process of weight updating and 
network training begins by checking the error rate of MSE 
network learning. Afterward, posterior probabilities (Eq. (19) 
and (20)) are calculated by using the outputs from previous 
stage. Then, the update of the weights for gating networks is 
undertaken by Eq. (17) and (18) for ith and jth weight vectors 
at final and lower level of tree, respectively. Together by 
learning the gating networks, the weight update for expert 
networks is performed by algorithms specialized for each 
one, and the weights of network are adjusted, and the process 
iterates until the conditions for ceasing training are met. The 
above-mentioned procedure along with the learning process 
is entirely shown in Fig. 2.
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Algorithm 2:  Hybrid learning algorithm for AHME model 

1. Provide the input vector x for each input data based on its corresponding features to 
expert and gating networks.  

2. Get the outputs of expert networks and gating 1 and 2 based on the rules related to each 
network. 

3. Compute the Φ1 and Φ2 according to the equation (11). 

4. Compute the output of gating network 0 according to the related rules. 

5. Compute the total output of the network based on the equation (12). 

6. Compute the error value according to the total output and MSE function. 

7. Compute the posterior probabilities for each data using the current parameters values.  

8. Update the gating networks’ weights using equations (17) and (18). 

9. Update the expert networks’ weights using the learning rules of each network.  

10.  Repeat the steps 1 to 9 for other samples. 

11.  Check if the cumulative MSE has been less than a certain value, then the network is 
trained; otherwise, repeat the training process for another epoch. 

Table 1.  
Total view of dataset state. 

No. of Samples Good Credit Bad Credit 

108 82 26 
 

Table 2 
Factors and the levels of different parameters. 

Factor 
Corresponding 
parameter of 

BPSO 

Level 

1 2 3 4 
A [c1,c2] [2,2] [2,1.5] [1.5,1] [0.5,1.5] 
B wmax 1 0.9 0.8 0.7 
C wmin 0.4 0.3 0.2 0.1 
D W 1 0.9 2 1.5 
E smax 0.8 1.1 1.5 2 
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customers, who have higher importance than others. An 
overview of the used dataset can be seen in Table 1. 

5.2. Research variables
The research variables are as follows:
 1. Dependent variable (q): Given that credit customers 

have been divided into two categories of good and bad credit, 
this variable can own two states of zero and one. If a customer 
has defaulted in refunding the loans and has had delayed 
paying back the loans, q is equal to zero. If loans refund are 
done in due date, q is equal to one.

 2. Independent variables: They include those variables 
that influence on customer’s credit risk or in other words, 
affect the dependent variable of model. Therefore, according 
to the conducted investigations, a set of variables that can 
somehow influence on dependent variable of the model are: 
1. Working capital (current liabilities minus current assets): 
x1,
2. Current liability ratio (current liabilities to assets): x2,
3. Equity ratio (equity to total assets): x3,
4. Asset ratio (current asset to total assets): x4, 
5. Acid test ratio  (current assets minus inventory to current 
liability): x5,
6. Cash flow ratio (cash and deposits to current liability): x6,
7. Cash and deposits to total assets: x7,
8. Current ratio (current asset to current liability): x8,
9. Liability ratio (total liabilities to total assets): x9,
10. Profit margin (net profit to sales): x10,
11. Return on Asset (net profit to total assets): x11,
12. Retained profit to total assets: x12,
13. Liability to equity ratio: x13,
14. Total bank loans to total assets: x14,
15. Total bank loans to total liabilities: x15,
16. Net sales to total assets: x16,
17. Inventory to net sales: x17,
18. Current liabilities to net sales: x18.

5.3. Tuning the parameters of BPSO by Taguchi method
The distinctive feature of Taguchi  method  is  to  guide 

experiments using Orthogonal Array (OA) technique and 
implement  statistical  analysis  by  applying  the  Signal to 
Noise Ratio (SNR). The SNR, applied  to  investigate  the  
impact  of  the  noise  factors  on  the  robustness  of  a  system, 
is  a  performance  measure  for  assessing the  quality  of  a  
product  or  a  process.  By  optimizating SNR,  a  product  

or  a  process  will  have  better  robustness and the  effect  of  
the  noise  factors  on  it  will  be  minimized actually (Wang 
et al. 2017).

For the problem under consideration, the aim is to 
determine the optimized parameters of BPSO algorithm used 
for ANNs to perform dimensional reduction process and select 
the best features of dataset taken for each expert network. 
Factors that make a significant difference to performance 
should be selected. The characteristic of Taguchi method is 
the ability to take account of uninfluential variables, even 
if they were viewed as influential in the beginning of the 
optimization process. We take five parameters into account in 
our experiments; the five parameters or factors are displayed 
by A to E, for the sake of simplicity. The relevant parameters 
and level of each operational parameter are listed in Table 
2. For our experiments, the matrix L16 is selected which 
represents 16 tests with five four-level factors. OA selected 
is displayed in Table 3. Response variable for every expert 
network was chosen as a fitness function of BPSO which is 
equal to the difference between the mean of classification 
accuracy and the mean of MSE in training process. Therefore, 
the approximate value of response close to the number one 
offers a better solution. 

Some of the parameters that remained fixed during 
the experiments are: swarm size=30, iterations=600. The 
calculated SNRs are summarized in Table 3.

The response of each test is shown by R1 to R16, and 
the average rate of response for each factor is computed at 
each level. Considering the subject matter, for each factor 
and different levels, the inputs of response table and vector of 
response will be produced. Response graphs are exhibited by 
different factors in Fig. 3 and Fig. 4. 

Table 4 includes ranks based on Delta statistic that 
compares the relative size of effects. Delta statistic is the 
difference between the maximum and minimum mean for 
each factor. We use the means of level in response table in 
order to determine which level of each factor yields the best 
result. 

Obviously, wmin, [c1,c2], wmin and smax have the 
greatest effect on the SNR in MLP, RBF, LCNN and LVQ, 
respectively. From response table or response vector, the 
optimized level of each factor can be predicted as a level 
with the maximum value of SNR. The means of each level 
are shown in Table 3, in that SNRs are maximized when the 
optimized structure of BPSO parameters is determined for 

Table 2
Factors and the levels of different parameters.
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Fig. 3. Response graph for MLP & RBF network
 

Fig. 3. Response graph for MLP & RBF network. 

 

Fig. 4. Response graph for LCNN & LVQ network. 

 
Fig. 5. Comparison diagram of error rate and convergence trend for all models. 
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Experiment 
Number 

Factor Response SNR 
A B C D MLP RBF LCNN LVQ 

1 1.0 0.4 1.0 0.8 R1 -2.12920 -3.82498 -3.82363 -2.38601 

2 0.9 0.3 0.9 1.1 R2 -2.15699 -3.93906 -3.96370 -2.39173 

3 0.8 0.2 2.0 1.5 R3 -2.14142 -3.75912 -3.95137 -2.39173 

4 0.7 0.1 1.5 2.0 R4 -2.13475 -3.83713 -3.84254 -2.39402 

5 1.0 0.3 2.0 2.0 R5 -2.14698 -3.91312 -3.87912 -2.39288 

6 0.9 0.4 1.5 1.5 R6 -2.13698 -3.96644 -3.84254 -2.38487 

7 0.8 0.1 1.0 1.1 R7 -2.10150 -3.85471 -3.85607 -2.39173 

8 0.7 0.2 0.9 0.8 R8 -2.13253 -3.94589 -3.98154 -2.39173 

9 1.0 0.2 1.5 1.1 R9 -2.12476 -3.70839 -3.87912 -2.39288 

10 0.9 0.1 2.0 0.8 R10 -2.12809 -3.77789 -3.80073 -2.38944 

11 0.8 0.4 0.9 2.0 R11 -2.14253 -3.86555 -3.90631 -2.39402 

12 0.7 0.3 1.0 1.5 R12 -2.16368 -3.84254 -3.98428 -2.38944 

13 1.0 0.1 0.9 1.5 R13 -2.13920 -3.96507 -3.82498 -2.38487 

14 0.9 0.2 1.0 2.0 R14 -2.11811 -3.84659 -3.96781 -2.39173 

15 0.8 0.3 1.5 0.8 R15 -2.15477 -3.87504 -3.84389 -2.38716 

16 0.7 0.4 2.0 1.1 R16 -2.09708 -3.89950 -3.86013 -2.39173 
 

Table 4. 
Level of factor providing the best results. 

  [c1,c2] wmax wmin W smax 

MLP Delta 0.013 0.003 0.030 0.015 0.025 
Rank 4 5 1 3 2 

RBF Delta 0.121 0.044 0.077 0.091 0.033 
Rank 1 4 3 2 5 

LCNN Delta 0.021 0.065 0.114 0.067 0.038 
Rank 5 3 1 2 4 

LVQ Delta 0.003 0.003 0.003 0.002 0.005 
Rank 3 4 2 5 1 

 
 
 
Table 5. 
Predicted best strategy parameters (for different networks). 

Factor (Level) 

MLP RBF LCNN LVQ 
A (4) A (3) A (4) A (4) 
B (1) B (2) B (4) B (4) 
C (1) C (2) C (1) C (4) 
D (2) D (4) D (3) D (2 or 3) 
E (2) E (2) E (1) E (3) 
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each network. The values of relevant parameters are shown 
in Table 5. 

6. Experimental results and analysis 
In this section, we examine the performance of the 

proposed model and its results are compared with MLP and 
LCNN models. The model’s results are categorized based 
on efficiency and accuracy prediction, so the best model is 
selected. It should be noted that learning for the entire data 
was undertaken on the basis of 5-fold CV algorithm.

In phase one, the selected features for each module of the 
ANN were obtained according to the nature of the modular 
model. Results for each expert network are given in Table 6 
separately. Omitted features are distinguished by ×. 

In the next step and before providing the final results, prior 
probabilities (impact amount of each networks in training 
process) and posterior probabilities (the most important 
learning and network convergence factors), are shown in 
Table 7. (Jordan & Jacobs 1994; Waterhouse & Robinson 
1994).

* In fact, prior probabilities are gating networks’ outputs.
* φi and φj|i are interpreted as prior because they are only 

computed based on input x without any knowledge of the 
target value related to the output y.

* Numbers related to the prior probabilities indicate which 
network has the most contribution in modular learning of the 
AHME network.

* Numbers related to the posterior probabilities in the 

Table 4.
Level of factor providing the best results.
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Table 6. 
Selected features in each module of the AHME. 

x18 x17 x16 x15 x14 x13 x12 x11 x10 x9 x8 x7 x6 x5 x4 x3 x2 x1  

× ×  × × × × ×         ×  MLP 

  × × × ×  × ×          RBF 

   × ×     × ×  ×  ×   × LCNN 

  ×  ×   × × × ×        LVQ 
 
 

 

Table 7. 
Prior and posterior probabilities of AHME. 

Prior Probabilities Posterior Probabilities 

MLP RBF LCNN LVQ λj|i λi 
0.9243 0.0757 0.0250 0.9750 0 1 0.0251 0.974 0.0066 0.9936 
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Prediction Accuracy 
of Training Error Rate of Training Prediction Accuracy 

of Testing Error Rate of Testing 

0.951220 0.0481 0.846154 0.1319 
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Model 
Prediction 

Accuracy of 
Training 

Prediction 
Accuracy of 

Testing 

Error Rate of 
Training 

Error Rate of        
Testing 

MLP 0.936539 0.738632 0.0613 0.2328 

LCNN 0.867631 0.723354 0.1079 0.1952 
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nodes of the tree are related to the gating network 0, 1 and 2 
from left to right, respectively.

According to the obtained features of each network, 
data by selected features is presented to the networks. The 
performance of the proposed approach is given in Table 8 
according to the testing and training data.

Table 9 shows the results of MLP and LCNN with 8 
neurons in hidden layer. Final prediction of networks is given 
based on the training and test datasets.

The results of MLP and LCNN, their convergence and 
convergence of the AHME network in terms of training error 
rate are shown in Fig. 5. As it can be seen from the diagram 
trend, the AHME network, through very high precision than 
other models, has been able to do the anticipation during the 
30 epochs only. It is clear that the AHME is a superior model 
based on both criteria of model complexity and time-solving 
according to Fig. 5.

ROC curve for three existing models based on the two 
sets of training and testing is drawn in Fig. 6 and Fig. 7. 
Based on these diagrams, AUC for training set of the AHME, 
LCNN and MLP models is 0.9993, 0.8680 and 0.9105 and for 
testing set is 0.6316, 0.5921 and 0.6222 respectively provided 
in Table 10.

We ranked the models in order to select and present 
the superior one due to the accuracy, AUC and error rate. 
As mentioned before, the ROC curves and their AUC were 
used for better comparison of performance. It is obvious that 
whatever the AUC is closer to one, the network model would 
have better performance. Accordingly, the AHME model has 
the best performance as shown in Fig. 8.

The MLP network could achieve the next rank and the 
LCNN model placed at the last rank because of acquiring 
worst values of two measures.  

7. Conclusions and future directions
In this paper, a novel model for bank corporate customers’ 

CS named AHME was proposed. Applying the hybrid 
learning rule instead of common learning rules gave the 
superb results compared with the MLP and LCNN credit 
scoring model. The proposed model is efficient due to the 
high efficiency on one hand and the very low error rate on the 
other, amongst others in the same field. The diagram of error 
rate comparison of each network was used in order to survey 
the model’s efficiency for separating the customers into good 
credit and bad credit. Additionally, the analysis of the ROC 
curve was also used. The results confirm that the AHME 
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Fig .6. ROC curve for training set of the models. 

 

Fig. 7. ROC curve for testing set of the models. 

 

Fig. 8. The results of the three models considering the prediction accuracy and the AUC based on the 
training and testing set. 
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Fig. 8. The results of the three models considering the prediction accuracy and the AUC based on the training and testing set

model is more efficient than others in the mentioned field. 
It is also more reliable for real world issues and its training-
solving time is lower than other models significantly. It also 
indicates that the AHME could converge within 30 epochs. 
Actually, the MLP and LCNN does not have enough ability 
for CS the real-world problems like this study. Obviously, the 
premier model acts as a bidder to banks and the final decision 
is up to the authorities and assessors. 

As for future research, one can focus on the CS of 
chequebook applicants. This paper was used for classifying 
the customers into two groups, namely good credit and bad 

credit. However, the central bank of Iran uses four categories 
including good, Non-Performing Loan (NPL) (who have two 
to six months debts), delayed due date (who have six to 18 
months debts) and doubtful due date (who have more than 18 
months debts) customers. Extending the proposed approach 
to four-class is another opportunity for future research. Future 
studies could also be extended by (a) using different credit 
datasets with different sizes and attributes for extra validation, 
(b) using different ensemble methods and strategies to learn 
more diversified sets (c) using different machine learning 
methods such as SVM and DT.
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