[1] U. Thonse, R. V. Behere, S. K. Praharaj, P. S. V. N. Sharma, Facial emotion recognition, socio-occupational functioning and expressed emotions in schizophrenia versus bipolar disorder, Psychiatry Research, Available online 27 March 2018.
[2] D. K. Jain, P. Shamsolmoali, P. Sehdev, Extended deep neural network for facial emotion recognition, Pattern Recognition Letters, 120 (2019) 69-74.
[3] M. Z. Uddin, M. M. Hassan, A. Almogren, M. Zuair, G. Fortino, J. Torresen, A facial expression recognition system using robust face features from depth videos and deep learning, Computers & Electrical Engineering, 63 (2017) 114-125.
[4] D. Torres-Boza, M. C. Oveneke, F. Wang, D. Jiang, W. Verhelst, H. Sahli, Hierarchical sparse coding framework for speech emotion recognition, Speech Communication, 99 (2018) 80-89.
[5] A. Uribe, A. Gómez, M. Bastidas, O. L. Quintero, D. Campo, "A novel emotion recognition technique from voiced-speech," 2017 IEEE 3rd Colombian Conference on Automatic Control (CCAC), Cartagena (2017) 1-4.
[6] K. N. Minhad, S. H. M. Ali, M. B. I. Reaz, Happy-anger emotions classifications from electrocardiogram signal for automobile driving safety and awareness, Journal of Transport & Health, 7 (Part A) (2017) 75-89.
[7] S. Vaid, P. Singh, "De-noising of EEG signal for emotion recognition," 2015 International Conference on Signal Processing, Computing and Control (ISPCC), Waknaghat (2015) 159-162.
[8] M. Z. Uddin, M. M. Hassan, A. Almogren, A. Alamri, M. Alrubaian, G. Fortino, "Facial Expression Recognition Utilizing Local Direction-Based Robust Features and Deep Belief Network," IEEE Access, 5 (2017) 4525-4536.
[9] G. Caridakis, K. Karpouzis, S. Kollias, User and context adaptive neural networks for emotion recognition, Neurocomputing 71 (2008) 2553– 2562.
[10] X. Huang, J. Kortelainen, G. Zhao, X. Li, A. Moilanen, T. Seppänen, M. Pietikäinen, Multi-modal emotion analysis from facial expressions and electroencephalogram, Computer Vision and Image Understanding, 147 (2016) 114-124.
[11] M. A. Nicolaou, H. Gunes, M. Pantic, Output-associative RVM regression for dimensional and continuous emotion prediction, Image and Vision Computing, 30 (3) (2012) 186-196.
[12] M. Song, M. You, N., C. Li, Chen, A robust multimodal approach for emotion recognition. Neurocomputing, 71 (2008) 1913-1920.
[13] P. Ekman, W.V. Friesen, Facial action coding system: A technique for the measurement of facial movement, palo alto. Consulting Psychologists Press, CA (1988); P.C. Ellsworth, C.A. Smith, From appraisal to emotion: Differences among unpleasant feelings, Motivation and Emotion 12 (1978) 271–302.
[14] Z. Li, J.i. Imai, M. Kaneko, Facial-component-based bag of words and phog descriptor for facial expression recognition, IEEE International Conference on Systems, Man and Cybernetics (SMC 2009) (2009) 1353–1358.
[15] M. Turk, A. Pentland, Face recognition using eigen faces, IEEE Conference on Computer Vision and Pattern Recognition, Maui, HI, USA (1991).
[16] T. Ahonen, A. Hadid, M. Pietikainen, Face description with local binary patterns: Application to face recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence, 28 (2006) 2037–2041.
[17] J.B. Tenenbaum, V. de Silva, J.C. Langford, A global geometric framework for nonlinear dimensionality reduction, Science, 290 (5500) (2000) 2319–2323.
[18] S.T. Roweis, L.K. Saul, Nonlinear dimensionality reduction by locally linear embedding’, Science, 290 (5500) (2000) 2323–2326.
[19] R. Kapoor, R. Gupta, Morphological mapping for non-linear dimensionality reduction, IET Computer Vision, 9 (2) (2015) 226-233.
[20] T. Jabid, M. H. Kabir, O. Chae, Robust facial expression recognition based on local directional pattern, ETRI journal, 32 (5) (2010) 784–794.
[21] Y. Yoshitomi, T. Asada, R. Kato, M. Tabuse, Facial expression recognition using facial expression intensity characteristics of thermal image, J. Robot. Netw. Artif. Life, 2 (1) (2015) 5–8.
[22] S. Wang, B. Pan, H. Chen, Q. Ji, Thermal Augmented Expression Recognition, IEEE Transactions on Cybernetics, 48 (7) (2018) 2203-2214.
[23] M. Liu, S. Shan, R. Wang, X. Chen, Learning Expressionlets via Universal Manifold Model for Dynamic Facial Expression Recognition, IEEE Transactions on Image Processing, 25 (12) (2016) 5920-5932.
[24] Q. Mao, Q. Rao, Y. Yu, M. Dong, Hierarchical Bayesian Theme Models for Multipose Facial Expression Recognition, IEEE Transactions on Multimedia, 19 (4) (2017) 861-873.
[25] A. Majumder, L. Behera, V. K. Subramanian, Automatic Facial Expression Recognition System Using Deep Network-Based Data Fusion, IEEE Transactions on Cybernetics, 48 (1) (2018) 103-114.
[26] M. Z. Uddin, W. Khaksar, J. Torresen, Facial Expression Recognition Using Salient Features and Convolutional Neural Network, IEEE Access, 5 (2017) 26146-26161.
[27] D. K. Jain, Z. Zhang, K. Huang, Multi angle optimal pattern-based deep learning for automatic facial expression recognition, Pattern Recognition Letters, In Press.
[28] S. Wu, J. Xu, S. Zhu, H. Guo, A Deep Residual convolutional neural network for facial keypoint detection with missing labels, Signal Processing,Volume 144, 2018, Pages 384-391.
[29] L. Chen, M. Wu, M. Zhou, Z. Liu, J. She and K. Hirota, Dynamic Emotion Understanding in Human-Robot Interaction Based on Two-Layer Fuzzy SVR-TS Model, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, In Press.
[30] G. Acampora, A. Vitiello, Interoperable neuro-fuzzy services for emotion-aware ambient intelligence, Neurocomputing, 122 (2013) 3-12.
[31] M. Imani, G. A. Montazer, GLCM features and fuzzy nearest neighbor classifier for emotion recognition from face, 2017 7th International Conference on Computer and Knowledge Engineering (ICCKE), Mashhad (2017) 8-13.
[32] M. S. Bartlett, G. Littlewort, I. Fasel, and J. R. Movellan, Real time face detection and facial expression recognition: Development and applications to human computer interaction, Computer Vision and Pattern Recognition Workshop (CVPRW ’03), 5 (2003) 53.
[33] E. Sariyanidi, H. Gunes, A. Cavallaro, Learning Bases of Activity for Facial Expression Recognition, IEEE Transactions on Image Processing, 26 (4) (2017) 1965-1978.
[34] M. Imani, H. Ghassemian, GLCM, Gabor, and Morphology Profiles Fusion for Hyperspectral Image Classification, IEEE proceedings of the 24th Iranian Conference on Electrical Engineering (ICEE 2016), Shiraz, Iran (2016) 460-465.
[35] S. Gupta, R. K. Singh, Mathematical morphology based face segmentation and facial feature extraction for facial expression recognition, 2015 International Conference on Futuristic Trends on Computational Analysis and Knowledge Management (ABLAZE), Noida (2015) 691-695.
[36] M. Imani, H. Ghassemian, Edge Patch Image-Based Morphological Profiles for Classification of Multispectral and Hyperspectral Data, IET Image Processing, 11 (3) (2017) 164-172.
[37] M. Imani, G. A. Montazer, Face Recognition Using Morphological Profile and Feature Space Discriminant Analysis, IEEE proceedings of the 25th Iranian Conference on Electrical Engineering (ICEE 2017), Tehran, Iran (2017) 1729-1734.
[38] R. A. Marklein, M. W. Klinker, K. A. Drake, H. G. Polikowsky, E. C. Lessey-Morillon, S. R. Bauer, Morphological profiling using machine learning reveals emergent subpopulations of interferon-γ–stimulated mesenchymal stromal cells that predict immunosuppression, Cytotherapy, 21 (1) (2019) 17-31.
[39] P. Viola, M. Jones, Rapid object detection using a boosted cascade of simple features, Computer Vision and Pattern Recognition, (2001) 511-518.
[40] M. J. Lyons, S. Akemastu, M. Kamachi, J. Gyoba, Coding Facial Expressions with Gabor Wavelets, 3rd IEEE International Conference on Automatic Face and Gesture Recognition (1998) 200-205.
[41] F. Mirzapour, H. Ghassemian, Using GLCM and Gabor filters for classification of PAN images, 21st Iranian Conference on Electrical Engineering (ICEE 2013), Mashhad, Iran (2013).