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ABSTRACT: In this paper, the multi-project scheduling problem is studied. The duration of the activities 
is subjected to the considerable uncertainty and the robust optimization approach is considered to deal 
with the uncertainty. The maximum total tardiness of the projects is defined as the objective function 
which should be minimized. In order to allocate the constrained resources to the multi-projects, two 
models are proposed. In the first model, the projects are scheduled separately while in the second model, 
the multi-project approach is applied and the resource sharing policy is used. It is demonstrated that 
how the tardiness of the projects will be decreased when the multi-project approach is applied. Also, the 
Adaptive Bee Genetic Algorithm (ABGA) is designed as a hybrid metaheuristic algorithm and proposed 
in this paper to solve the first stage model of the Robust Resource Constrained Multi-Project Scheduling 
Problem (RRCMPSP). The results of ABGA is compared with the results of scenario-relaxation algorithm 
as an exact algorithm for the small size problems. Also, the performance of ABGA is studied compared to 
the Genetic Algorithm (GA) and Artificial Bee Colony (ABC) as two basic algorithms for the large size 
problems. The results show the effectiveness of the proposed algorithm in solving the RRCMPSP. 
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1-  Introduction & Literature Review
Resource-Constrained Project Scheduling Problem (RCP-

SP) is one of the most well-known problems studied over the 
past decade. Today, the single project management rarely oc-
curs and the companies usually manage more than one proj-
ect simultaneously titled “multi project management”. Lova 
and Tormos [1] found that among the 202 Spanish compa-
nies, 84% of them executed multiple projects in parallel. The 
literature of project management problem is heavily biased 
towards the single project environment while the studies re-
lated to the multi-project problem is little [2]. Aritua et al. [3] 
mentioned that managing of multi-project is not simply an 
aggregate of single project efforts. Zheng et al. [4] explained 
that the main reason of not much fruits on the topic of multi-
project scheduling, comes from its high complexity, which 
is affected by many factors, such as the huge solution space, 
the intensely contending for resources, various and conflict-
ing objectives, the inter-project dependence and priority, the 
high level of uncertainty and so on. Many researchers have 
studied recently the multi-project problem to overcome this 
identified gap [5-9]. In this paper, the multi-project problem 
is studied while the renewable resource constraint is consid-
ered during the project scheduling problem.

The decision about resources is one of the most 
important aspects of the multi project scheduling problem. 
The characteristics of resource usage by individual project 

in the multi project environment is described as resource 
management policy [10]. Among the different existing policy 
[5, 7, 8], in this paper, the most common one; resource sharing 
policy determines how to allocate the common resources 
among projects. In addition this policy is compared with the 
situation in which the projects are scheduled separately with 
their proprietary resources.

In contrary to many studies assuming the parameters of the 
model deterministic, in a rapidly changing environment, the 
project activities are subject to uncertainty. When the data takes 
values different from the nominal ones, several constraints may 
be violated, and the optimal solution found using the nominal 
data may be no longer optimal or even feasible [11]. In fact, 
due to employees’ absenteeism, delays in materials supply, bad 
weather conditions and many other uncontrollable factors, some 
project activities may last longer than expected, threatening the 
operational viability of the planned schedule [12]. The duration 
of the activities has a considerable uncertainty in this study.

There are fundamental approaches for scheduling projects 
under uncertainty; namely, reactive scheduling, stochastic 
scheduling, scheduling under fuzziness, proactive (robust) 
scheduling, and sensitivity analysis [13]. The nature and 
characteristic of the under study problem dictates which 
approach is appropriate to deal with the uncertainty. 

Many studies apply stochastic approach to consider 
uncertainty in project scheduling problem [14-16]. Also, 
the fuzzy approach is applied in many studies like [17-20]. 
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The serious challenging point is that determining fuzzy 
membership function or fitting distribution function for the 
activities duration is not easy and accurate. Therefore, from a 
practical point of view, the application of these two approaches 
are seriously limited.

Robust optimization is totally compatible with the nature of 
project scheduling problem which is applied in this paper. The 
main advantages of robust optimization compared to stochastic 
programming or fuzzy approach are that no assumptions are 
needed for probability distribution or membership function 
of the uncertain data [22]. There are only four studies 
applying a robust optimization approach for the RCPSP with 
uncertain duration in the single project problem. Artigues et 
al. [21] proposed models for project scheduling when there 
is considerable uncertainty in the activity durations. They 
developed and implemented a scenario-relaxation algorithm 
and a scenario-relaxation-based heuristic. Bruni et al. [12] 
proposed an adaptive robust optimization model to derive 
the resource allocation decisions that minimizes the worst-
case makespan, under general polyhedral uncertainty sets. 
Chakrabortty et al. [23] studied the RCPSP in which the activity 
durations are random variables with different probability 
distribution functions. They proposed robust optimization-
based approach which produces good solutions under any input 
data scenario. Bruni et al. [24] in another study introduced 
two exact decomposition approaches to tackle the solution of 
the robust resource-constrained project scheduling problem 
under budgeted uncertainty polytope in which the resource 
constrained project scheduling problem is studied assuming 
that activity durations are subject to interval uncertainty.

In this paper, the robust optimization approach is applied 
for multi-project scheduling problem. Also, two situations are 
compared with each other. First, when there are some separate 
projects to be scheduled while they have constrained proprietary 
resources. Second, when the projects are in the shape of multi-
project problem and they are not scheduled separately; in other 
words, the resource sharing policy links the projects to each 
other. It is shown how the multi-project approach can reduce 
the tardiness of the projects when there is a considerable 
uncertainty in the duration of the activities. Both of these 
situations are represented in a two-stage model in which, the 
objective function is to minimize the maximum total tardiness of 
the projects. In this study, the robust optimization of the multi-
project scheduling problem is studied which has totally different 
characteristics for scheduling in comparison to the single project 
scheduling problem. Indeed, the calculation method related 
to the scheduling of the multi-projects are more sophisticated 
than the calculation for the single project. The projects use the 
resource pool under the Resource Sharing policy and all of the 
projects have a predefined due date. The objective is to minimize 
the maximum total tardiness of the all projects. The ABGA as a 
hybridized metaheuristic algorithm is designed and proposed for 
the first time in this paper to solve the large size problem of 
RRCMPSP. 

The structure of the paper is as follows: Problem description 
is in Section 2. The proposed models for both the single project 
and the multi-project cases are presented in Section 3. The 

exact approach is explained in Section 4. Also in Section 4, the 
numerical example is presented to demonstrate the comparison 
between the single project and multi-project approaches. The 
ABGA is designed and explained in detail in Section 5. In Section 
6, the computational result obtained by ABGA is reported and 
compared by scenario relaxation algorithm for the small size 
problems. Also, the comparison of ABGA results with ABC and 
GA are explained. Finally, Section 7 shows the conclusion and 
further research.

2- Problem Description
Consider resource constrained projects: 1, 2,...,qG = . In the 

first model, these projects are scheduled separately. In the second 
model, they are scheduled in the form of multi-project problem 
by resource sharing policy in which there are common resources 
in the resource pool. The structure of the projects is activity-
on-node (AON) network ( , )Graph V E= . Each project has n real 
activities. The precedence relationship between activities is 
shown by E V V⊂ × . In each project, the (dummy) activities of 
0 and n+1 represent the start and end of the project, respectively 
with zero durations and zero resource requirement. The possible 
values for duration of activity i V∈  of project g is shown by 
a set igP R+⊂ . Therefore, in the set of { }1 2 3 | |, , ,...,

iig ig ig ig ig PP p p p p=

, the minimum and maximum durations for activity i of project 
g are min min

ig
ig igcP

P P≡ and max max
ig

ig igcP
P P≡ respectively. The set of 

renewable resources is shown by R. The required resource 
type k for execution of activity i V∈ of project g is igkb N∈

. If F V⊂ contains any subsets of activities which there is no 
precedence relationship between them and at least for one type 
of resource ik k

i F
b b

∈

>∑ , then the set F is one “Forbidden Set” and 
its activities cannot execute in parallel because of resource 
conflict. The “Minimal Forbidden Set” is a forbidden set which 
its subset cannot be a forbidden set. Any resource conflicts can 
be removed by adding extra precedence relationships to the 
primary precedence graph for postponing some activities in 
such a way that the makespan can be determined by applying an 
early start policy (ES-Policy) on an extended graph. According 
to Balas [25] the set X, containing pairs of activities that leads 
to one feasible ES-policy, can be called a sufficient selection. 
After adding the extra precedence relationship X to the primary 
precedence graph E, the resource constraints can be ignored 
according to the precedence relationship in the EUX and the 
makespan can be obtained by calculating the critical path 
problem on the extended graph ( , ( ))Graph V E X′ ∪ .

For demonstrating the resource flows between the activities, 
the transshipment networks are applied [21] which can be called 
as (resource) flow network. A flow ( , , ) ijkf i j k f≡ ∈ represents 
the number of resource type k transferring from the end of 
activity i to the start of activity j. 

For each project, a due date gDD is determined by the 
project manager which is defined as a deadline for finishing 
each of the projects. The aim is to minimize the deviation of 
each project makespan from its due date. In the first situation, 
this minimization occurs for each project separately while the 
projects use their dedicated resources. In the second case, this 
minimization happens when the projects form a multi-project 
problem with the shared common resources. The question is how 
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to allocate the resources between the activities in such a way that 
under the condition of uncertain activity durations, the maximum 
tardiness for all projects will be minimized. 

3- Proposed Models
In this section, the proposed mathematical model for both 

approaches; the single project scheduling and multi-project 
scheduling is presented in the form of a bi - stage model. 

3-1- Robust Resource Constrained Single Project Scheduling 
Problem

3-1-1- Notations
In this part, the variables, parameters and indices which are 

applied in the model are introduced. 

3-1-2- The First Stage Model of RRCPSP 
In the equations (1) - (15) the first stage model is presented 

for the single project scheduling approach.

The objective function (1) displays the minimization of 
the project tardiness (Ta ). The calculation of the project 
tardiness is in constraint (2) resulted by the difference of 
the project makespan ( 1nS + ) and the project due date (
DD ) for each scenario (h). The precedence relationship 
between the activities is presented in constraint (3) where M 
is a big number, h

iP shows the duration of activity i based 
on scenario h, h

iS is the start time of activity i according 
to scenario h and ijx is the binary variable with value 1 if 
activity i is the predecessor of activity j. Eq. (4) prevents cycle 
in the graph. If activity i is the predecessor of activity j and 
activity j is the predecessor of activity u then activity i would 
be the predecessor of activity u. This rule is demonstrated in 
constraint (5). The sum of resource flows type k sending from 
activity 0 to other activities ( 0ikf ) is equal to the available 
capacity of resource type k ( kb ). Also, the sum of resource 
flows type k sending from the activities to the dummy activity 
n+1 ( 1jn kf + ) is equal to the available capacity of resource 
type k. These rules are shown in Eqs. (6) and (7) respectively. 
As represented in Eq. (8), the sum of incoming resource 
flows type k sending from other activities to activity i ( jikf ) 
is equal to the required resource type k for activity i ( ikb ). In 
the same way, Eq. (9) shows that the sum of output resource 
flows type k sending from activity i to other activities ( ijkf ) is 
equal to the required resource type k for activity i. Constraint 
(10) ensures that the resource flow type k transferring from 
activity i to the activity j is utmost equal to the minimum 
value of { },ik jkb b . In addition, this equation prevents 
resource transferring between two activities that there is no 
precedence relationship between them. Eq. (11) demonstrates 
that the binary variable x is equal to 1 for the two activities 
with precedence relationship between them. In constraint (12), 
it is mentioned that the project tardiness cannot be negative, 

• Indices 

V The set of activity nodes 

R The set of renewable resources 

E The set of precedence relations between activities 

P The set of scenarios belonging to activities duration  

• Parameters 

DD The due date of project 

h
iP The duration of activity i under scenario h 

ikb The required resource type k for performing activity i  

kb The capacity of resource type k  

min
iP The minimum scenario value for duration of activity i  

max
iP The maximum scenario value for duration of activity i 

• Variables 

Z The objective function of problem 

Ta The tardiness of project 

h
iS The start time of activity i under scenario h 

ijx The decision variable with value one when activity i is 

 the predecessor of activity j. otherwise it takes the  

value zero. 

ijkf The number of resource units of type k that are transferred 

 from the end of activity i to the start of activity j. 

ia The decision variable with value one if the duration of  

activity i takes the maximum value and it takes the value 

 zero if the duration of activity i takes the minimum value. 
min
ijmax

ij The minimum and maximum flow transferred from 

 activity i to activity j, respectively. 

 

 

 

 

 

(1)  minZ Ta=  
  . .s t 
(2) , 1,...,h P= 1

h
nTa S DD+ − 

(3) , (i, j) ,   ,  1,...,| |V V i j h P    = (1 )h h h
j i i ijS S P M x + − − 

(4) , (i, j) ,   V V i j    1ij jix x+  
(5) , (i, j,u) ,   V V V i j u      1iu ij jux x x + − 
(6) , k R  

0
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ik k
V
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f b
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
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1
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1
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j V

j n

f b+

 +

= 
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  ,
   1
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j n

f b
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 +
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j V j
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f b
 


= 

(10) , ( , ) ,  
,  , 0, 1

i j V V k R
i j n
    

 +
  min , . ijk ik jk ijf b b x 

(11) , ( , )i j E  1ijx = 
(12)  0Ta  
(13) , ,  1,...,i V h P  =  i 0hS  

(14) , ( , ) ,  i j V V k R     0ijkf  
(15) , ( , )  i j V V    0,1ijx  
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so it ensures that { }1max 0 ,  h
nTa S DD+= − is true for all 

scenarios. Nonnegative decision variables related to the start 
time of activities and the resource flow between activities are 
introduced in constraints (13) and (14) respectively. Finally, 
the binary variable x is described in Eq. (15). 

The objective function of the first stage model is 
minimization of the project tardiness for the existing scenarios. 
In addition, the optimized structure of EUX is obtained with 
respect to the existing scenarios. In other words, the best 
structure is resulted for resource allocation with respect to the 
precedence relationships and resource requirements in such a 
way that the project tardiness become minimum. This structure 
is needed as an input data for the second stage model.

3-1-3- The Second Stage Model of RRCPSP

Maximization of the project tardiness is described in Eq. 
(16). In Eq. (17), the way of calculating the project tardiness is 
explained. In Eq. (17), for obtaining the finish time of project, 
the longest path method is applied. In fact, the structure of 
EUX is considered as an overall structure included the primary 
precedence relationships between activities (E) and the extra 
precedence relationships caused by resource constraint (X). 
In order to obtain the longest path, the formula

( , )
( . )i ij

i j EUX
p ϕ

∈
∑  

can be used where ip  is the duration of activity i and ijϕ  
is the transferring flow from activity i to activity j. Because 
of the multiplication of ip and ijϕ , this formula becomes 
nonlinear. As mentioned before, the only values of min

ip and 
max
ip are needed for each activity, so, the binary variable ia

can be used and the nonlinear formula can be converted to

min min max max

( , )
( . . )i ij i ij

i j EUX
p pϕ ϕ

∈

+∑ which is linear. For more 
information about obtaining the longest path and how to 
linearize the mentioned formula please refer to Artigues et 
al. [21]. Eq. (18) implies that the sum of flows sending from 
activity 0 to the overall structure should be equal to 1. Also Eq. 
(19) ensures that the sum of flows sending from overall structure 
to activity n+1 should equal to 1. The flow conservation law 
is demonstrated in Eq. (20) in which for each kind of flows, 
the sum of flows entering to the activity i should be equal to 
the sum of flows exiting from the activity i. Constraints (21) 
and (22) are the constraints created for linearizing the longest 
path formula. The constraint (23) to constraint (25) represent 
the nonnegative variables of project tardiness and the flows 
related to the longest path respectively. The binary variables a 
is introduced in Eq. (26). Equation (27) shows that for activity 
0 (with zero duration), the binary variable a takes the value 0.

3-2- Robust Resource Constrained Multi Project Scheduling 
Problem
3-2-1- The First Stage Model of RRCMPSP

(16)  2Z maxTa= 
  . .s t 

(17) 
 

min min

( , )

max max

[ ( .

. )]

i ij
i j EUX

i ij

Ta p

p DD








+ −


 

(18) ,  0for i = min max

( , )
( ) 1ij ij

i j EUX
 



+ = 

(19)  1 j n= + min max

( , )
( ) 1ij ij

i j EUX
 



+ = 

(20)  , \ 0, 1i V n  + min max

( , )

min max

( , )

ij ij
i j EUX

ji ji
j i EUX

 

 




+ =

+




 

(21)  , \ 0, 1i V n  + max

( , )
ij i

i j EUX
a



 

(22)  , \ 0, 1i V n  + min

( , )
1ij i

i j EUX
a



 − 

(23) 
 

0Ta  
(24) , ( , )i j EUX  min 0ij  
(25) , ( , )i j EUX  max 0ij  
(26) , i V   0,1ia  
(27) ,  0, 1for i n= + 0ia = 

 

 

 

 

 

 

 

 

 

 

 

 

(28) 
 *

1
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G

g
g

TTa Ta
=

=   

  . .s t  

(29) , , 1,...,g G h P  =  1,g
h

g n gTa S DD+ −  
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 ,
,     ,
  1,...,| |

i j V V
g g G G
i j or g g

h P

  
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 
=

 

, ,g , (1 )h h h
j g i i g igjgS S P M x  + − −  

(31) , k R   
0

  i ,
0

gig k k
g V g

i

f b
 



=   

(32) , k R   
1

  ,
1

jgn g k k
g j V g

j n

f b+


 +

=    

(33)  , \ 0, 1 ,
 ,   

i V n
k R g G

  +

   
        , 1

(   )

jg igk igk
g G j V j n

j i or g g

f b
   +

 

=   

(34)  , \ 0, 1 ,  
,  

i V n
k R g G
  +

   
        , 0

(   )

igjg k igk
g G j V j

j i or g g

f b
  
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=   
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 ( , ) ,
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i j V V
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k R i j n
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   +

 
 min , . igjg k igk jg k igjgf b b x    

(36) , ( , , , )i g j g E   1igjgx  =  

(37) , g G   
0 0gS =  

(38) , g G   0gTa   
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i V g G
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In the equations (28) - (41) the first stage model is presented 
for the multi-project scheduling approach. 

In fact, the above equations are transformed from the 
single project scheduling to the multi-project scheduling 
approach. As explained in part 2, G is the set of projects and 
g, g′ and g′′ are the index of projects. The notation of g and 
g′ are imported to all variables and parameters in order to 
show the projects. For example, igjgx ′ is the binary variable 
with value 1 if activity i of project g is the predecessor of 
activity j of project g′ .

3-2-2 The Second Stage Model of RRCMPSP
The second stage model is presented for the multi-project 

case in equations (42) - (59).
In the above formulation, g igjgϕ ′′ ′  is the flow type g′′  

transferred from activity i of project g to activity j of project
g′ in order to calculate the longest path of project g′′ . The 
longest path of each project in the multi project problem, 
is presented in Eq. (44). As mentioned before, the resource 
sharing policy is applied in this paper which links the projects 
by extra precedence relationships. So, the projects are related 
to each other in the EUX structure. In the structure of multi-
project problem studied in this paper, for calculating the longest 
path, we should send a flow per project from the 0 activities to 
other activities in the overall structure. It means, the number of 
flows calculating the longest paths in the EUX structure is equal 
to the number of projects in the multi-project problem. The first 
index in the flow variable g igjgϕ ′′ ′ , g′′ shows for which project 
we want to calculate the longest path. 

4- The Scenario Relaxation Algorithm
In this approach, the scenarios are gradually added to 

the problem structure in the sequential iterations. First, one 
scenario for activity durations is considered and the model 
of the first stage is solved. The aim is to obtain the structure 
E X∪  for which the difference between the makespan of 
projects and their due dates is minimized. In other words, 
the search is for optimized E X∪ according to the existing 
scenario, for which the total tardiness is minimized. In the 
next step, the second stage model results the worst scenario 
for the obtained structure of first stage in such a way that 
the objective (total tardiness of projects) will be maximized. 
Then the mentioned scenario should be added to the scenario 
set of first stage model and this algorithm continues until the 
objective functions of both stages become equal. The steps of 

(28) 
 *

1
min

G

g
g

TTa Ta
=

=   

  . .s t  

(29) , , 1,...,g G h P  =  1,g
h

g n gTa S DD+ −  
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the applied approach are as follows (iter is the counter of the 
algorithm iterations).

1) The set 
1̂P  containing only one scenario 1p  for the 

duration of all activities of the projects is considered. Also
1iter = , 0LB = and UB = +∞  are assumed. 

2) The first stage model is solved in order to obtain 
* ˆ( )iterLB TTa P= . Also, the corresponding ES-policy; iterX  is 

resulted.
3) The second stage model is solved and the maximum 

max ( )iterTTa X  for the iterX  is obtained. The corresponding worst 
scenario; 1iterp +  is resulted. In addition, the max ( )iterUB TTa X=  is 
considered.

4) When LB UB= then stop the algorithm. If LB UB≠ , 
then 1iter iter= + and { }1

ˆ ˆ iter
iter iterP P p−= ∪  is considered and the 

algorithm should continue from step 2.
For more information about scenario relaxation algorithm, 

how to implement it in the single project problem and how to 
implement it in the multi-project problem, please refer to the 
references [26], [21] and [33] respectively.

4-1- Numerical Example of scenario relaxation algorithm: 
Scheduling of RRCPSP- Single Project

Consider 3 projects with six activities (the start activities 
and end activities are dummy) as shown in Fig. 1. 

Fig.1. The network structure of three projects

There is only one renewable resource ( 1 7b = ). The 
required resource for performing each activity, the possible 
durations of activities, the determined due date of projects are 
all represented in Table 1.

Project 1) In the single project manner, these projects are 
scheduled separately. After the execution of the first stage and 
the second stage models, the first project has terminated after 
2 iterations while the optimized objective function is 12. It 
means that if the project 1 execute in such a way that the 
resource transfers based on the optimized flows (Fig. 2), then 

the tardiness of this project will be minimum. 
In addition, in the obtained optimized structure (EUX), 

the maximum tardiness will be 12 based on the worst scenario 
happening. The critical path of project 1 is demonstrated in 
Fig. 3.

Project 2) For the second project, after 2 iterations of 
implementing the first stage and the second stage models, the 
algorithm is terminated. The optimized objective function is 
13 and the final resource flows is depicted in Fig. 4. Also, the 
critical path of project 2 is presented in Fig. 5.

Project 3) In the same way, after 2 iterations, the algorithm 
terminates by getting the optimal value of the objective 
function; 15. The final resource flow and the critical path of 
the third project are shown in Fig. 6 and Fig. 7 respectively.

 4-2- Scheduling of RRCMPSP- Multi Project
In this part, the three projects described in part 4.1.1 are 

scheduled as a multi-project problem based on the resource 
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Table 1. The required data of three projects 

Project 1  ( 1 7DD = ) Project 2  ( 2 9DD = ) Project 3  ( 3 7DD = ) 
 

i 1ib  ip  
1 0 {0} 
2 5 {3,4,5} 
3 4 {4,6} 
4 3 {7,8,10} 
5 4 {3,4} 
6 0 {0} 

 

i 1ib  ip  
1 0 {0} 
2 3 {6,7,8} 
3 2 {2,3} 
4 4 {5,7} 
5 3 {3,4} 
6 0 {0} 

 

i 1ib  ip  
1 0 {0} 
2 4 {3,5} 
3 5 {5,6,7,8} 
4 2 {2,3,4} 
5 3 {4,5} 
6 0 {0} 
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sharing policy. In the multi-project problem, the projects can 
share their common resources from the resource pool. So, the 
EUX structure would be obtained as a whole for all of the 
projects in the multi-project problem. In this example, after 
8 iterations, the algorithm is terminated. The summation of 
the projects tardiness is 22 as a total tardiness of the multi-
project problem. The resource flows for these projects and the 
critical paths of each project are depicted in Fig. 8 and Fig. 
9, respectively.

This simple numerical example shows the advantages of 
the multi-project scheduling approach in comparison to the 
scheduling of the projects separately. It is observed that under 
the uncertainty, when the multi-project approach is applied, 
the total tardiness of the projects is reduced significantly: 
(12+13+15)-22= 18. So, the resource sharing policy applied 
in the multi-project scheduling approach can influence 
greatly on reducing the finish time of the projects which is an 
important achievement in project scheduling problems.

5 -Hybridizing Scenario Relaxation Algorithm with ABGA
In  the  first  stage  model  ,the  RCMPSP is solved under 

different scenario. The RCPSP as a generalization of the 
classical job shop scheduling problem belongs to the class 
of NP-hard optimization problems [28]. The RCMPSP as a 
generalization of the RCPSP is also NP-hard [29]. So, as shown 
in Table 2, the first stage model has the main role in consuming 
run time. Therefore, it is necessary to develop metaheuristic 
algorithms in order to obtain results for the large size problems.

To solve large size problems, we hybridize the scenario 
relaxation algorithm (as an exact algorithm) with ABGA. In this 
case, the first stage model should be solved by ABGA and the 
stop criteria is UB LB ε− 

 where ε is a positive number, 
small enough in comparison to the values of LB and UB .

The ABGA itself is a hybrid metaheuristic algorithm 
designed for the first time in this paper which benefits from the 
characteristics of GA (Genetic Algorithm) and ABC (Artificial 
Bees Colony) algorithms. The performance of this algorithm 
is compared with its basic algorithms; GA [30] and ABC [31]. 

Before the step by step description of the proposed 
algorithm, the encoding and decoding of a solution should 
be devised. Also, the explanation of the schedule generation 
algorithm which assigns a figure of merit to each encoded 
solution as a fitness function is required.

5-1- Encoding and Decoding of a Solution
Each solution can be shown as a 1 N×  matrix where N 

is the total number of activities belonging to all projects. The 
order of activities in this matrix demonstrates the priority of 
selecting in the scheduling process.

Fig. 10 shows the encoding of a solution belonging to the 
multi-project with total 7 activities. In this example, activity 
2 is the first activity in the list of activities order. In other 
words, activity 2 is the first activity which should be checked 
in the schedule generation algorithm. 

5-2- Schedule Generation Algorithm
Each solution is evaluated by the value of its fitness based 

on the objective function presented in Section 3-2. Before the 
explanation of the schedule generation algorithm, it seems 
necessary to introduce the notations used in this algorithm.

5-2-1- Notation of the Schedule Generation Algorithm
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Fig. 10. The Structure of the Solution Matrix

            PAS Parallel activities, i.e., activities  

that are not the predecessor or 

 successor of each other either  

directly or indirectly 

              E  The set containing any pair of  

activities which have precedence 

 relationship with each other directly  

or indirectly (including transitive relations) 

           activityn  The total number of activities 

           SM Solution matrix 

            US The set of activities which have 

 received their required resources of any type, 

 but they have not been scheduled yet 

           NSS The set containing the activities that their 

 predecessors are not in US and so, these 

 activities cannot be chosen as *j  

            kCT   The set containing the activities that  

completely transferred their resource type  

k to other activities and do not have  
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          kCO   The set containing the activities that 

 completely obtained their required 

 resource type k 

           USn   Number of activities in US 
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 have been transferred from other activities  
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5-2-2- The flowchart of the Schedule Generation 
Algorithm

The schedule generation algorithm has two phases. In 
the first phase, the resources are transferred from activity 
1 through the network. Each activity obtains its required 
resources and after performance, it releases them to other 
activities. By the end of this phase, all the activities will have 
obtained their required resources and will have joined US 
(Box 36). In the second phase, the activities are scheduled 
(Boxes 37 to 56). The flowchart of this algorithm is depicted 
in Fig. 11 schematically.

5-2-3- Explanation of the Schedule Generation Flowchart 
Phase 1 (Resource Transfer)

First, we choose one random generated chromosome as 
a solution matrix (Box 4). The first activity (activity one) 
has a role of project starter. This activity should be added 
to the sets US  and kCO  for any kind of resources (Box 
7). It transfers all kind of resources to the network. These 
resources are gathered finally by the end activity as the sink 
of the flow network. k=1 (any resource type can be chosen) 
is set to start resource transferring process (Box 8). The first 
activity in the solution matrix (from the beginning of the 
chromosome) that is in US and COk sets but does not exist 
in CTk should be selected as *u  (Box 9). The 

*u  is supposed 
to transfer resources to other activity called *j . In order to 
choose *j , we select the first activity from the beginning of 
the chromosome that does not exist in COk and NSS (Box 10). 
In the resource transferring process (Box 24), the quantity of 
transferred resource; * *u qj q k

f
′ , is the minimum value of what 

remains for *u to transfer (the amount of resource that *u had 
at first minus the amount that it has transferred up to now) 
and what *j needs at the moment (the amount *j  needed 
at first minus what it has received up to current time). This 
process continues until all of the activities join US. 

Phase 2 (Activities Scheduling)
The algorithm continues from Box 37 where the number of 

scenarios is read. The activity 1 is scheduled at the beginning 
of the scheduling process. So, we add it to SA (Box 39). One 
of the activities which have not been scheduled yet but their 
predecessors were scheduled (RS) should be chosen randomly 
(Box 41). The start time of this activity is the maximum value 
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among the finish times of its predecessors (Box 44).
By adding the duration of this activity to its start time, 

the finish time can be obtained (Box 45). This process should 
repeat until all of the activities join the SA (Box 48). Then, 
the finish time of each project (q) can be easily obtained by 
the value of 1,

h
n qS +  (Box 49). When the finish times of all 

projects are calculated for all scenarios, the tardiness of each 
project will be obtained by the formula in Box 54. Box 55 
shows the total tardiness of projects as the problem objective 
function and the algorithm ends at this step.

5-3- ABGA
An approach called ABGA is presented to solve 

combinatorial optimization problems. This approach 
incorporates the artificial bee’s colony into the genetic 
algorithm to improve the performance of the genetic 
algorithm. This approach can be viewed as a genetic algorithm 
with ABC operator as a neighboring generation and selection 
operators. This hybridization helps the GA to search solutions 
around the better members and so, it increases the diversity 
of the solutions and prevents the GA from getting stuck in the 
local optimum point.

5-3-1- Initialization 
The proposed algorithm starts with introducing the 

parameters (Box 2) as depicted in Fig. 14. In this step, the 
initial number of sites (No. site), the initial number of recruit 
bees (No. rec. bees) and the number of population (npop) 
should be set. These values are determined as No. site=1, No. 
rec. bees=30 and npop0=100 for the first generation. 

The solutions are produced randomly with size npop0 as 
pop1. The fitness function is then evaluated in order to check 
whether the algorithm should be terminated or not (Boxes 4 
and 5). If the stop criterion is not satisfied, the crossover and 
mutation probabilities should be tuned (Box 6) as explained 
in part 5-3-2. 

5-3-2- Adaptive Parameter Tuning of Pc and Pm
The rate at which solutions are subjected to crossover is 

shown by crossover probability Pc. The higher the value of Pc, 
the quicker the new solutions introduced into the population. 
Also, as a secondary operator, large values of Pm, transform 
the GA into a purely random search algorithm, while some 
mutation is required to prevent the premature convergence of 
the GA to suboptimal solutions [34].

In this study, the adaptive parameter tuning method 
presented in Srinivas and Patnaik [34] is applied which 
calculates the values of Pc and Pm by the expressions (60) 
and (61) respectively.

In order to preserve ‘good’ solutions, lower values of Pc 
and Pm should be set for high fitness solutions and higher 
values of Pc and Pm for low fitness solutions. While the high 

fitness solutions aid in the convergence of the GA, the low 
fitness solutions prevent the GA from getting stuck at a local 
optimum.

The value of Pm should depend not only on maxf f− , but 
also on the fitness value f of the solution. Similarly, Pc should 
depend on the fitness values of both the parent solutions. The 
closer f is to fmax, the smaller Pm should be, i.e., Pm should 
vary directly as maxf f− . Similarly, Pc should vary directly 
as maxf f ′− , where f ′  is the larger of the fitness values of 
the solutions to be crossed.

5-3-3- Crossover and Mutation Operations
The crossover operation is done with probability Pc 

calculated by the formula (60). A roulette wheel selection is 
applied to choose a number of solutions from the population 
for the crossover operation. Then, the one point, the two-
point, and the uniform operators are executed as different 
crossover operators (Fig. 12) and create population 2 (pop2). 

In addition, a number of solutions are selected randomly 
from the population for the mutation operation. The 
probability of mutation operation is Pm calculated by the 
formula (61). The swap, insertion and reversion operators 
(Fig. 13) are performed as different mutation operators and 
form population 3 (pop3). 

5-3-4- Elitism Selection of GA
At this stage, the Boxes 7 and 8 of Fig. 14 are accomplished 

and this algorithm continues from Box 9 where the pop1, 
pop2, and pop3 are merged together. After fitness function 
evaluation (Box 10), the elitism selection is done based on 
the population size (npop) (Box 11). As described in part 
5-3-1, the population size was set on 100 at the first stage; 
npop0=100. In this algorithm, the population size is tuned in 
each iteration adaptively which will be explained in part 5-3-
8. So, in Box 11, the phrase “considering by npopt” means 
that if npopt>npop1+ npop2+ npop3, then, some random 
solutions should be produced and added to the population 
until the number of the population receives to npopt. 

5-3-5- ABC Operators
Our approach creates a number of different search paths 

by changing the location of parallel activities (the activities 
with no precedence relationship) in the best chromosomes of 
the population trying to find better solutions simultaneously. 
Each of these new chromosomes is known as a neighbor. 

In each iteration, the best solutions of GA are selected with 
size No. site and considered as the sites of ABC algorithm. 
Then, for each site, the neighbors (recruit bees) are produced 
with size No. Rec. Bee (Boxes 12 to 14). As mentioned in Box 
12, the No. site and the No. Rec. Bee are tuned adaptively, 
describing in part 5-3-6.

5-3-6- Adaptive Parameter Tuning of No. site and No. rec. 
Bees

The formulation (62) is proposed to tune the parameters 
of No. site and No. rec. Bees adaptively.
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Where iterVar and 1iterVar −
 are population variance in 

the current and previous iterations, respectively. maxVar
and minVar  are the maximum and minimum variance of 
the population. The formula (63) is presented in which the 
number of sites (No. site) can be determined based on the 
variance of the population.

The same way, formula (64) is represented for adaptive 
tuning of the No. rec. bees parameter.

So, we check the diversity (variance) of the population in 
each iteration. If the variance decreases, the factor 

iterX ′ will be negative and this increases the number of 
No. site and No. rec. Bees and vice versa. In this way, the 
ABC operator prevents the algorithm to get stuck in the local 
optimum point.

5-3-7- Selection the best solution in each site of ABC
The sites and the recruit bees should all be evaluated 

according to their fitness values (Box 15). Then the best of 
bees for each site should be selected (Box 16). If the best 
recruit bee is better than its site (Box 17), the site should be 
replaced with the fittest bee (Box 19). Otherwise, the site 
should be kept and the bee should be eliminated (Box 18). 

5-3-8- Adaptive Parameter Tuning of npopt
At this stage, one iteration of the whole ABGA has been 

accomplished and so, the population size can be adjusted for 
the next generation according to the population in the current 
generation (Box 20).

The method proposed by Eiben et al. [35] for adjustment 
of the population size (npop) is applied in this research in 
order to adaptive parameter tuning of npop based on the 
formula (65).

Where increase Factor is an external parameter from 
the interval (0,1). max Eval Num and Curr Eval Num denote 
the given maximum number of fitness evaluations and the 
current evaluation number. max Fitnessnew, max Fitnessold, 
and init Max Fitness are the best fitness values in the current 
generation, the best fitness values in the preceding generation 
and the best fitness value in the initial population. 

If the improvement of the algorithm occurs in less than 
or equal to m iterations, then the size of the population 
will increase by the factor X introduced in formula (65). 
If no improvement occurs for k iterations, then again the 
population increases by X factor. If the improvement happens 
for more than m iterations, the population should decrease by 
a little percentage; e.g. 1-5%. For more information about this 
method, please refer to [35].

Based on the above explanations, the proposed ABGA 
approach consists of a two-stage cycle. The first stage relates 
to the search by the GA and the second stage is the evolution 
by the ABC operators. 
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6- The Computational Experiments of Scenario 
Relaxation/ ABGA Algorithm

The algorithm ABGA is proposed to solve the first stage 
model of RRCMPSP. All the experiments are coded in 
MATLAB 2017b and run on a personal computer with an 
Intel Core i7-4702MQ CPU @ 2.20 GHz and 8 GB RAM 
under Windows 10 operating system. Three groups of 
test problems; i.e. n=10, 20 and 30 are solved by both the 
proposed metaheuristic algorithm and scenario relaxation 

algorithm in order to validate the ABGA for the small size 
problems. In order to implement the scenario relaxation 
algorithm, the proposed models are coded in GAMS v24.1.2 
and solved with the CPLEX solver. The experiments are run 
on a personal computer with an Intel(R) Core(TM) i5-6400 
CPU @ 2.70 GHz 2.70 GHz and 16 GB RAM under Windows 
10 operation system. Also, for the large size problems, the 
ABGA is implemented for n=40 and compared with its 
basic algorithms; GA and ABC in order to demonstrate 
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Table 2. Global Optimum Values and the Relative Gaps for ABGA (n=10) 

Problem No. Parameters Global Optimum Relative Gap OS RF RC 
A1 0.4 0.25 0.3 7.4 1.3*10-2 

A2 0.4 0.25 0.6 8.1 0 
A3 0.4 0.5 0.3 10 1.8*10-2 

A4 0.4 0.5 0.6 12.3 0 
A5 0.4 0.75 0.3 11 0 

A6 0.4 0.75 0.6 6.5 0 
A7 0.7 0.25 0.3 7.7 2*10-3 

A8 0.7 0.25 0.6 9.1 0 

A9 0.7 0.5 0.3 6 0 
A10 0.7 0.5 0.6 10.6 1.9*10-2 

A11 0.7 0.75 0.3 8.2 0 
A12 0.7 0.75 0.6 3.7 1.8*10-2 

Table 3. Global Optimum Values and the Relative Gaps for ABGA (n=20) 

Problem No. Parameters Global Optimum Relative Gap OS RF RC 
B1 0.4 0.25 0.3 11.3 1.8*10-2 

B2 0.4 0.25 0.6 4.5 3*10-1 
B3 0.4 0.5 0.3 7.7 4*10-2 

B4 0.4 0.5 0.6 10 2.1*10-3 
B5 0.4 0.75 0.3 15.5 0 
B6 0.4 0.75 0.6 16 2*10-2 
B7 0.7 0.25 0.3 14.3 0 

B8 0.7 0.25 0.6 14.5 1.5*10-1 
B9 0.7 0.5 0.3 8 3*10-2 

B10 0.7 0.5 0.6 17.2 2*10-2 

B11 0.7 0.75 0.3 11.1 0 
B12 0.7 0.75 0.6 16.8 3.1*10-2 

 
Table 4. Global Optimum Values and the Relative Gaps for ABGA (n=30) 

Problem No. Parameters Global Optimum Relative Gap OS RF RC 
C1 0.4 0.25 0.3 12.4 3.4*10-2 
C2 0.4 0.25 0.6 7.6 1.5*10-2 
C3 0.4 0.5 0.3 11 2*10-2 
C4 0.4 0.5 0.6 15.2 8*10-2 
C5 0.4 0.75 0.3 8.5 3*10-2 

C6 0.4 0.75 0.6 9 2.1*10-1 

C7 0.7 0.25 0.3 12.2 0 
C8 0.7 0.25 0.6 7.5 1.4*10-3 
C9 0.7 0.5 0.3 12.1 3*10-2 

C10 0.7 0.5 0.6 21.7 1.9*10-2 
C11 0.7 0.75 0.3 13 1.3*10-2 
C12 0.7 0.75 0.6 14.8 2.3*10-1 

 

Table 2. Global Optimum Values and the Relative Gaps for ABGA (n=10)



E. Nabipoor Afruzi and A. Aghaie., AUT J. Model. Simul.., 51(1) (2019) 15-32,  DOI: ﻿ 10.22060/miscj.2019.15033.5121

27

 

 

Table 2. Global Optimum Values and the Relative Gaps for ABGA (n=10) 

Problem No. Parameters Global Optimum Relative Gap OS RF RC 
A1 0.4 0.25 0.3 7.4 1.3*10-2 

A2 0.4 0.25 0.6 8.1 0 
A3 0.4 0.5 0.3 10 1.8*10-2 

A4 0.4 0.5 0.6 12.3 0 
A5 0.4 0.75 0.3 11 0 

A6 0.4 0.75 0.6 6.5 0 
A7 0.7 0.25 0.3 7.7 2*10-3 

A8 0.7 0.25 0.6 9.1 0 

A9 0.7 0.5 0.3 6 0 
A10 0.7 0.5 0.6 10.6 1.9*10-2 

A11 0.7 0.75 0.3 8.2 0 
A12 0.7 0.75 0.6 3.7 1.8*10-2 

Table 3. Global Optimum Values and the Relative Gaps for ABGA (n=20) 

Problem No. Parameters Global Optimum Relative Gap OS RF RC 
B1 0.4 0.25 0.3 11.3 1.8*10-2 

B2 0.4 0.25 0.6 4.5 3*10-1 
B3 0.4 0.5 0.3 7.7 4*10-2 

B4 0.4 0.5 0.6 10 2.1*10-3 
B5 0.4 0.75 0.3 15.5 0 
B6 0.4 0.75 0.6 16 2*10-2 
B7 0.7 0.25 0.3 14.3 0 

B8 0.7 0.25 0.6 14.5 1.5*10-1 
B9 0.7 0.5 0.3 8 3*10-2 

B10 0.7 0.5 0.6 17.2 2*10-2 

B11 0.7 0.75 0.3 11.1 0 
B12 0.7 0.75 0.6 16.8 3.1*10-2 

 
Table 4. Global Optimum Values and the Relative Gaps for ABGA (n=30) 

Problem No. Parameters Global Optimum Relative Gap OS RF RC 
C1 0.4 0.25 0.3 12.4 3.4*10-2 
C2 0.4 0.25 0.6 7.6 1.5*10-2 
C3 0.4 0.5 0.3 11 2*10-2 
C4 0.4 0.5 0.6 15.2 8*10-2 
C5 0.4 0.75 0.3 8.5 3*10-2 

C6 0.4 0.75 0.6 9 2.1*10-1 

C7 0.7 0.25 0.3 12.2 0 
C8 0.7 0.25 0.6 7.5 1.4*10-3 
C9 0.7 0.5 0.3 12.1 3*10-2 

C10 0.7 0.5 0.6 21.7 1.9*10-2 
C11 0.7 0.75 0.3 13 1.3*10-2 
C12 0.7 0.75 0.6 14.8 2.3*10-1 

 

Table 3. Global Optimum Values and the Relative Gaps for ABGA (n=20)

Table 4. Global Optimum Values and the Relative Gaps for ABGA (n=30)

 

 

Table 2. Global Optimum Values and the Relative Gaps for ABGA (n=10) 

Problem No. Parameters Global Optimum Relative Gap OS RF RC 
A1 0.4 0.25 0.3 7.4 1.3*10-2 

A2 0.4 0.25 0.6 8.1 0 
A3 0.4 0.5 0.3 10 1.8*10-2 

A4 0.4 0.5 0.6 12.3 0 
A5 0.4 0.75 0.3 11 0 

A6 0.4 0.75 0.6 6.5 0 
A7 0.7 0.25 0.3 7.7 2*10-3 

A8 0.7 0.25 0.6 9.1 0 

A9 0.7 0.5 0.3 6 0 
A10 0.7 0.5 0.6 10.6 1.9*10-2 

A11 0.7 0.75 0.3 8.2 0 
A12 0.7 0.75 0.6 3.7 1.8*10-2 

Table 3. Global Optimum Values and the Relative Gaps for ABGA (n=20) 

Problem No. Parameters Global Optimum Relative Gap OS RF RC 
B1 0.4 0.25 0.3 11.3 1.8*10-2 

B2 0.4 0.25 0.6 4.5 3*10-1 
B3 0.4 0.5 0.3 7.7 4*10-2 

B4 0.4 0.5 0.6 10 2.1*10-3 
B5 0.4 0.75 0.3 15.5 0 
B6 0.4 0.75 0.6 16 2*10-2 
B7 0.7 0.25 0.3 14.3 0 

B8 0.7 0.25 0.6 14.5 1.5*10-1 
B9 0.7 0.5 0.3 8 3*10-2 

B10 0.7 0.5 0.6 17.2 2*10-2 

B11 0.7 0.75 0.3 11.1 0 
B12 0.7 0.75 0.6 16.8 3.1*10-2 

 
Table 4. Global Optimum Values and the Relative Gaps for ABGA (n=30) 

Problem No. Parameters Global Optimum Relative Gap OS RF RC 
C1 0.4 0.25 0.3 12.4 3.4*10-2 
C2 0.4 0.25 0.6 7.6 1.5*10-2 
C3 0.4 0.5 0.3 11 2*10-2 
C4 0.4 0.5 0.6 15.2 8*10-2 
C5 0.4 0.75 0.3 8.5 3*10-2 

C6 0.4 0.75 0.6 9 2.1*10-1 

C7 0.7 0.25 0.3 12.2 0 
C8 0.7 0.25 0.6 7.5 1.4*10-3 
C9 0.7 0.5 0.3 12.1 3*10-2 

C10 0.7 0.5 0.6 21.7 1.9*10-2 
C11 0.7 0.75 0.3 13 1.3*10-2 
C12 0.7 0.75 0.6 14.8 2.3*10-1 

 

its effectiveness. For this purpose, each experiment is run 
10 times. Then, the average value of objective function is 
calculated and reported. Worth to mention that there are three 
projects in each multi project problem where n is the number 
of activities in each project. 

All the test problems are generated by the software 
RanGen [32] with different structural characteristics; i.e. 
order strength (OS), resource factor (RF) and resource 
constrainedness (RC) which effect on the complexity of the 
test problems. For more information about these factor please 
refer to [27]. Additional data are considered for adapting the 
test problems to RRCMPSP.

6-1- Results for small size RRCMPSP (n=10, 20 and 30)
First, the samples of size n=10 are considered and solved 

by ABGA. Table 2 shows the exact results of the scenario 
relaxation algorithm and the relative gaps of the results 
obtained by ABGA. Then the same results for n=20 and 30 
are calculated and presented in Tables 3 and 4 respectively.

As observed in Tables 2 to 4, the ABGA presents good 

solutions with negligible relative gaps in comparison to the 
global solutions. In order to demonstrate the performance of 
the proposed algorithm in comparison to the other algorithms, 
some samples with different sizes are chosen randomly in 
order to depict their results.

As shown in Fig. 15, the proposed algorithm; ABGA 
performs better than GA and ABC in finding a better solution 
for the small size test problems. 

6-2- Results for large size RRCMPSP (n=40)
Table 5 shows the means and standard deviations obtained 

for the cost of the test problems with n=40. Also, the means 
and standard deviations of the NFEs are reported. In addition, 
based on the results of the algorithm, the rank of algorithms 
is presented. 

As shown in Table 5, the ABGA performs better in 
comparison to the other algorithms. The convergence 
characteristics graphs for some randomly selected problems 
with n=40 are illustrated in Fig. 16. 

As shown in Fig. 16, the proposed algorithm; ABGA 
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performs better than GA and ABC in finding a better solution 
for the large size test problems. 

7- Conclusion and Further Research
Two models were introduced for robust resource-

constrained multi-project scheduling problem (RRCMPSP) 
in this paper. In the first model, the maximum tardiness of 
the projects was minimized while the projects were scheduled 
separately as single project scheduling problems. The second 
model considered the projects as a multi-project problem 
while the common resources were shared among the projects. 

   

   
Fig. 15. Convergence of the Algorithms for Random Selected Test Problems 

 

 

 

 

 

 

 

 

 

 

 

Fig. 15. Convergence of the Algorithms for Random Selected Test Problems

The durations of the activities were uncertain and expressed 
by discrete values. The advantages of the multi-project 
approach in scheduling the projects under uncertainty in 
comparison with the scheduling of the projects separately was 
presented by a numerical example. The ABGA algorithm was 
designed and presented in this paper as a hybrid metaheuristic 
algorithm for the large size RRCMPSP. The performance 
of the proposed algorithm was validated according to the 
results of exact algorithm for the small size RRCMPSP. So, 
the scenario-relaxation algorithm was implemented for the 
proposed models. In addition, for the large size RRCMPSP, 

   

   
Fig. 16. Convergence of the Algorithms for Test Problems D1, D3, D6, D7, D9, D12 
 

 

Fig. 16. Convergence of the Algorithms for Test Problems D1, D3, D6, D7, D9, D12
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able 5. Computational Results of RRCMPSPTT for n=40 
Functions  Index GA ABC ABGA 

D1 
Mean Cost ± std. Dev. 10.4±0.1 10±0.15 9.5±0.05 
Mean NFE ± std. Dev. 31000±1200 13320±980 43800±800 

Rank 3 2 1 

D2 
Mean Cost ± std. Dev. 13.5±0.5 13.1±0.04 12.8±0.1 
Mean NFE ± std. Dev. 17600±420 14200±670 28500 1250 

Rank 3 2 1 

D3 
Mean Cost   std. Dev. 17 0.2 18 0.1 15.1 0 
Mean NFE   std. Dev. 14530 650 16290 1050 14250 450 

Rank 2 3 1 

D4 
Mean Cost   std. Dev. 21.2 0.17 21.8 0.25 20.9 0.3 
Mean NFE   std. Dev. 23800 1450 11300 580 26400 1100 

Rank 2 3 1 

D5 
Mean Cost   std. Dev. 14.8 0.05 14.2 0.1 14.4 0.2 
Mean NFE   std. Dev. 13700 880 31500 1440 25230 2100 

Rank 3 1 2 

D6 
Mean Cost   std. Dev. 12.4 0.3 12.2 0.2 11.9 0.1 
Mean NFE   std. Dev. 10490 670 15280 1100 37650 330 

Rank 3 2 1 

D7 
Mean Cost   std. Dev. 10.4 0.05 11.2 0.1 9.3 0 
Mean NFE   std. Dev. 11200 680 10760 1240 11340 1800 

Rank 2 3 1 

D8 
Mean Cost   std. Dev. 15.9 0.1 15.7 0.2 15.3 0 
Mean NFE   std. Dev. 18570 430 22640 890 34200 1750 

Rank 3 2 1 

D9 
Mean Cost   std. Dev. 7.5 0.02 8.6 0.06 7 0 
Mean NFE   std. Dev. 15840 660 9710 310 15060 2100 

Rank 2 3 1 

D10 
Mean Cost   std. Dev. 20.8 0.1 20.6 0.07 19.7 0.05 
Mean NFE   std. Dev. 15690 1320 33700 1600 28900 750 

Rank 3 2 1 

D11 
Mean Cost   std. Dev. 11.1 0 11.4 0.24 10.5 0.16 
Mean NFE   std. Dev. 18950 210 14800 1100 13550 530 

Rank 2 3 1 

D12 
Mean Cost   std. Dev. 15.1 0.1 13.9 0.04 13.5 0 
Mean NFE   std. Dev. 25620 840 25600 920 34980 1200 

Rank 3 2 1 

 

Table 5. Computational Results of RRCMPSPTT for n=40

the computational results of ABGA were compared by GA and 
ABC algorithms and showed that ABGA performed better 
than these algorithms. 

Other constraints can be added as an extension of the 
proposed model like the multi-mode activities, nonrenewable 
resources, multi-skill resources, etc. Developing other 
algorithms in order to solve large size RRCMPSP is another 
extension. Finally considering the cost of projects as a second 
objective function and having a robust time-cost tradeoff 
model would be of interest. 
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