[2]Jiang, Z. H., Shinohara, K., 2016, "Workspace trajectory tracking control of flexible joint robots based on backstepping method", In Region 10 Conference (TENCON), pp. 3473-3476 (2016).
[3]Kim, M. J., Chung, W. K., 2015, "Disturbance-observer-based PD control of flexible joint robots for asymptotic convergence", 2015, IEEE Transactions on Robotics, 31(6), pp. 1508-1516.
[4]Ulrich, S., Sasiadek, J. Z., Barkana, I., 2014, "Nonlinear adaptive output feedback control of flexible-joint space manipulators with joint stiffness uncertainties". Journal of Guidance, Control, and Dynamics.
[5]Schindlbeck, C., Haddadin, S., 2015, "Unified passivity-based cartesian force/impedance control for rigid and flexible joint robots via task-energy tanks". IEEE International Conference on Robotics and Automation, pp. 440-447.
[6]Wang, X., Li, H., Wang, Y., Hua, J., 2014, "Adaptive backstepping control of flexible joint robots with friction compensation based on LuGre model". The 26th Chinese Control and Decision Conference, pp. 1484-1489.
[7]Avila-Becerril, S., Loría, A., Panteley, E., 2016, "Global position-feedback tracking control of flexible-joint robots", American Control Conference, pp. 3008-3013.
[8]Izadbakhsh, A, and Masoumi, M., 2017, "FAT-based robust adaptive control of flexible-joint robots: singular perturbation approach". Annual IEEE Industrial Society's 18th International Conf. on Industrial Technology, pp. 803-808.
[9]Ding, Y., & Xiao, X., 2016, "Speed control and resonance suppression of flexible joint system based on singular perturbation method and Kalman filter", 42nd IEEE Annual Conference of the Industrial Electronics Society, pp. 631-635.
[10]Makarov, M., Grossard, M., Rodriguez-Ayerbe, P., Dumur, D., 2014, "Comparison of two robust predictive control strategies for trajectory tracking of flexible-joint robots". IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 1704-1709.
[11]Li, Y., Tong, S., Li, T., 2013, "Adaptive fuzzy output feedback control for a single-link flexible robot manipulator driven DC motor via backstepping". Nonlinear Analysis: Real World Applications, 14(1), pp. 483-494.
[12]Chaoui, H., Gueaieb, W., Biglarbegian, M., Yagoub, M. C., 2013, "Computationally efficient adaptive type-2 fuzzy control of flexible-joint manipulators. Robotics, 2(2), pp. 66-91.
[13]Rsetam, K., Cao, Z., Man, Z., 2016, "Hierarchical sliding mode control applied to a single-link flexible joint robot manipulator". International Conference on Advanced Mechatronic Systems, pp. 476-481.
[14]Miao, Z., Wang, Y., 2013, "Robust dynamic surface control of flexible joint robots using recurrent neural networks". Journal of Control Theory and Applications, 11(2), pp. 222-229.
[15]Agee, J. T., Bingul, Z., Kizir, S., 2015, "Higher-order differential feedback control of a flexible-joint manipulator". Journal of Vibration and Control, 21(10), pp. 1976-1986.
[16]Fateh, M. M., 2012, "Robust control of flexible-joint robots using voltage control strategy". Nonlinear Dynamic. 67, pp. 1525-1537.
[17]Fateh, M. M., 2012, "Nonlinear control of electrical flexible-joint robots". Nonlinear Dynamic. 67, pp. 2549-2559.
[18]Izadbakhsh, A., and Fateh, M. M, 2014, "Robust Lyapunov-based control of flexible-joint robots using voltage control strategy", Arabian journal for science and Engineering. 39, pp. 3111-3121.
[19]Fateh, M.M., and Souzanchikashani., 2015, "Indirect adaptive fuzzy control for flexible-joint robot manipulators using voltage control strategy". Journal of Intelligent & Fuzzy Systems, 28, pp. 1451-1459.
[20]Izadbakhsh, A., 2016, "Robust control design for rigid-link flexible-joint electrically driven robot subjected to constraint: theory and experimental verification", Nonlinear Dynamic, 85, pp. 751-765.
[21]Izadbakhsh, A., Akbarzadeh Kalat, A., Fateh, M. M., and Rafiei. S.M.R., 2011, "A robust Anti-Windup control design for electrically driven robots-Theory and Experiment". International Journal of Control. Automation, and Systems, 9, pp. 1005-1012.
[22]Izadbakhsh, A., and Fateh, M. M., 2014, "
Real-time Robust Adaptive control of Robots Subjected to Actuator Voltage Constraint".
Nonlinear Dynamics. 78, pp. 1999-2014.
[23]Khorashadizadeh, S., and Majidi, M. H., 2017, “Synchronization of two different chaotic systems using Legendre polynomials with application to secure communications.” Frontiers of Information Technology & Electronic Engineering. doi: 10.1631/FITEE.1601814.
[24]Izadbakhsh, A., and Khorashadizadeh, S., 2017, “Robust impedance control of robot manipulators using differential equations as universal approximator.” International Journal of Control, 1-17.
[25]Khorashadizadeh, S., & Majidi, M. H., 2017,“Chaos synchronization using the Fourier series expansion with application to secure communications.”AEU-International Journal of Electronics and Communications, 82, 37-44.
[26]Gupta, M., Jin, L., Homma, N., 2004, Static and dynamic neural networks: from fundamentals to advanced theory. John Wiley & Sons.
[27]Yin, S., Shi, P., Yang, H., 2016, "Adaptive fuzzy control of strict-feedback nonlinear time-delay systems with unmodeled dynamics", IEEE transactions on cybernetics, 46(8), pp. 1926-1938.
[28]Chen, B., Lin, C., Liu, X., Liu, K., 2016, "Observer-based adaptive fuzzy control for a class of nonlinear delayed systems", IEEE Transactions on Systems, Man, and Cybernetics: Systems, 46 (1), pp. 27-36.
[29]Zhou, Q., Li, H., Wu, C., Wang, L., Ahn, C. K., 2017, "Adaptive fuzzy control of nonlinear systems with unmodeled dynamics and input saturation using small-gain approach". IEEE Transactions on Systems, Man, and Cybernetics: Systems.
[30]Aguils-Camacho, N., Duarte-Mermoud, M. A., and Gallegos, J. A., 2014, "Lyapunov functions for fractional order systems". Commun Nonlinear Sci Numer Simulat, 19, pp. 2951-2957.
[31]A. Izadbakhsh, A., 2017, "A note on the "nonlinear control of electrical flexible-joint robots", Nonlinear Dynamics, 89, pp. 2753-2767.
[32]Izadbakhsh, A., 2017, "Robust adaptive control of voltage saturated flexible joint robots with experimental evaluations". AUT Journal of Modeling, and simulation, DOI: 10.22060/miscj.2017.12174.5008.
[33]Duarte-Mermoud, M. A., Aguils-Camacho, N., Gallegos, J. A., and Castro-Linares, R., 2015, "Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems", Commun Nonlinear Sci Numer Simulat, 22, pp. 650-659.
[34]Ahmed, E., El-Sayed, A.M.A., El-Saka, Hala A. A., 2006, "On some Routh-Hurwitz conditions for fractional order differential equations and their applications in Lorenz, Rossler, Chua and Chen Systems". PHYSICS LETTERS A, 358, pp. 1-4.
[35]Moreno-Valenzuela, J., Campa, R., and Santibáñez, V., 2013, "Model-based control of a class of voltage-driven robot manipulators with non-passive dynamics", Computers & Electrical Engineering. 39, pp. 2086-2099.
[36]Podlubny, I., Vinagre, B. M., O'Leary, P., and Dorcak, L. 2002, Analogue realization of fractional-order controllers, nonlinear dynamics, vol. 29, pp. 281-296.