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ABSTRACT: The State-Dependant Riccati Equation method has been frequently used to design 
suboptimal controllers applied to nonlinear dynamic systems. Different methods for local stability 
analysis of SDRE controlled systems of order higher than two such as the attitude dynamics of a general 
rigid body have been developed in the literature; however, it is still difficult to show global stability 
properties of closed-loop system with this controller. In this paper, a reduced-form of SDRE formulation 
for attitude dynamics of a general rigid body is achieved by using Input-State Linearization technique 
and solved analytically. By using the solution matrix of the reduced-form SDRE in properly defined 
Lyapunov functions, a class of nonlinear controllers with global stability properties is developed. 
Numerical simulations are performed to study the stability properties and optimality for attitude 
stabilization of a general rigid body, and it is concluded that the designed controllers have the capability 
to provide a balance between optimality and proper stability characteristics.
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1- Introduction
Numerous techniques exist to design control laws for nonlinear 
systems such as gain scheduling, feedback linearization, 
sliding mode control, backstepping and adaptive control. 
Each of these techniques has its own tuning methods which 
allow the designer to provide trade-offs between different 
factors such as control effort and output error. Also, features 
like robustness to uncertainties and disturbances as well as 
stability issues depend on the controller design.
State-Dependent Riccati Equation (so-called SDRE) is a 
well-known systematic and effective technique which has 
been widely used to design suboptimal controllers, observers, 
and filters [1]. The SDRE controlled systems are not such 
restrictive in form as is the case with other control methods 
like backstepping. Moreover, the most important advantage 
of SDRE method is its flexibility in tuning the corresponding 
weighting matrices, as functions of the states, which provide 
capability of designing adaptive control laws. SDRE-based 
controllers have been applied to a diverse range of nonlinear 
systems including the attitude dynamics of rigid bodies (e.g. 
[2], [3], [4] and [5]).  In all such applications, the resulting 
closed-loop system is locally asymptotically stable and the 
global stability properties cannot be determined because 
the SDRE controlled system is not known in closed-
form. A global stability analysis for second-order systems 
under SDRE control has been investigated in [6], where 
the system’s equations are parameterized so as to yield an 
analytical solution to the SDRE. However, for a system 
with state dimension higher than two, it is still difficult to 
achieve an analytical solution to the SDRE, although, there 
exist some methods to calculate the region of attraction of 

closed-loop system [7]. Moreover, using the Euler angles as 
attitude feedbacks usually causes singularities in the solution. 
On the other hand, all pure SDRE attitude controllers that use 
quaternion vector part as feedback encounter uncontrollability 
when they want to stabilize the largest attitude maneuver, i.e. 
the initial error angle is taken as 180 degrees (see, e.g. [8] 
and   [9]).
To address the aforementioned concerns, here we provide 
a novel approach by combining SDRE, Input-State 
Linearization (ISL), and Lyapunov method. We use ISL 
technique to partly simplify the rigid body attitude dynamics. 
Implementing some mathematical operations make it possible 
to find an analytic solution for the obtained simplified SDRE. 
By using the solution matrix of the reduced-form SDRE in 
properly defined Lyapunov functions, a new class of nonlinear 
controllers with global stability properties is developed. 
Indeed, this approach provides a trade-off between stability 
properties and optimality for attitude stabilization of a rigid 
body. This class of controllers has also no uncontrollability 
pitfall. Due to the nature of the quaternion parameters, 
which are used for representation of attitude kinematics, 
the presented solution and consequently the controllers are 
globally non-singular. This feature is very important in the 
attitude stabilization problem.
The rest of the paper is organized as it follows. Section 2 
gives an overview by presenting the mathematical model 
of a general rigid body attitude dynamics, SDRE method 
formulation and its application to stabilization of the attitude 
dynamics with quaternion feedback. Section 3 presents the 
simplification strategy of SDRE formulation for the problem 
and the analytic solution of the reduced SDRE. In Section 4, 
we provide stability analysis of the closed-loop system using 
the designed controllers. We exhibit the main contributions Corresponding author, E-mail: mortazavi@aut.ac.ir
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through some numerical examples in Section 5. Finally, 
Section 6 concludes the paper.

2- Preliminaries And Background
2- 1- Attitude Dynamics Equations
Euler’s equation describes the attitude dynamics of a rigid 
body around body-fixed axes with origin at the center of 
mass. The following equation is associated with the general 
case, where the body-fixed control axes do not coincide with 
the principal axes of inertia.

- ,J u S Jωω = ω

(1)

where [ ]1 2 3
Tω ω ω ω=  is the body angular velocity with 

respect to an inertial coordinate, [ ]1 2 3
Tu u u u=  is the 

control torque vector, J  indicates the inertial matrix, and S ω  
represents a skew-symmetric matrix defined as

3 2

3 1

2 1

0
0

0
S ω

−ω ω 
 = ω −ω 
 −ω ω 

.

The subscripts 1, 2 and 3 denote the body-fixed control axes. 

2- 2- Attitude Kinematics Equations
Attitude of a rigid body can be described by different methods 
with their special properties [10]. However, for sake of 
simplicity, quaternion representation, which is globally non-
singular, is preferred to design attitude controller

( )1 ,
2
1 ,
2

T

Sεε = ηω + ω

η = ω ε





(2)

where [ ]1 2 3
Tε = ε ε ε  is the vector part of quaternion, η  is 

its scalar part, and S ε  is a skew-symmetric matrix defined by

3 2

3 1

2 1

0
0 ,

0
Sω

ω ω
ω ω
ω ω

− 
 = − 
 − 

(3)

where the quaternion parameters satisfy the quaternion
2 1.Tη + ε ε = (4)

Rigid body stabilization problem is achieved by the 
stabilization of the two equilibrium points ( 0ε = , 1η = ± , 

0ω = ) of the dynamics defined by  and . This duality of the 
quaternion parameters is because of their nature in attitude 
representation [10]. Briefly, note that unit quaternions are 
used to parameterize ( )3SO  which is a boundary-less 
compact manifold for representation of rigid body attitude. 
The state space of quaternions, 3  (the set of unit-magnitude 
vectors in 4 ) is also a boundary-less compact manifold that 
provides a double covering of ( )3SO  where always two sets 
of unit quaternions correspond to a single attitude (see [11] 
for details).

2- 3- Review of SDRE Control Method
Consider the general infinite-horizon regulation problem, 
where the system is fully observable and affine in the input 
and represented in the form of

( ) ( )x f x g x u= + (5)
where nx ∈ , mu ∈ , ( )f x  and ( )g x  are smooth, and 

( ) 0.x g x∀  ≠  It is desired to find a state feedback control 
law ( )u x  which regulates the system to the origin x∀  and 
minimizes the performance index

( ) ( )( )
0

1
2

T Tx Q x x u R x u dt
∞

Φ = +∫
where ( )Q x  and ( )R x   are the state and control weighting 
matrices, respectively. The SDRE method approaches the 
problem by mimicking the LQR formulation for linear 
systems. Accordingly, the system equation (5) is first written 
in the linear-like structure

( ) ( )x A x x B x u= + (6)
where ( ) ( )f x A x x=  and ( ) ( )g x B x= . According to [12], 
this factorization is not unique and is possible if and only if 

( )0 0f =  and ( )f x  is continuous. 

Lemma 1. Consider (6)and the following conditions.
i. The full-state measurement vector is available.

ii. ( )f x  is continuously differentiable and ( )0 0f = .
iii. ( )g x   is smooth and ( ) 0x g x∀  ≠ .

iv. ( )Q x  and ( )R x  are positive definite.
v. x∀  the pair ( ) ( )( ),A x B x  is point-wise controllable.

Then, the suboptimal state-feedback control law is obtained 
in the form of

( ) ( )
( ) ( ) ( )1 T

u x K x x

R x B x P x x−

= −

= −
(7)

where ( )P x  is the unique, symmetric, positive-definite 
solution of the state-dependent algebraic Riccati equation

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )1 0.

T

T

A x P x P x A x Q x

P x B x R x B x P x−

+ +

− =
(8)

The reader can refer to [12] for the detailed proofs.

2- 4- Full SDRE Controller of Rigid Body Attiude
2- 4- 1- State-Dependant Factorization
Equation (1) and first line of(2) are used to form the state-space 
equations. The angular velocity vector and the quaternion 
vector part are defined as states of the system. According to 
(5), and if we construct TT Tx ω ε =   , then we have

( )
( )

( )
1

1

, ,1 0
2

J S J J
f x g x

S

−
−ω

ε

 − ω   =  =   ηω + ω    
where 3 3I ×∈  is an identity matrix (all over the paper), 

( )f x  is continuous with ( )0 0.f =  Therefore, the state-
dependent factorization is possible and can be configured in 
the following form, (the argument x  is dropped for simplicity 
in the rest of the paper)

1 1

1 1

0
,

0 0

0 ,

J S J J
u

A

u R J P

− −
ω

ε

− −

ω   ω  −   
= +      ε ε      

ω  = −    ε 





(9)

where with regard to (6), A  and B  can be defined. Also, 
from(2)  and (3), Aε  is represented by

3 2

3 1

2 1

1
2

Aε

η −ε ε 
 = ε η −ε 
 −ε ε η 

.
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Note that the quaternion scalar part η  that appears in the 
above matrix can be calculated from quaternion vector part 
as stated in (4):

1 .Tη = ± − ε ε
The process of selecting quaternion to use for feedback is not 
obvious. Two options are presented here to avoid ambiguity 
of quaternion scalar part if the tracking problem is considered. 
First, the assumption of 0η ≥  is taken [4]. Second, choosing 
the sign of quaternion at the current time step to agree with 
the commanded attitude at the previous time step such that 

( ) ( ) ( ) ( )1 1 0,T
k k k kt t t t− −ε ε + η η >  for 1k >  [13]. The second 

option forces a condition to achieve an analytic solution 
to the reduced SDRE which will be discussed later where 
the closed-form solution is presented. Moreover, a simple 
hybrid-dynamic algorithm for path lifting from ( )3SO to 3  
is presented in [14] which addresses the mentioned ambiguity 
issue.

2- 4- 2- Controllability Analysis
Here, we show that the closed-loop system (9) is controllable.

Proposition 1. For all 0η ≠ , system (9) is point-wise 
controllable.

Proof. According to [12], a sufficient condition for 
controllability of the system (9) can be achieved by checking 
that the controllability matrix constructed by the pair ( ),A B  
is full rank. Controllability matrix of the pair ( ),A B  is 
formed as:

( )
( )

5
,

1

1 1 1

1
1, ,5

1

A B

k k
k

k k

C B AB A B

J S
A B k

A J S
ω

ε ω

−

− − −

 =  
 −
 ℵ⊕⊕ℵ
 − 





Note that 1 0k kA B A B+ =  if 1, , 4k = 
; thus, ,A BC  cannot 

be a full rank matrix based on its last five blocks. Instead, the 
determinant of the first two blocks is calculated as below:

21

8

J
B AB η

−

=

The above determinant is nonzero while 0.η ≠  Thus, the 
system (9) is, for all 0η ≠ , point-wise controllable.

Remark 1. In regulation problem, the system cannot be 
stabilized by the “Full SDRE” controller when the initial 
Euler angle between body-fixed and reference coordinate 
axes ( 12cosE η−= ) is exactly180 deg.  

3- Combination of SDRE with ISL
3- 1- Reduction of SDRE
ISL is one of the feedback linearization techniques which are 
used to design controllers for a class of nonlinear systems. 
Here, ISL technique is just applied to the dynamical equation 
and simplifies the mathematical model using the following 
Lemma.

Lemma 2. Consider the problem of designing the control 
input u  in (5). The affine system (5) is input-state linearizable 
and the transformed system and its control input are vω =  
and u Jv S Jω= + ω  respectively.

Proof.  An affine system is input-state linearizable if a 
state transformation ( )z z x=  and an input transformation 

( ),u u x v=  are found so that the nonlinear system dynamics 
is transformed into an equivalent LTI dynamics, in the 

companion form .z az bv= +  System (1) is affine and we 
take the state and input transformations as it follows.
z
u Jv S Jω

= ω
= + ω (10)

Then, the attitude’s dynamical equation can be simplified to 
the companion form:

.vω =
This completes the proof.
Now, we can obtain v  by the SDRE method as the transformed 
dynamical system is in LTI form. Accordingly, overall system 
(1) is stabilized with input transformation .v  According to 
(5), we have:

( )

0
, ,1 0

2

I
f g

S ε

    =    =   ηω + ω   
where I  is an identity matrix with order three (all over the 
paper), f is continuous while ( )0 0.f =  Therefore, referring 
to Lemma 1, the state-dependent factorization is possible and 
can be configured in the form of

0 0
.

0 0
I

v
Aε

ω ω      
= +      ε ε      





(11)

Referring to (6), we can redefine A  and B in (11). Similar 
to the previous case, controllability of the above system can 
be analyzed.

Proposition 2. For any 0η ≠ , the reduced-form system as 
in (11) is point-wise controllable.

Proof. According to new pair ( ),A B , it is easily revealed 
that 6 60 2, ,5kA k×=  =  . Therefore, we have:

[ ], 6 120 .A BC B AB ×= (12)
Similar to Proposition 1, to see whether ,A BC  is full rank, it 
is sufficient to examine its two first blocks. These two blocks 
together are square matrix with order six which is full rank if 
and only if its determinant is nonzero. Substituting A and B
in , the determinant is calculated as follows:

1
8

B AB = η

Thus, the system(11)  is, for all 0η ≠ , point-wise controllable. 
The above Proposition states a sufficient condition for 
controllability of the system (1) . In Section 4, a necessary 
and sufficient condition is proposed where the equilibrium of 
the system  becomes globally asymptotically stable with the 
proposed controllers.

3- 2- Analytic Solution of the Reduced-form SDRE

Theorem 1. Assume that Q and R  are strictly positive 
definite diagonal matrices in the form of:

( )

1

2

2
1 1

2 2
2 2

0
0

, 1,2,3

, ,
i

Q
Q

Q

Q diag q i

Q q I R r I

 
=  

 

=  =

=  =

(13)

where 1 2,iq q  and r  are arbitrary positive real numbers and 
( )diag 

 is a diagonal matrix created by its input elements. 
Then, equation  has a unique, symmetric, and positive definite 
solution , 0P  ∀η ≠ .
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Proof. If the block matrix P , that is the solution of SDRE 
associated to equation (11), defined as:

1 2

3 4

,
P P

P
P P

 
=  

 
(14)

according to Lemma 1 and basic mathematical properties 
of block matrices, we can conclude that i) 1P  to 4P  are 
unique square matrices with order three, ii) 2P  and 3P  are 
not necessarily positive definite but 3 2

TP P=  and iii) 1P  and 
4P  are symmetric positive definite matrices. Using (11) and 

substituting of(13) and (14) into , (8) it holds that:

2
2 2 1 12

4 1 22

4 2 12

2 2 22

1 0,

1 0,

1 0,

1 0.

T

T

T

T

A P P A P Q
r

A P PP
r

P A P P
r

Q P P
r

ε ε

ε

ε

+ − + =

− =

− =

− =

(15)

Using Lemma 2, we obtain the transformed system (11). 
Then, substituting (13) in (7), the state feedback control v  
can be achieved by

( )1 2
1 .
2

v P P= − ω + ε (16)

Thus, only 1P and 2P must be known. Let us discuss the 
solution of 2P  at first. The fourth line of equation (15) can be 
transformed into the form

2
2 2 2
TP P r Q= ,

which can be satisfied by

2 2P rq I= λ (17)
where 1λ = ± is the sign of 2P . Here, we choose 1λ = + . In 
Theorem 2, we will clarify its reason. 
Next, on the basis of known 2P , the solution for 1P  is 
followed. The first line of equation (15) can be transformed 
as:

( )2 2
1 2 2 1 .TP r A P P A Qε ε= + + (18)

According to (17) and knowing positive definiteness of 1P , 
by obtaining the square root of both sides of(18) we obtain:

( )2
1 1 2 , 1, 2,3.iP diag r q rq iη= +  = (19)

Knowing positive definiteness of weighting matrices, P1 in 
(19) can be the solution of(18) under one of the following 
conditions: i) the assumption 0η ≥  is satisfied. Then, all 
the components under the radicals are positive real numbers. 
ii) The sign of η  is arbitrary. Then, the weighting matrices 
need to be selected carefully. Since the quaternion norm is 
bounded, the sufficient condition 2

1 2 1, 2,3iq rq i≥  =  has to be 
satisfied. This completes the proof.

4- Stability Analysis of Closed Loop System
In this section, Lyapunov direct method along with LaSalle’s 
theorem are used to confirm the solution of SDRE derived in 
Section 3 and also to ensure the globally asymptotic stability 
of the overall closed-loop system. Note that stability analysis 
in the unit-quaternion space 3  is related to a corresponding 
one in the ( )3SO  state space that will be addressed in [14].

4- 1- Globally Asymptotic Stability of Closed Loop System
Substituting (16) into (10), the following control law is 
obtained:

( )1 22

1 ,SDRE ISLu J P P S J
r+ ω= − ω + ε + ω (20)

where 1P  and 2P  can be obtained from (19) and (17), 
respectively.  

Theorem 2. The control law (20) makes the equilibrium of 
the overall closed-loop system (1) globally asymptotically 
stable (even in 0η = ). 

Proof. First, we apply (20) to the original dynamics system  
(1) which makes it equivalent to the closed-loop system (11). 
For simplicity, we consider stability analysis of system  (11)
instead (the cross-coupling term will be omitted when we 
derive V). Substituting (16) into (11), the closed-loop system 
of (11) is:

( )1 2
1 ,
2

P Pω = − ω + ε (21)

where only the attitude’s dynamical equation is concerned. 
Choose the candidate Lyapunov function

( )22 1
2

1 1 ,
2

T TV r P −= ω ω + ε ε + − η (22)

which is positive definite and radially unbounded, i.e. 
lim .Vω→∞ = ∞  From (2),(3), (21), the time derivative of (22) 
is calculated as (note that 1

2P −  is a symmetric matrix)
1

2 1 ,TV P P−= −ω ω (23)
where 0, 0V < ∀ω ≠   , and 0V =  if 0.ω =  Thus, using the 
LaSalle’s theorem [15], globally asymptotic stability (GAS) 
of the closed-loop system (11), and accordingly overall 
system (1), is proved. Note that 1P  is positive definite. Thus, 
referring to (23), 1

2P −  needs to be positive definite. Then, 
the assumption of 1λ = +  (in Theorem 1) is confirmed. This 
completes the proof.

Remark 2. Note that Theorem 2 provides a necessary and 
sufficient condition for controllability of the overall closed-
loop system . Therefore, the uncontrollability of reduced 
SDRE in 0η =  is relaxed. 
It is noteworthy that if we omit the angular velocity cross-
coupling, the following control law can be designed,

( )Re 1 2
1 ,
2ducedSDREu P P= − ω + ε (24)

where   calculates the Euclidean norm of its input. 
Indeed, controller (24) is the well-known PD controller with 
quaternion feedback [16]. However, we use the solution 
matrix of the reduced SDRE instead of classical gains here.

Proposition 3. The control law (24) makes the equilibrium 
of the overall closed-loop system (1) globally asymptotically 
stable.

Proof. Consider the candidate Lyapunov function:

( )( )22
2

1 1 ,
2

T TV r J P= ω ω + ε ε + − η (25)

which is positive definite and radially unbounded.
Substituting of (1), (16) into (25) and knowing that  
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0T S Jωω ω =  , time derivative of (25) becomes
1 .TV P= −ω ω

As 1P  is positive definite, we have 0 0V <  ∀ω ≠  and 0V =  
for 0.ω =  Using the LaSalle’s invariance principle, GAS of 
the closed-loop system  and  is proved. 

Remark 3. With the control law (24), the overall closed-
loop system (1) is globally asymptotically stable without 
knowing the moments of inertia matrix. It is a desirable 
feature in practice.

4- 2- Global Exponential Stability of Closed Loop System
If we add the derivative of the vector part of quaternion 
parameters as a feedback, the controller v  can be designed 
as follows:

1 2 1
2 2 2

P P PGv G
r r r

= − ω − ε − ε − ε

where G  is a positive definite diagonal matrix. Then, using 
ISL technique and returning to (1), the following control law 
is achieved (note that ε  is a function of , ,ε ω η  ):

( )2 12

11
2 .

2 2

SDRE ISL LY P
Ju P PG
r

GSP GJ J S J
r

+ +

−ε
ω

= − + ε

 − + η + − ω 
 

(26)

Theorem 3. The control law (26) makes the equilibrium of 
the closed-loop system(1) globally exponentially stable.

Proof. Consider a candidate Lyapunov function as

( ) ( ) ( )
2

21
2 1

2
T TrV G P G−= ω + ε ω + ε + ε ε + − η

which is positive definite and radially unbounded. With some 
simplifications the time derivation of the above function is 
derived as:

( ) ( )1
2 1

T TV G P P G G−= − ω + ε ω + ε − ε ε

As a result, GAS of the closed-loop system is achieved using 
the Lyapunov direct method (similar to the proof of Theorem 
2). Note that 0Gω + ε →  and 0ε →  implies that 0ω →
. Also, according to , we have 1.η → ±  Now, to prove the 
Global Exponential Stability (GES), we use equation (4) 
where 2 21 1ε = − η ≥ − η  (note that 1η = −  is excluded for 
angles less than 180 deg  such that 0 1η≤ ≤ ). Therefore, V  
can be bounded as follows:

( ){ }
( )

1 2
max 2

2 2

max 2, 2

.

V P r

G

−≤ λ ×

ε + ω + ε
(27)

On the other hand, V  can be bounded as:

( ) ( ){ }
( )

1
min min 2 1

2 2

min ,

.

V G P P

G

−≤ − λ λ ×

ε + ω + ε



(28)

Hence, from (27) and (28), we can conclude that ,V V≤ −α

where α  is the minimum convergence rate of the rigid body 
dynamics’ system and is formed by the gain matrices as it 
follows:

( ) ( ){ }
( ){ }

1
min min 2 1

1 2
max 2

min ,
,

max 2, 2

G P P

P r

−

−

λ λ
α =

λ
(29)

where minλ and maxλ denote the minimum and maximum 
eigenvalue of the input matrix, respectively.
Consider the controller (26) and the expression of minimum 
convergence rate obtained in (29). If 2 ,r q q= =  2

1iq qβ=  
and 2 ,G Iβ=  then the system’s minimum convergence rate 
becomes 1 2.α = β + η  Thus, with 1η → , 2 2.α β→  This 
means as the system converges to the equilibrium point the 
minimum convergence rate is increasing. The rate becomes 
decreasing and tends to 2 4β  if 1 .G Iβ η= +  Indeed, 
the minimum convergence rate of the closed-loop system 
with “SDRE+ISL+LYP” control law can be tuned easily to 
any arbitrary amount by appropriate selection of gain matrix 
G  and weighting matrices Q  and .R

5- Numerical Simulations
In this section, a sample attitude maneuver of a general rigid 
body using designed controllers is simulated. Also, further 
discussions are presented to study the stability and optimality 
properties of the closed-loop system using numerical 
simulations.

5- 1- Sample Attitude Maneuver
First, we define constants, initial conditions and weighting 
matrices. Principle and cross product elements of inertial 
moments’ matrix are taken as 2pJ =  and 0.2cpJ =
, respectively. Also, weighting matrices are chosen as 

3
1 2 5 10 .Q Q R I= = = ×

 
Fig. 1. Euler angle versus time.

Fig. 2. Angular velocity norm versus time.
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Time history of Euler angle, angular velocity norm, control 
vector norm and cost function for a sample maneuver with 
initial angular velocity of 0 0 deg/ sω =   and initial Euler angle 
of 0 179 degE =  are presented in Fig. 1 to Fig. 4, respectively. 
This fact that the convergence rate opposes the optimality is 
shown. Note that the “Full SDRE” controller fails with initial 
Euler angle of 0 180 degE =   or 0.η =  Thus, we consider 
maneuvers with 0 179 degE =   in further results such that 
we can compare all four controllers in terms of optimality. 
However, global stability of the closed-loop system with the 
proposed controllers is illustrated in Fig. 12 where the initial 
angle is set to 0 180 deg.E =  

5- 2- Optimality and Stability Properties of Controllers
Cost function Φ  takes different amounts in presence 
of each controller during a definite attitude maneuver. 
Various moments of inertia matrices and the range of initial 
conditions, including angular velocity and Euler angle, are 
other parameters which affect the cost function value. To avoid 

ambiguity and make the optimality analysis understandable, 
effect of each parameter is studied separately. Therefore, we 
define two maneuver sets to analyze the sensitivity of cost 
function to each parameter for the proposed controllers versus 
“Full SDRE” controller. The first maneuver (MS1) starts 
with initial angular velocity of 0 0 deg secω =   and initial 
Euler angle of 0 0 179 deg.E = →   The second maneuver 
(MS2) starts with initial Euler angle of 0 0 degE =   and initial 
angular velocity norm 0 0ω = →  100 deg sec.  Note that 
the sensitivity of cost function value to principle and cross 
product inertial moments is analyzed separately. Thus, choose 

0cpJ =  to analyze the sensitivity of cost function value to 
initial conditions and principle moments of inertia. Weighting 
matrices have been taken the same as sample maneuver.

Table 1. Stability And Optimality Properties Of Closed-Loop 
System With Presented Controllers

Controller Stability 
Type Optimality Control-

lability

Minimum
Convergence 

Rate

Full SDRE LAS Strong
Uncontrol-

lable in
η = 0

-

Reduced 
SDRE GAS

Almost 
equivalent 

to Full
GPC -

SDRE+ISL GAS

SDRE* 
Lower but 

close to 
Full SDRE

GPC -

SDRE+ISL 
+LYP GES

Tunable 
up to 

SDRE+ISL
GPC Tunable

*Even better in some cases

According to Fig. 5 and Fig. 6, cost functions have very close 
values with small initial conditions for all four methods. The 
cost function of ”Reduced SDRE” method has almost equal 
or even less values against the ”Full SDRE” method in both 
maneuver sets and also with various magnitudes of principle 
inertial moments. Besides, Fig. 5 to Fig. 8 show that if G→0, 
then response of the dynamic system to “SDRE+ISL+LYP” 
control attends to the response to “SDRE+ISL” control. 
Moreover, “SDRE+ISL” and “Reduced SDRE” controllers 
have same effects on the dynamic system when J→I.
However, as illustrated in Fig. 7 and Fig. 8, all the cost 
functions’ values of different control methods are extremely 
close in a region where the moments of inertia matrix equals 
to identity.
To consider the sensitivity of cost function to cross 
product elements of moments of inertia matrix, we define 

Table 2. Effects Of Designed Controllers With Respect To Full SDRE On Cost Function Value

Controller
Maximum Sensitivity to Initial

Conditions (%) Maximum Sensitivity to Jp (%) Maximum Sensitivity to σ (%)

MS1 MS2 Ave. MS1 MS2 Ave. MS1 MS2 Ave.
Reduced 
SDRE 1.7 -9.5 -5.6 1.7 -6.3 -4 4.4 -12 -8.2

SDRE+ISL 10 13.5 11.7 10 12.5 11.3 31 42 36.5

SDRE+ISL 
+LYP Tunable up to SDRE+ISL

Fig. 3. Control effort versus time.

Fig. 4. Cost function value versus time.
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100.cp pJ Jσ = ×  As illustrated in Fig. 9 and Fig. 10, the cost 
function values are more sensitive to cross product elements 
of inertial moments’ matrix than to the other parameters.
In Fig. 11, the conclusions under Theorem 4 are numerically 
verified for 1β =  with the sample attitude maneuver.
All the above discussions on stability properties from Section 
4 and optimality are summarized in Table 1. Note that 
”GPC” and ”LAS”, respectively, stand for Global Pointwise 
Controllability and Local Asymptotic Stability. Maximum 
sensitivity of cost function value with the designed controllers 
to initial conditions, pJ  and σ  are numerically stated for both 
maneuver sets in Table 2.
It can be concluded that the optimality of “Reduced SDRE” 

controller is better than “Full SDRE” controller in all cases 
in general. Furthermore, optimality difference of other two 
designed controllers with respect to “Full SDRE” is not 
egregious. Therefore, we can wisely use the designed SDRE-
based controllers along with the “Full SDRE” controller 
with a trade-off between their optimality and proper stability 
characteristics.

6- Conclusions
Based on analytic solution of a reduced-form of SDRE 
for general attitude dynamics, a class of nonlinear 
suboptimal controllers is presented. Numerical simulations 
and discussions on stability and optimality properties 
revealed that the designed controllers inherit the optimality 

Fig. 5. Cost sensitivity to initial conditions, MS1 Fig. 8. Cost sensitivity to initial conditions, MS2.

Fig. 7. Cost sensitivity to initial conditions, MS2.

Fig. 6. Picture Cost sensitivity to initial conditions, MS2

Fig. 10. Cost sensitivity to initial conditions, MS2.

Fig. 9. Cost sensitivity to initial conditions, MS2.
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characteristics of the “Full SDRE” controller while having 
global stability properties. Moreover, the designed control 
laws are closed-form and globally non-singular. Also, in the 
“SDRE+ISL+LYP” control law, the minimum convergence 
rate of the closed-loop system can be tuned just by simply 
changing the SDRE weighting matrices that is useful in 
practice. For future works, inspired by the proposed approach 
one can design controllers for any system which includes 
attitude dynamics such as quadrotor robots, satellites and 
robot manipulators. Besides, robustness and adaptiveness of 
the proposed SDRE-based control laws can be considered in 
further investigations.
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Fig. 12. Global stability of the three proposed controllers with 
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