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ABSTRACT: Meta-heuristics optimization methods are important techniques for optimal design of the 
engineering systems. Numerous Meta-heuristics methods, all inspired by different nature phenomena, 
have been introduced in the literature. A new modified version of Teaching-Learning-Based Optimization 
(TLBO) Algorithm is introduced in this paper. TLBO, as a parameter-free algorithm, is based on the 
learning procedure of students in a classroom. In the Conventional TLBO (CTLBO), the students enhance 
their grade in two phases known as teacher phase and student phase. In the former, the teacher tries to 
enhance the average of the class. In the latter, the students share their knowledge in the groups of two. In 
the proposed Modified TLBO (MTLBO), the students participate in the groups of several students and 
improve their knowledge based on the grade of these students. Participating in the meeting with more 
than two students increases the probability of enhancing the student marks. To testify the performance 
of the proposed algorithm, it is applied to the problem of optimal capacitor placement with the aim of 
annual net saving maximization and system stability enhancement. The test systems are 34-bus and 94-
bus radial test systems. The comparison of the results with those from off-the-shelf algorithms clears the 
appropriate performance, fast convergence, and superiority of the proposed algorithm.
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1- Introduction
Over the last decades, lots of heuristic and population-based 
optimization algorithms have been introduced for solving 
the engineering optimization problems. Genetic Algorithms 
(GA) [1], Differential Evolution (DE) [2], Artificial Immune 
Algorithm (AIA) [3], Bacteria Foraging Optimization (BFO) 
[4], Particle Swarm Optimization (PSO) [5], Ant Colony 
Optimization (ACO) [6], Shuffled Frog Leaping (SFL) [7], 
and Artificial Bee Colony (ABC) algorithms [8] are a few 
numbers of well-known algorithms [9]. 
Recently, a new optimization algorithm known as Teaching–
Learning–Based Optimization (TLBO) was proposed by Rao 
et al. [10]. It is a parameter-free algorithm which is based 
on the concept of the classroom teaching scenario. The 
algorithm has been applied into many optimization problems 
and the high quality performance has been concluded [11-
18]. This algorithm has been improved by researchers to 
reach better results with faster convergence [19-24]. In 
this paper, an improved version of TLBO is introduced. 
The proposed method is applied to the problem of optimal 
capacitor placement and the results are compared to those of 
PSO (particle swarm optimization), GA (genetic algorithm), 
HS (heuristic search), PGSA (plant growth simulation 
algorithm), and EA (evolutionary algorithm). 
Supplying efficient, reliable, and high quality power is the 
most important intent of distribution companies [25]. The 
active power loss of the power systems is nearly 15% which 
is mostly occurred in distribution networks [26]. The wasted 
power results in adverse impact on societies from financial, 

environmental, and energy aspects. On the other side, voltage 
collapse due to sensitive busses threatens the power systems. 
Therefore, increasing the system stability and reducing the 
active power loss of the network are of two main goals of the 
utilities [27-30].
Several methods have been introduced in the literature for 
the loss reduction and system stability enhancement. These 
methods can be classified in three different groups. 1- The 
methods based on changing the active power flow trajectory, 
such as series FACTS devices (TCSC [31]) in the level of 
transmission grid, Reconfiguration of distribution network 
[32], and also placement and scheduling of Distributed 
Generation (DG) with the unity power factor [33] in the level 
of distribution. 2- The methods focusing on reducing the 
reactive power flow, such as parallel FACTS devices (SVC 
[34]), and capacitor banks placement [35] in transmission 
level and distribution level, respectively. 3- The methods 
which are combination of the both foregoing methods. DGs 
with non-unity power factor [36] and series-parallel FACTS 
devices such as UPQS [37] are examples in this category. 
However, it should be mentioned that in all methods, the 
selection of wrong place, size, and number of equipment may 
have inverse effects on the system performance. 
Among different methods, capacitor banks placement is a 
good solution due to low cost and several advantages such as 
power losses reduction, voltage profile improvement, voltage 
stability enhancement, increased utilization of equipment, the 
unloading of overloaded system components, and stopping 
the premature aging of the equipment [38]. 
In the literature, there are lots of published articles on Optimal 
Capacitor Placement and Sizing (OCPS) with different Corresponding author, E-mail: Vahidi@aut.ac.ir  
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objective function and different heuristic optimization 
techniques [39]. Tabu search method [40], PSO [41], the 
harmony search algorithm [42], and GA [43] are a few 
numbers of published articles in the scope of OCPS problem 
using different methods. 
In [38], OCPS is performed to minimize the power losses and 
maximize the voltage stability of the system while the total 
cost of capacitor placement is minimized. In the article, the 
artificial bee colony algorithm is used to maximize the total 
net saving. In this paper, the same work is performed using a 
new modified version of TLBO algorithms. The comparison 
of the results reveals that the performance of the proposed 
method is much better than the other methods. 
The rest of the paper is organized as it follow. In section 2, 
problem formulation is presented. In section 3, the proposed 
MTLBO is introduced, and in section 4 the simulation results 
are presented. The last section concludes the paper.

2- Problem Formulation
The problem investigated in this paper is the optimal capacitor 
placement with the aim of total benefit maximization. The 
capacitor placement is performed for the peak condition of 
the network. The objectives of capacitor placement are active 
power loss reduction and static voltage stability enhancement 
in peak load condition, and capacitor placement cost 
minimization while a groups of constraints must be satisfied. 
This problem can be formulated as it follow [38]:

Maximize f  where  (1)
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In the above optimization problem, f is the objective function; 
Ce is the price of power; and Plb and Pla are power loss before 
and after capacitor placement, respectively. T is time period; 
α is depreciation factor; µF shows magnifying factor; NB 
indicates the number of buses in which capacitor banks are 
installed; Cci is installation cost; Cc is cost of the capacitor 
purchase; Co is capacitor operating cost; Qc(i) is optimization 
variables and represents the reactive power of installed 
capacitors at bus i; VSI(j) is voltage stability index of bus j; 
Nn is the total number of network buses. 

2- 1- Active power loss reduction 
Active power losses of the network are reduced after 
installation of capacitor banks in the distribution networks. 
This reduction results in the decreasing of the purchasing 
power from the upstream network. Therefore, loss reduction 
can be considered as an economic benefit of capacitor 
placement. To explain this, the active power loss formula is 
considered as it follow,

          (2)
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Ploss is the active power loss of line k, Rk is the resistance of 
line k, and Ik is the current of line k. Ik can be rewritten as it 
follow,
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Vi is the voltage of bus i, and Xk is the inductance of line 
k. By substituting Ik in Eq. (2), the active power loss can be 
represented as it follow,
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By local compensating of reactive power, the reactive power 
flow in the feeders is reduced. This results in reduction in 
the current magnitude. Therefore, voltage drop is reduced. 
Consequently, voltage difference in both sides of a line is 
reduced and as a result, based on Eq. (4), active power loss 
is decreased. Thus, capacitor placement reduces the active 
power loss which results in reduction in purchasing active 
power from the main network. Therefore, the first benefit of 
capacitor placement can be written as follow:

.( ).e lb laBLR C P P T= −  (5)
where BLR is the benefit of loss reduction. 

2- 2- Voltage stability enhancement
There are lots of indices introduced in the literature for 
evaluating the voltage stability of a power system [44-48]. In 
this paper the index which is introduced in [48] is used as the 
voltage stability index evaluation. Based on Fig. 1, the index 
is formulated as the following equation:

4 2 4( ) 4( . . ) 4( . . ).i j ij j ij j ij j ij iVSI i V P x Q R P R Q x V= − − − +  (6)
where Pj and Qj are injected active and reactive power at bus 
j, Rij and Xij are resistance and inductance of line between 
buses i  and j. 
A lower value of VSI means a more sensitive bus to voltage 
collapse. As it can be seen, the higher values of power and 
reactive power flowing through the line decrease the VSI 
value. Thus, by reducing the line power flow, the voltage 
stability of the system is improved. This can be done by 
locally generating active and reactive power on different 
buses. Distributed Generation (DG) and capacitor banks can 
generate the active and reactive power, locally. Capacitor 
banks are low cost apparatuses which can be added to the 
system. However, since it is almost impossible to install 
capacitor banks in all the buses, the best location for capacitor 
banks should be determined. Thus, the other objective of 
optimal capacitor placement is to maximize the VSI of each 
bus and, hence, total VSI of the network. 

2- 3- Capacitor placement costs
The installation of capacitor banks in distribution networks 
is associated with some expenditure including installation 
cost, purchasing cost and operation cost. Installation cost is 
the cost of workers and location cost. The purchasing cost 
consists of capacitor banks purchasing and the associated 
protection equipment purchasing. The cost of operation refers 
to maintenance and replacement cost during the life time of 
capacitor banks. 
The cost of installation and operation are defined for each 

Fig. 1. A sample line of a power system model
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location that capacitor banks are placed. But the cost of 
purchasing depends on the size of capacitor banks; thus, the 
purchasing cost is defined for each kVAR. 

2- 4- Constraints

Power flow equations:
The power flow equations must be satisfied when the 
capacitor banks are installed in the network. The power flow 
equations include active and reactive power balance which 
can be shown by:

1 1

,
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= =

= +∑ ∑  (7)
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Voltage limit:
The magnitude of bus voltage must be in a predefined range 
as it follows:

min max
i i

iV V V≤ ≤  (9)

Line thermal limit:
The feeder power flow must not violate from the thermal 
limit of the feeder,

limitk kS ≤ (10)

Reactive compensation limit:
The reactive power injected at each bus must be lower than 
a maximum allowable value which is formulated as the 
following equation:

min max
i i i

CQ Q Q≤ ≤ (11)

Power Factor constraint:
The overall power factor for a distribution network is the 
power factor at the slack bus which can be calculated as it 
follows,

sub
sub

sub

P
PF

S
= (12)

where Psub and Ssub are the active and apparent power at the 
substation. 
The substation power factor (PFsub) should be maintained in 
a specific rang,

min maxsubPF PF PF≤ ≤ (13)

Total compensation limitation:
The maximum reactive power which can be injected to the 
distribution network by means of capacitor banks must be 
lower than the total reactive power demand of the network 
[38]. 
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2- 5- Handling constraints
To handle the constraints, a penalty factor is defined for any 
violated constraint. These penalty factors are large values 

for violated constraints which are added to the objective 
function. By this method, the optimization algorithm forces 
the solutions towards the way that the constraints are satisfied. 
The penalty function can be defined as follow:

_ V S PF QTPeanlty factor P P P P= + + + (15)
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Vψ , Sψ , PFψ , and QTψ are large values.
2- 6- Specifying the candidate buses
Searching for the best places for the capacitor banks among 
the whole search space is time- and CPU- consuming. 
Therefore, it is better to candidate some important buses 
as the nominated buses for capacitor placement and search 
for the best place among these buses. In this paper, Loss 
Sensitivity Factor (LSF) is used to nominate some busses for 
the capacitor placement [49]. This factor identifies the lines 
with high active power loss and voltage drop. It is obvious 
that the receiving end bus of a line with high power loss and 
voltage drop has a higher priority for reactive compensation 
than the other buses. By using LSF, the buses which may 
have the higher influence on loss reduction are identified. 
Consider Fig.1. The active power loss of the line can be 
presented using the following equation:

2 2

2. j jk
loss k
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P Q
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where Pj (Qj) is active (reactive) power injected to bus j 
which includes the active (reactive) power demand at bus j 
and active (reactive) power flowed through line k+1. Since 
the capacitor banks compensate the reactive power of load 
demand, the sensitivity of power loss to the reactive load 
demand is evaluated using the flowing equation:

2
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where QDj is the reactive power of load demand at bus j. 
The values of LSF are calculated for all lines and sorted 
in descending order. Those buses (receiving end bus of 
lines) with higher values of LSF are nominated for reactive 
compensation. The number of nominated buses is chosen 
according to the size of the network. Generally 20-25% of 
network buses is candidate for capacitor placement.

3- Proposed Optimization Algorithm 
3- 1- Proposed Optimization Algorithm 
Teaching-Learning-Based Optimization (TLBO) algorithm 
is a population-based algorithm introduced by Rao et al 
[50]. The method simulates the teacher-students interaction 
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which enhances the grade of the whole class. This algorithm 
is free of algorithm parameters, i.e. it does not require any 
parameter tuning for better performance. Fast convergence, 
small population size and good global search capability 
characterize the performance of the algorithm. Teacher and 
students are the vital components of the algorithm. The level 
of the class is increased in two main phases known as teacher 
phase and student phase. In this section, this method and its 
modified version are explained. 
As mentioned, TLBO algorithms is a population-based 
algorithm. The students of the class are solutions. The most 
knowledgeable student, i.e. best solution, is nominated to 
be teacher. The process of TLBO is divided into two phases 
which are discussed in the following paragraphs. 

Teacher phase:
The best solution is considered to be the teacher. The teacher 
tries to increase the level of each classroom student (for 
instance M1) to his or her level, say MT. However, this is not 
possible practically, so the teacher tries to raise the mean 
level of the class, say M2. It is clear that a good teacher (a 
solution with better fitness) can have a better performance on 
the class [16]. To mathematically describe the teacher phase, 
first the difference is calculated as follow:

_ ( )i i T f meandiff mean r M T M= − (22)
where MT is the level of teacher, Mmean is the average of class, 
ri is a random variable in the interval [0, 1], and Tf is the 
teacher factor which can be either 1 or 2, chosen randomly. 
Based on diff_mean the existing solution is updated by the 
following equation:

_new old
i i iX X diff mean= + (23)

Student phase: 
In this phase the students enhance their grade by interacting 
with each other. In other words, a student shares his 
knowledge with another student who has been selected at 
random from the classroom. The selected student learns new 
things if the other student is more knowledgeable; otherwise, 
the initial student learns from the selected one. For the 
mathematical formulation of this phase, assume Xi and Xj 
are two classroom students and i ≠j. Student’s knowledge, 
say f(X), is evaluated using an objective function. A better 
f(X) (lower for minimization and higher for maximization) 
means a more knowledgeable student. It is assumed that the 
problem is maximization. Therefore, if the fitness function 
of Xi is higher than Xj, it means Xi is a student with a higher 
level of knowledge in comparison to Xj. Therefore, Xi moves 
towards his direction. From a mathematical point of view, Xi 
is upgraded using the following equation:

( ) ( ) ( )new old
i i i i j i jX X r X X if f X f X= + − > (24)

If Xj is more knowledgeable than Xi, it means Xi must move 
towards Xj’s direction. Thus, Xi is upgraded as follow: 

( ) ( ) ( )new old
i i i j i j iX X r X X if f X f X= + − > (25)

In these equations, Xi is a solution and f(Xi) refers to its value 
of objective function. In each phase, Xnew is replaced with Xold 
if a better result is achieved. The process is continued until 
the convergence occurs. 

As one can see, there is no need for parameter tuning in this 
algorithm. Tf and ri are the only parameters of the algorithm, 
which are selected completely at random and do not need to 
be tuned. This is an advantage of this method compared to 
other optimization algorithms. 

3- 2- Modified Teaching-Learning-Based Optimization 
(MTLBO)
As it can be seen, in CTLBO the students share their knowledge 
in a group of two to enhance their level. It is obvious that if 
the students interact with each other in groups with more than 
2 students, a better performance for the entire class can be 
achieved. In the proposed method, in the student phase, each 
student takes part in a group consisting of several students 
and enhances his/her level by exchanging knowledge within 
the group. The process of solution updating is as follows:
Imagine Xi is a selected student which participates in a group 
of several students which are selected randomly among the 
class. If the selected student, say Xi, has the highest level of 
knowledge in the group, it means the selected student is a 
well-educated student. The others must move towards his 
direction with higher speed to attain the higher level. In 
other words, the learning manner of this student is so good; 
therefore, the other students must move towards him. The 
mathematical description of this procedure is represented as 
follows:

, , ( )worst
new i old i i i gX X r X X= + − (26)

where worst
gX is the student with the worst level of knowledge 

in the group. If the selected student is not the best student in 
the group, he/she must enhance his/her level according to the 
best member of group as follows:

, , ( )best
new i old i i g iX X r X X= + − (26)

where best
gX is the best member of the group. Since the learning 

process of a student is based on the best or the worst student 
in the group of several participants, the convergence speed 
improves. In this paper, 5 students are considered for each 
group.

Limitations
Actually, MTLBO is a meta-heuristic optimization algorithm 
and does not need any initial condition or additional 
mathematical operation such as derivative. This method 
can be easily applied to highly constrained, non-linear, 
non-convex, and complex optimization problems. It can be 
also applied for both continuous and discrete optimization 
problems. However, like any other meta-heuristic 
optimization algorithm, there is no guarantee for finding the 
best global solution. Thus, it is needed to compare the results 
of the proposed method with those of some other methods to 
ensure the final results. 

4- Simulation and Results 
To testify the proposed modified TLBO algorithm, it is 
applied to the problem of OCPS for two distribution networks 
including 34-bus radial test system and actual Portuguese 94-
bus radial test system. The test systems are depicted in Fig. 
2, and Fig. 3. The load data and the line data of these test 
systems are extracted from [51] and [52], respectively. The 
commercial data of the network is listed in Table 1. 
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4- 1- Test results of 34-bus test system
As it can be seen in Fig. 2, the 34-bus test system is a radial test 
case with 4 laterals. The total load of the system is (4636.5 + 
j2873.5) kVA. Based on the LSF factor, the potential buses for 
capacitor placement are (24 9 23 22 25 19 8 21 20 ) which are 
the buses with high level of reactive load demand. These buses 
are candidate for capacitor placement to prevent searching 
the whole search space. To show whether searching among 
candidate buses leads to finding optimal results, the OCPS 
is performed for two cases, namely, searching in the whole 
search space and among the candidate buses. The results of 
optimal capacitor placement for the 34-bus test system are 
shown in Table 2. The minimum and the maximum reactive 
compensations are proposed by GA and HS, respectively. 
As it can be seen, the results of MTLBO are evaluated in 
two cases, namely, without LSF consideration and with LSF 
consideration. The former means that the whole search space 
is evaluated to find the best places for capacitor banks and 
the latter means only nominated buses, which are determined 
using LSF factor, are evaluated. As it can be seen in Table 2, 
the results with LSF and without LSF are close to each other. 
Therefore, searching among candidate buses not only reduces 
the time and space of searching, but also achieves roughly the 
best solutions. 
The performances of the network after capacitor placement 
with different methods are compared in Table 3. As one 
can see, the best answer for objective function, which is 
shown in (1), is achieved by the proposed method which is 
followed by EA and then ABC. It should be mentioned that 
the solution suggested by EA has the size of 2550 kVAR 
compensation which is nearly 40% higher than the size 
suggested by MTLBO, TLBO and ABC. The maximum total 
VSI is achieved using the proposed method; however, the 
minimum active power loss and minimum reactive power 
loss are achieved by EA and PSO respectively while the 
size of reactive power compensation in these two methods 

is approximately the same compared to that proposed by 
MTLBO. Nevertheless, the solution proposed by MTLBO 
has the net saving of 19732$ for a year, which is nearly 2.6% 
higher than the value of net saving achieved by the TLBO 
method as the second best results. In other words, although 
the solution proposed by MTLBO has a higher value of 
active and reactive power loss, it brings the maximum value 
of benefit of capacitor placement to the network. It should be 
also mentioned that the results of MTLBO with and without 
consideration of LSF factor are roughly the same. Thus, 
identifying the candidate buses is an effective manner to find 
the best solution when the volume of searching process is 
reduced dramatically. 
Now, the OCPS is performed for 34-bus test system as a 
single objective problem including loss minimization and 
VSI maximization. Moreover, the single-objective problem is 
investigated in two cases, i.e. with consideration and without 
consideration of capacitor cost. The results of single objective 
OCPS are illustrated in Table 4. As it is clear, neglecting the 
cost of capacitor banks in objective function results in lower 
power loss due to higher reactive compensation; however, the 
total net saving is decreased dramatically. The active power 
loss in case 1 (neglecting capacitor cost) is only 2.5% lower 
than the other case (consideration of capacitor cost) while 
the total net saving is decreased 47%. This scenario is much 
worse for the case of VSI maximization where the cost of 
capacitor banks is higher than the benefit of loss reduction 
as the capacitor cost is neglected. The comparison of VSI for 
all buses is presented in Fig. 4. In this figure, the VSI profile 
is depicted in three cases, i.e. before OCPS, after OCPS 
neglecting capacitor cost, and after OCPS with consideration 
of capacitor cost. From the figure and the results of Table 4, 
it can be concluded that the consideration of capacitor cost in 
all cases leads to a better network performance. 

4- 2- Test results of 94-bus test system
To demonstrate the better performance of the proposed 
method compared to other methods, it is applied on OCPS 
for the actual Portuguese 94-bus test system. This network 
has the load demand of (4797 + j 2323.9) kVA. Based on 
LSF, 20 candidate buses are selected which are (90, 40, 88, 
94, 79, 87, 58, 59, 34, 65, 84, 21, 83, 73, 38, 80, 64, 72, 66, 
and 89). The result of capacitor placement for 94-bus test 
system is presented in Table 5. The performances of the 94-
bus network after OCPS with different methods are listed in 

Table 1. commercial information of the test systems
Item Value

1 Average energy cost 0.06
2 Depreciation factor )%( 20
3 Purchase cost ($/kVAR) 25
4 Installation cost ($/location) 1600
5 Operating cost ($/location) 300
6 Maximum allowable compensation in each bus 

(kVAR)
1500

7 Maximum allowable compensation in the netwrok 
(kVAR)

3000

8 The capacity of each capacitor bank (kVAR) 50
9 Hours per year (h) 8760

Fig. 3. Single line diagram of the 94-bus radial test system[52]

Fig. 2. Single line diagram of the 34-bus radial test system[51]
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Fig. 4. VIS values for all buses before OCPS, and after OCPS with consideration and without consideration of capacitor cost

Table 2. optimal placement of capacitor banks for 34-bus test system using different methods

ABC
[38]

GA
[43]

PSO
[53]

HS
[54]

PGSA
[55]

EA
[56]

TLBO Proposed MTLBO
With
LSF

Without
LSF

With
LSF

Without
LSF

(Bus Location,
compensation in kVAR )

(19, 950) (5, 300) (19, 871) (26, 1400) (19, 1200) (8, 1050) (25,650) (10,600) (9, 650) (10, 600)

(24, 900) (9, 300) (22, 803) (11, 750) (22, 639) (18, 750) (21,550) (21,650) (25, 600) (25, 650)

(12, 300) (20, 479) (17, 300) (20, 200) (25, 750) (9,700) (25,600) (21, 600) (20, 650)

(22, 300) (4, 250)

(26, 300)

Total reactive
compensation (kVAR) 1850 1800 2063 2700 2039 2550 1900 1850 1850 1900

Table 3. comparison of 34-bus test system performance after capacitor placement using different methods 

Before 
OCPS

After OCPS

ABC
[38]

GA
[43]

PSO
[53]

HS
[54]

PGSA
[55]

EA
[56]

TLBO MTLBO
With 
LSF

Without 
LSF

With 
LSF

Without 
LSF

Value of Objective 
function (Eq. 1) -- 32806 30880 30161 27162 30647 32294 33451 33254 34797 34858

Vmin(p.u.) 0.9416 0.9496 0.9478 0.9486 0.9522 0.9479 0.9501 0.949 0.9489 0.9489 0.949
Vmax(p.u.) 0.9941 0.9949 0.9949 0.9950 0.9953 0.9950 0.9952 0.995 0.995 0.9949 0.995

VSImin 0.786 0.81294 0.8071 0.8097 0.8219 0.8074 0.8149 0.812 0.8108 0.8109 0.8113
VSImax 0.9765 0.9797 0.9796 0.9800 0.9811 0.9800 0.98 0.9798 0.9799 0.9798 0.9799

VSI∑ 28.62 30.12 29.09 29.1353 29.3214 29.1149 29.2675 30.13 30.132 30.131 30.14

Ploss(kW) 221.74 167.99 164.96 169.36 168.48 171.96 161.27 162.88 163.4 163.02 162.45
Reduction in Ploss (%) -- 24.24 25.61 23.62 24.02 22.45 27.27 26.54 26.31 26.46 26.73

Qloss(kVAR) 65.2230 49.015 49.9643 47.1771 48.4489 48.6740 49.0518 47.92 47.95 47.95 47.77
Reduction in Qloss (%) -- 24.85 23.39 27.67 25.72 25.37 24.79 27.19 26.47 26.35 26.63

PFoverall 0.8557 0.9798 0.9825 0.9970 0.9989 0.9738 0.9837 0.976 0.9787 0.9760 0.9781

cQ∑ -- 1850 1800 2063 2700 2039 2550 1850 1900 1850 1900

Net saving/year ($) -- 17756 15093 15570 12017 15590 17173 19382 19290 19732 19785
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Table 6. The total reactive power compensation of proposed 
MTLBO is higher than DE-PS based method and lower than 
ABC. As it can be seen, the total VSI obtained by ABC is 
better than that obtained by the proposed MTLBO. But higher 
active and reactive power loss reduction is achieved by the 
solution suggested by the proposed method in comparison to 
two other methods. It can be also concluded from the table 
that the total net saving of the proposed method is better than 
the other methods. The total net saving increases nearly 2% 
with the solution proposed by MTLBO regards to ABC’s 
solution and 9.5% compared to the solution proposed by DE-
PS based method. The bus voltage stability index after OCPS 
is compared to that before OCPS in Fig. 5. The Fig. 5 clears 
the good performance of OCPS on voltage stability of the 
network.

4- 3- Convergence behavior
In order to show the fast convergence of the proposed 
modified TLBO with regards to TLBO, GA and PSO, 
the convergence behaviour of MTLBO for net saving 
maximization of 34-bus test system is compared to that of 
TLBO, GA and PSO in Fig. 6. It is obvious that the proposed 
method reaches the final best result in lower iteration which 
means faster convergence than other methods. Moreover, the 
CPU time consumption of the proposed method is much less 
than that of GA and PSO method. In addition, as it is obvious 
in Table 6 the computational time of applying MTLBO 
method is significantly reduced compared to that of GA and 
PSO methods. 

Fig. 6. Convergence behavior of TLBO, PSO, GA and MTLBO

Fig. 5. VIS values for all buses before OCPS, and after OCPS with consideration and without consideration of capacitor cost
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5- Conclusion
A new modified version of Teaching-Learning-Based 
Optimization (TLBO) algorithm is proposed in this paper. In 
TLBO, the students enhance their knowledge in two phases 
known as teacher phase and student phase. In student phase, 
the students share their knowledge to enhance their grade. 
In conventional TLBO, the students participate in the groups 
of two. In the proposed method, the students take part in the 
groups of several students. A group of several students has a 
better performance in enhancing the student’s grade because 
of more interactions. The proposed method is applied to 
Optimal Capacitor Placement and Sizing (OCPS) for two 
test systems (i.e. 34-bus and 94-bus test system). To prevent 

large space searching, LSF factor is used to identify the 
most effective buses for loss reduction using reactive power 
compensation. The results of proposed method for OCPS for 
both test systems are compared to those of other methods. The 
comparison reveals that the solution suggested by proposed 
method betters the performance of the network substantially.
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