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ABSTRACT: Hyperspectral anomaly detection is one of the main challenging topics in both military 
and civilian fields. The spectral information contained in a hyperspectral cube provides a high ability for 
anomaly detection. In addition, the costly spatial information of adjacent pixels such as texture can also 
improve the discrimination between anomalous targets and background. Most studies miss the worthful 
spatial characteristics. Moreover, some works that include the spatial features in the anomaly detection 
process extract features from each hyperspectral band that is a two dimensional image while the original 
structure of hyperspectral cube contains three dimensions. Ignoring the nature of hyperspectral image 
leads to lose the contained spectral-spatial correlations in the hyperspectral cube. To deal with this 
difficulty, in this work, the fused spectral and spatial features obtained by applying 3D Gabor filters 
are proposed for hyperspectral anomaly detection. Exploiting the 3D structure of hyperspectral cube by 
capturing multiple scales, orientations and its spectral-dependent characteristics provides an appropriate 
spectral-spatial feature space for anomalous targets detection. The extracted features are applied to the 
regularized RX detector to provide the detection map. The experiments show the superior performance 
of the proposed Gabor 3D based detector in terms of detection accuracy and computation time.
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1- Introduction
Hyperspectral images by providing significant spectral 
information contained in hundreds of contiguous and narrow 
spectral channels have attracted much attention for target 
detection. In a target detection problem, the aim is to recognize 
a specific target from the image background. Dependent on 
available prior knowledge about the spectrum of interested 
target, the target detection problems are divided into two main 
groups. In the first group, the spectral signature of considered 
target is known and the problem is supervised [1-3] while in the 
second group, the spectrum of target is unknown and problem 
is unsupervised [4-6]. The unsupervised target detection is 
also called anomaly detection that is our main focus in this 
paper. Anomalies are interested targets with a low probability 
of occurrence and different spectral signature compared to 
local background samples. The Reed-Xiaoli (RX) detector is 
one of the most known and widely used detectors [7]. The RX 
detector by assuming Gaussian distribution for background 
pixels measures the likelihood of belonging a pixel to the 
background data. The RX detector can be applied globally 
or locally where the mean vector used in the Mahalanobis 
distance is estimated globally or locally, with a local estimate 
of that. Due to the limited number of pixels surrounding the 
pixel under test and the high dimensionality of hyperspectral 
image, the covariance matrix likely becomes singular. To 
deal with this difficulty, the regularized RX detector has been 
proposed [8]. 
Most of anomaly detectors just use the high volume 
of spectral information and ignore the valuable spatial 
information. Adjacent pixels usually have similar spectral, 
shape and textural features which can simplify the 

discrimination between two classes of anomalous target and 
background clutter. The recently proposed anomaly detector 
and morphology-based collaborative representation (MCR) 
detector use the structural shapes of image scene as a costly 
source of spatial features [9]. The MCR detector estimates 
the background by applying the collaborative representation 
[10] to the morphological profile of hyperspectral image 
[11]. MCR by utilizing the multi-scale morphological filters 
provides a range of different shape features of data. Another 
powerful tool for extraction of spatial features especially 
texture characteristics is Gabor filters. Gabor filters can 
extract components in different scales and orientations from 
images [12]. These filters by ability of joint localization in 
both original and transform feature space are powerful tools 
for texture extraction. 2D Gabor filters have been widely 
used for texture analysis in different applications of image 
processing [13-14]. 2D Gabor filters have been also used for 
hyperspectral image processing band by band or by applying 
a feature reduction method such as principal component 
analysis (PCA) [15]. Due to the 3D spectral-spatial structure 
of hyperspectral image and the tightly packed correlation 
between spectral and spatial information, the use of 3D Gabor 
filters may be preferred. Some works have used the 3D Gabor 
filters for hyperspectral image classification [16]. 
In this paper, for the first time, the 3D Gabor filters are 
introduced for hyperspectral anomaly detection. Instead 
of straightly applying the anomaly detector to the original 
spectral channels of hyperspectral (HS) image, the 3G Gabor 
filters are firstly applied to HS to simultaneously extract 
spectral-spatial features. The energy of each 3D Gabor 
filtered image is considered as a new feature. Then, the 
Regularized RX detector is applied to the 3G Gabor features 
for anomaly detection. The experimental results done on a Corresponding author, E-mail: maryam.imani@modares.ac.ir
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real hyperspectral image acquired by AVIRIS remote sensor 
show the superior performance of the proposed method with 
respect to several competitors. 

2- 3D Gabor filter-based detector
A Gabor filter is obtained through modulating a normal 
(Gaussian) envelope by a sinusoidal function. For example, 
an illustration of a 3D Gabor filter in the radiance domain 
and a filter bank in the frequency domain are shown in Fig. 
1. A 3D Gabor filter in the spectral-spatial feature space is 
defined by:

( ) ( ) ( ), , , , , , , , ,fG x y N x y E x yϕ θ λ λ λ=                                      (1)
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composes the Gaussian envelope component, and

( ) ( )( ), , 2 x yE x y exp j f x f y fλλ π λ= + +                                (3)

indicates the sinusoidal component. The pair ( ),x y  and λ  
are used as spatial and wavelength variables, respectively. 
The width of the Gaussian envelope and also the filter scale 
is determined by parameter σ . The frequency of component 
( ), ,E x y λ , i.e. ( ), ,x yf f fλ , determines the central frequency 

of the 3D Gabor filter where it makes the orientation of the 
filter:

( ) ( ) 2 2 2, , , ,  / ;  x y x y x yf f f f f f f fλ λ λσ σ σ = = + +                 (4)

The Gabor filter in radiance domain can be related to the one 
in the frequency domain according to the following geometry 
(see Fig. 2):

sin cos , sin sin , cosx yf f f f f fλϕ θ ϕ θ ϕ= = =                        (5)

To have a sufficient characterization of the background 
and anomalous targets, a 3D Gabor filter bank containing 
I J K× ×  orientations and frequencies should be designed 
through a set of Gabor filters as follows [17]:
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                         (6)   

where if  is the amplitude, ( ),j kϕ θ  makes the orientation of 
the central frequency, and mf  indicates the highest value of 
variable f . The half-peak orientation ( )oB  and radial ( )rB  
bandwidths are defined by: 
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By having f  and oB , the value of σ  is calculated by:
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According to previous experiments [17-18], to provide a 
sufficient spectral-spatial characterization of hyperspectral 
images, the parameters of 3D Gabor filter are selected as:

45 ; 4; 0.5o mB I J K f= = = = =

[ ]0.5, 0.25, 0.125, 0.0625f =
, 0, 45 ,90 ,135θ ϕ  =  

  

For each scale, 13 orientations are considered. Therefore, 

                          
Fig. 1. A single 3D Gabor filter viewed with orientation (1, 0, 0) and two dimensions in the radiance domain (left) and 13 filters in 

three dimensions for a single scale in the frequency domain (right).

Fig. 2. Illustration of θ and φ angles for 3D Gabor filter 
representation.
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for 4 scales, a total of 4×13=52 Gabor filters are provided. 
Generally it is assumed that the 3D Gabor filter is designed 
for applying to a R C B× ×  cube with R C B= = . But, in 
practice, for a hyperspectral image, a region of hyperspectral 
cube with R  rows and C  columns ( )R C=  has B  spectral 
bands where ,B R C

. Thus, the Gabor filter should 
be modified by substituiting kλ λ′ = , k = B/R in (1)-(3) 
to provide stretching Gabor filters by the factor k  along 
direction λ . 
The output of each Gabor filter is a cube with the same size of 
hyperspectral image. Let ( ), ,ip x y λ  be the output of filtering 
obtained by i th 3D Gabor filter. Its energy defines the Gabor 
features for pixel ( ),x y  as follows:

( ) ( )
1

2

0

1, , ,
B

i iq x y p x y
B λ

λ
−

=

= ∑                                                     (10)

The vector ( ) ( ) ( )1 52, , , , ,x y q x y q x y = … q  that captures 
52 three dimensional Gabor features is obtained by applying 
a 3D Gabor filter bank containing 52 filters. The 3D Gabor 
feature cube is then used as the input of the Regularized RX 
detector as follows:

                          (11)

where μ and  are the mean vector and covariance matrix 
estimated by N  pixels of background, respectively; β  is the 
regularization parameter and I  denotes the identity matrix. 
Each testing pixel ( ),x y  with a large value of ( ),D x y  is 
an anomalous target with a higher probability. In contrast, a 
( ),  D x y  with a small value means that the associated pixel 

belongs to the background. 

3- Experiments 
To assess the performance of anomaly detectors, the false 
alarm rate (FAR) is calculated by:

fdN
FAR

N
=                                                                       (12)

where fdN  indicates the number of anomalous pixels falsely 
detected and  N  is the total number of samples under test in 
the image. In addition, the probability of detection (PD) is 
defined as follows:

cd

t

NPD
N

=                                                                          (13)

where cdN  denotes the number of correctly detected samples 
and tN  represents the number of target samples. To have an 
accurate comparison, the receiver operating characteristic 
(ROC) curve is plotted where it illustrates the relationship 
between PD and FAR. The closer ROC to the top left corner is, 
the more accurate detector will be. In other words, obtaining 
a higher PD at the same FAR with respect to other methods 
means a more accurate detection. To provide a quantitative 
comparison, the area under ROC curve (AUC) that is a value 
between 0 and 1 is calculated where a higher AUC close to 1 
is equivalent with more accuracy.
The experiments are carried out on the real San Diego 
hyperspectral image acquired by AVIRIS with the spatial 
resolution of 3.5 m per pixel [19]. This dataset contains 
224 original spectral bands where the range of wavelength 
is 0.37-2.51 um and 189 bands are remained after removing 
water absorption bands and the ones with low SNR. The 
results of anomaly detection using 3D Gabor features 
(Gabor3D) is compared to the original spectral bands of 

hyperspectral image (HS), 2D Gabor features (Gabor2D), 
2D Gabor features stacked on HS (Gabor2D+HS) and also 
the MCR anomaly detector. While HS and Gabor2D just 
use the spectral and spatial information, respectively, the 
Gabor2D+HS, Gabor3D and MCR methods use both spectral 
and spatial information. It should be noted that there is a 
significant difference between Gabor2D+HS and Gabor3D. 
In Gabor2D+HS, at first the PCA transformation is applied 
to the HS image to find the first principal component (PC1). 
Then, a Gabor filter bank with 4 scales and 13 orientations 
(totally 52 filters) is applied to the PC1 to provide 52 two-
dimensional Gabor features. Then, the 2D Gabor features are 
stacked on the spectral features (HS) to provide a spectral-
spatial representation of data. But, the 3D Gabor filter bank 
is directly applied to the hyperspectral cube to provide the 
spectral-spatial feature space. In other words, Gabor2D+HS 
without considering the 3D structure of hyperspectral image 
individually extracts 2D Gabor features and, then, combines 
them with the spectral ones.
In contrast, Gabor3D by considering the 3D nature of 
hyperspectral image fuses the spectral and Gabor features 
implicitly. For implementation of 3D Gabor filter, different 
window sizes are experimented and the window size of 5×5 
( )5R C= =  is selected for applying filters (see Fig. 3). The 
factor k  is equal to / 189 / 5k B R= =  for San Diego dataset. 
To have a fair comparison between Gabor2D and Gabor3D, 
the both are implemented with window size of 5×5, 4 scales 
and 13 orientations.  
The ROC curves of different methods are shown in Fig. 
4. The AUC value and computation times are reported in 
Table 1. The detection maps are also shown in Fig. 5. The 
detector output for each pixel of hyperspectral image is a 
value as a measure of belonging to the anomalous target. In 
each detection map, a color nearer to red indicates a higher 
likelihood to belong to the anomaly and a color nearer to blue 
means a higher likelihood to belong to the background. To 
provide a binary detection map with white color as targets 
and black one as background, a threshold value is considered 
on the detection maps. The appropriate threshold value for 
each anomaly detection method is obtained by experiments. 
The binary detection maps are shown in Fig. 6. According 
to the obtained results, the lowest detection accuracy is 
related to HS which only uses the spectral features. While 
the accuracy of Gabor2D is 95.13, Gabor2D+HS provides 
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Fig. 3. AUC versus the length of window in Gabor3D method.
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82.67. In other words, stacking the original spectral features 
on the 2D Gabor features decreases the detection accuracy. 
This result may be because of disregarding the 3D nature of 
hyperspectral image where the spectral and spatial features 
have an internal relationship and correlation which is not 
considered in Gabor2D+HS. From the computation time 
point of view, Gabor2D (with 52 features) runs faster than 
the original spectral features of HS (189 bands). Among 
the spectral-spatial anomaly detectors, Gabor2D+HS (with 
52+189 features), which has less than 1 minute running time, 
is the fastest and MCR (with 27 morphological features where 
it was shown in previous work that 27 features provide the 
best detection accuracy), spends more than 9 minutes running 
time and is the slowest method. The proposed Gabor3D (with 
52 features) runs in 1.32 minutes that is a reasonable speed 
compared to other methods where it can obtain the highest 
detection accuracy too.  
About the computational complexity of different anomaly 

detectors, the following points can be mentioned:
1) The MCR method is implemented in several steps. In 

the first step, the PCA transformation is applied to 
extract the principal components (PCs) of HS. Then, the 
morphological filters (opening and closing operators 
by reconstruction) are applied to each PC to extract 
useful spatial features such as shape and structural 
characteristics from it. After that, the collaborative 
representation is applied to the morphological profile 
of each PC in order to anomaly detection. Eventually, 
the majority voting rule is used as a decision fusion 
method to find the final anomaly map. According to 
what said, MCR has high computational burden due to 
computations of PCA transformation, morphological 
filters, collaborative representation and decision fusion 
framework. So, it is expected that MCR is the slowest 
anomaly detector in comparison with other methods.

2) By comparing the outputs of the regularized RX detector 
on HS and Gabor2D, it can be found that the use of 
original hyperspectral image (HS) provides higher 
computational burden than the use of Gabor2D features. 
It would be expected as HS cube has dimensionality of 
189 while the Gabor2D cube has dimensionality of 52. 
In other words, by applying two-dimensional Gabor 
filters to HS Gabor2D extracts useful spatial features 
from the image and does not contain the redundant 
information of HS. So, the use of Gabor2D is not only 
preferable due to computational simplicity but also it is 
useful in terms of detection accuracy. 

3) By comparing Gabor2D and Gabor2D+HS results, it 
can found that adding the original hyperspectral image 
bands to the features extracted by the Gabor2D filter 
adds redundant information to the Gabor2D cube that 
reduces the detection accuracy. Moreover, as expected 
the Gabor2D+HS cube with dimension of 52+189 has 
higher computations than Gabor2D with dimension of 
52 and HS with dimension of 189.

4) Applying three dimensional Gabor filters for 
simultaneous extraction of spectral and spatial features 
in order to preserve the 3D nature of hyperspectral 
cube imposes more computations than Gabor2D. 
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Fig. 4. ROC curve of different anomaly detectors.

Table 1. AUC values and running time of different anomaly

HS Gabor2D Gabor2D+HS Gabor3D MCR

AUC 71.80 95.13 82.67 96.98 95.39

Time 24.63 4.23 46.27 78.98 556.29
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Fig. 5. Target map and the detection maps of different anomaly detectors.
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4- Conclusion
A 3D Gabor filter based anomaly detector was proposed for 
hyperspectral images in this paper. The experiments showed 
that the proposed 3D Gabor-based method can provide the 
highest detection accuracy. It considers the 3D nature of 
hyperspectral cube and implicitly fuses the spectral and spatial 
features. The experiments show the superior performance of 
the proposed anomaly detector compared to several methods 
such as 2D Gabor filter-based anomaly detector and MCR 
with a reasonable computation time. 
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