[1] Y. Niu, B. Wang, Extracting Target Spectrum for Hyperspectral Target Detection: An Adaptive Weighted Learning Method Using a Self-Completed Background Dictionary, IEEE Transactions on Geoscience and
Remote Sensing, 55(3) (2017) 1604-1617.
[2] M. Imani, Attribute profile based target detection using collaborative and sparse representation, Neurocomputing, 313 (2018) 364-376.
[3] M. Diani, M. Moscadelli, G. Corsini, Improved Alpha Residuals for Target Detection in Thermal Hyperspectral Imaging, IEEE Geoscience and Remote Sensing Letters, 15(5) (2018) 779-783.
[4] E. Lo, Hyperspectral anomaly detection based on a generalization of the maximized subspace model, 2013 5th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Gainesville, FL, 2013, pp. 1-5.
[5] L. Lee, D. Paylor, C. Chang, Anomaly discrimination and classification for hyperspectral imagery, 2015 7th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Tokyo, 2015, pp. 1-4.
[6] M. Imani, Hyperspectral Anomaly Detection Using Differential Image, IET Image Processing, 12(5) (2018) 801-809.
[7] S. Reed, X. Yu, Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution, IEEE Transactions on Acoustics, Speech, and Signal Processing, 38 (10) (1990) 1760–1770.
[8] N. M. Nasrabadi, Regularization for spectral matched filter and RX anomaly detector, Proc. SPIE, 6966 (696604) (2008).
[9] M. Imani, Anomaly detection using morphology-based collaborative representation in hyperspectral imagery, European Journal of Remote Sensing, 51(1) (2018) 457–471.
[10] M. Imani, H. Ghassemian, Weighted Joint Collaborative Representation Based On Median-Mean Line and Angular Separation, IEEE Transactions on Geoscience and Remote Sensing, 55(10) (2017) 5612 – 5624.
[11] J. López-Fandiño, D. B. Heras, F. Argüello, R. J. Duro, CUDA multiclass change detection for remote sensing hyperspectral images using extended morphological profiles, 2017 9th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), Bucharest, 2017, pp. 404-409.
[12] T. Viarbitskaya, A. Dobrucki, Elimination of distortions in the recorded sound of the violin using cascade-integrator-comb filters based on Gabor transform and pitch-shifting algorithm, 2016 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA), Poznan, 2016, pp. 56-61.
[13] L. Tao, H. K. Kwan, Fast Parallel Approach for 2-D DHT-Based Real-Valued Discrete Gabor Transform, IEEE Transactions on Image Processing, 18(12) (2009) 2790-2796.
[14] M. Imani, H. Ghassemian, GLCM, Gabor, and Morphology Profiles Fusion for Hyperspectral Image Classification, IEEE proceedings of the 24th Iranian Conference on Electrical Engineering (ICEE 2016), Shiraz, Iran, 2016, pp. 460-465.
[15] W. Li, Q. Du, Gabor-Filtering-Based Nearest Regularized
Subspace for Hyperspectral Image Classification, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(4) (2014) 1012-1022.
[16] L. He, J. Li, A. Plaza, Y. Li, Discriminative Low-Rank Gabor Filtering for Spectral–Spatial Hyperspectral Image Classification, IEEE Transactions on Geoscience and Remote Sensing, 55 (3) (2017) 1381-1395.
[17] S. Jia, L. Shen, J. Zhu, Q. Li, A 3-D Gabor Phase-Based Coding and Matching Framework for Hyperspectral Imagery Classification, IEEE Transactions on Cybernetics, 48(4) (2018) 1176-1188.
[18] T. C. Bau, S. Sarkar, G. Healey, Hyperspectral Region Classification Using a Three-Dimensional Gabor Filterbank, IEEE Transactions on Geoscience and Remote Sensing, 48(9) (2010) 3457-3464.
[19] M. Imani, RX Anomaly Detector with Rectified Background, IEEE Geoscience and Remote Sensing Letters, 14(8) (2017) 1313-1317.