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ABSTRACT: Growing concern in management of energy due to the increasing energy costs, has forced 
managers to optimize the amount of energy required to provide products and services. This research 
integrates an energy-based resource investment project-scheduling problem (RIP) under a multi-skilled 
structure of the resources. The proposed energy-based multi-skilled resource investment problem (EB-
MSRIP) consists of a single project with a set of tasks that require several skills to be competed. Each skill 
could be applied in several levels of efficiency, each including significant energy and implementation 
costs. Similar to RIPs, in the EB-MSRIP the required levels of skills are considered as decision variables 
and a bi-objective formulation is proposed for the problem. The first objective of the model minimizes 
total cost with regards to energy consumption cost and implementation cost of required multi-skilled 
resources, and the second one minimizes the project’s makespan. The epsilon constraint method has been 
used to validate the developed formulation on several small-size instances. For larger problem instances, 
as epsilon constraint method fails to obtain a solution, the multi-objective ant colony optimization 
(MOACO) algorithm has been implemented to tackle the problems. The key control parameters of the 
proposed MOACO are tuned by Taguchi method. Computational results in terms of several measures, 
including MID, DM, NPS and SNS, determine notable advantages of proposed MOACO.
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1- Introduction
Wise consumption of energy resources has gained increasing 
attention in many fields of engineering as a necessity for 
sustainable development. In addition, many researchers have 
found energy-oriented solutions to help decision makers 
with efficient management of their energy usage. Contriving 
energy-based frameworks within scheduling problems has 
been one of the most attractive ideas, which result in several 
real-life solutions for different applications. The reference [1] 
developed a mathematical formulation for the single machine 
scheduling problem with variable energy tariffs. The paper 
[2] presented a novel scheduling model which integrates the 
economic and ecological issues under a time-of-use energy 
tariff. In [3], a multi-objective framework for scheduling of 
a micro-grid was developed to minimize the total operation 
cost and the emission caused by generating utilities. [4] 
proposed an evolutionary algorithm for better consumption 
energy use in agriculture system. Recently, [5] developed a 
multi-objective particle swarm optimization algorithm for 
managing Energy and greenhouse gas (GHG) emissions for 
agricultural systems. Due to the growing attraction of energy 
optimization methods, in this research we aim to introduce 
an energy-based extension of resource investment problem 
(RIP) in project-scheduling problem under a multi-skilled 
structure of the resources.
The resource investment problem (RIP) which is sometimes 
called as resource availability cost problem (RAC) is an 
attractive version of resource constraint project scheduling 
problem (RCPSP) which was initially proposed by [6]. 
This reference introduced the RIP problem and proved its 
NP-hardness proof. Afterwards, many researchers studied 

different extensions of RIPs. RIP has been recently focused to 
be implemented in different fields of optimization problems. 
Production design [7], software engineering [8], military 
capability planning [9], research and development project 
management [10], and project scheduling [11, 12] are just 
a few practical cases of RIP implementations. Looking 
at the literature available on resource availability cost 
problem (RAC), one could refer to  [13] that implemented 
the path relinking and genetic algorithm for RACP. Their 
experimental results confirm the supremacy of the algorithm. 
[14] represented a time-dependent resource cost and tardiness 
penalty model to tackle the resource investment problem 
which aims to minimize the sum of resource cost and the 
tardiness cost. Besides RIP, the other concentration aspect 
of this research is on the multi-skilled project scheduling 
problem (MSPSP). Generally defined, in multi-skilled project 
scheduling problem (MSPSP), each of the project’s tasks 
is considered to require several skills to be accomplished 
wherein the candidate skills are represented in different levels 
of efficiency associated with significant implementation costs 
and completion time. 
Likewise RIPs, the software development, research and 
development projects, chemical industry and maintenance 
projects are just a few potentials of this field of study.  Many 
researchers have focused on multi-skill project scheduling 
problem within which we can refer to [15] that considered a 
model for MSPSP that is being solved by two complementary 
and efficient lower bounds, adapted from known lower bounds 
for the classic RCPSP. [16] studies the project scheduling 
problem considering multiple skills that cannot be mastered 
by all workforces involved. He proposes several methods 
to solve the problem that include heuristics, meta-heuristics 
and a branch-and-bound algorithm. [17, 18] consider multi-Corresponding author, E-mail: behrouz.afshar@gmail.com
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project version of multi-skilled project scheduling problem. 
[19] considered the MSPSP in emergency departments to 
optimize the scheduling of candidate medical staff system. 
Consider the two mentioned topics of project scheduling 
problems. To the best of our knowledge, although many 
researchers have focused on RIP and MSPSP separately, 
integration of the two mentioned problems have rarely been 
studied. In another words, considering the required levels of 
multi-skilled renewable resources of projects as a decision 
variable and focusing on the optimization of resource 
implementation costs introduces a new RIP-MSPSP oriented 
problem. Recently, [20] has considered the preemptive multi-
skilled resource investment project scheduling problem for 
chemical processes where flexible workplace requiring 
multi-skilled workers is an undeniable fact.
According to the best of the authors’ knowledge, no research 
has ever been conducted on the integration of energy-efficiency 
within the MSPSP or RIP. This was the main motivation 
of this paper. We call this problem as energy-based multi-
skilled resource investment problem, EB-MSRIP thereafter. 
In the EB-MSRIP, one faces the problem of finding the best 
availability for different levels of the multi-skilled resources 
which have time-dependent energy usage costs. Similar to 
RIPs, in the EB-MSRIP the required levels of the skills are 
considered as decision variables and the main objective is to 
minimize the total energy usage and implementation costs of 
multi-skilled resources of project. On the other hand, similar 
to MSPSPs, assignment of multi-skilled resources to the 
activities and the best start time of all the activities are to be 
determined in EB-MSRIP. Therefore, the main contribution 
of the current work includes proposing a new bi-objective 
model for the integrated multi-skilled project scheduling 
and resource investment project scheduling problem under 
time-dependent tariff for energy usage. Then the proposed 
mathematical formulation of EB-MSRIP is validated using 
the epsilon-constraint method applied by GAMS software in 
small-scale instances and implementation of a bi-objective 
ant colony optimization algorithm to solve large-scaled 
instances. Furthermore, the performance of the proposed 
bi-objective ant colony optimization (MOACO) will be 
evaluated by comparing it to the one achieved by the epsilon-
constraint method. 
The rest of the paper is structured as it follows. Section 2 
describes the EB-MSRIP and its bi-objective mathematical 
model. Section 3 represents the solving approach including 
the bi-objective ant colony algorithm. Section 4 provides 
comprehensive experiments to validate the proposed 
approach. Finally, Section 5 concludes the paper and suggests 
some directions for future work.

2- Theoretical modeling
A bi-objective energy-based multi-skilled resource 
investment problem (EB-MSRIP) that is an integration of 
RCPSP and RIP considering energy consumption, is defined 
in this section. This problem consists of a single project with 
a set of activities, each requiring several skills for execution. 
Each skill can be applied in several levels of efficiency with 
different implementation costs. Each level of efficiency 
introduced for the skills includes significant energy cost. 
Inherited from its RIP features, the EB-MSRIP assumes that 
availability of all levels of multi-skilled resources are decision 
variables to be determined in order to minimize total cost of 
multi skilled implementation and energy consumption costs. 

On the other hand, inherited from its MSPSP features, all the 
required skills are to be available at the start of any activity 
and the second objective is to determine the best schedule 
of the activities with minimum makespan.  The following 
assumptions are considered throughout the paper.
•	 There is a single project represented as an activity on 

node (AON) network. 

•	 Precedence relations are ‘Finish to Start’ with zero time-
lags. 

•	 Preemption of activities are not allowed.

•	 All resources are renewable and multi-skilled.

•	 All the required resources are available at the start of 
each activity.

•	 Each skill can be applied in several levels with different 
rates of energy tariff.

•	 Each activity may require more than one skill to be 
executed.

•	 A single level of each required skill would be assigned 
to each activity.

•	 Higher levels of skills lead to lower execution time and 
higher implementation cost.

•	 Higher levels of skills lead to lower or at least equal 
energy consumption cost.

•	 Each multi-skilled resource has a time-dependent cost of 
energy consumption.

The following notations are used to formulate the bi-objective 
energy-based multi-skilled resource investment problem 
(EB-MSRIP). 

2- 1- Mathematical modeling
Based on the notations defined above, the mathematical 
formulation of EB-MSRIP is as it follows,
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The first objective function in (1) aims to minimize the 
total cost of applying multi-skilled resources including the 
application cost of multi-skilled resources and the total 
energy consumption cost for the multi-skilled resources over 
the length of the project. Eq. (2) minimizes the project’s 
makespan. Eq. (3) assigns a single level of each required skill 
to the activities. Eq. (4) calculates the time within which any 
required skill is in process after its earliest start and before 
latest finish times. Eq. (5) declares that each level of a single 
skill can be assigned to at most one activity within a time 
frame. Eq. (6) guarantees that the activities must be in progress 
without preemption. Eq. (7) computes the required amount of 
candidate skill levels with regard to the resource assignments. 
Eqs. (8) and (9) compute the start and the completion times 
of applying skill k to perform activity i by satisfying the 
logical relations between the variables ,  t

ikl iky S  and ikC . Eq. 
(10) guarantees the necessity of concurrent application of all 
the required skills for any single task. Eq. (11) determines 
the start time of the activities. Eq. (12) satisfies the finish 
to start precedence relations between the activities. Eq. (13) 
calculates the project makespan. 

2- 2- Implementation platforms
One of the potentials of the proposed model is in 
implementation of gas or oil transmission pipelines where 
different skills with multiple levels of proficiencies must 
stay together to perform the tasks. Various skills like, gas 
engineering, mechanical engineering, electrical engineering, 
project managing, computer engineering and many other 
skills shall be applied to perform these projects well. Besides, 
optimization of the energy consumption costs associated with 
the supplementary machinery required to apply the multi 
skilled resources is another challenging issue in this kind of 
projects.  For instance, optimization of energy consumption 
to launch the suction pumps and the compressors in the gas 
transmission pipelines or the fuel needed to apply the diesel 
engines in the oil rigs that are mostly prepared by helicopters 
could be taken into consideration to optimize the project costs. 
Furthermore, special effects projects, many construction 
projects and setting up the telecommunications masts are just 
a few of existing real cases of the proposed model. 

3- Solution methodology
The EB-MSRIP is an NP-hard optimization problem, as it 
is the integration of two NP-hard problems including the 
multi-skilled project scheduling problem and the resource 
investment one. To solve this problem, we have applied a 
meta-heuristic approach to provide acceptable solutions in a 
reasonable computational time. Since implementation of ant 
colony optimization (ACO) among meta-heuristic approaches 
has been successfully applied into project scheduling 
problems specially for MSPSPs [21, 22], the application of 
ACO has been considered to deal with the problem of this 
research.

3- 1- Construction of the solutions
A multi-objective ant colony optimization (MOACO) 
has been presented in the current paper that begins with 
generation of  feasible solutions among the solution space. 
Each solution consists of two parts, i.e. determination of 
tasks’ sequences and assignment of required levels of skills. 
Each part consists of two matrices including matrix of 
heuristic function ( ihη ) and matrix of pheromone value ( ihτ ).

3- 1- 1- Heuristic function
The heuristic function matrix of the first part of solution, i.e. 
tasks’ sequences, is a matrix of n rows and T columns where 
n is the number of tasks and T represents the summation 
of execution times while the tasks are accomplished by 
the slowest available levels of skills (to avoid infeasible 
solutions). Heuristic function of first part of solution ( 1

ihη ) 
is being calculated according to Eq. (14),

1 1
ih

ihsub
η =

     
      (14)

in which ihsub  shows the number of subsequent activities 
for task i located at position h. This allows tasks with more 
number of subsequent activities to be selected earlier.
For second part of solution, assignment of required levels of 
skills, 2

ihη , is calculated through Eq. (15), 
2 1
ih

ih ihNc Nt
η =

+
              (15)

where  ihNc and ihNt  represent the cost and the execution time 
associated with level of required skills. Eq. (16) guarantees 
that the candidate levels of skills with lower energy costs and 
lower execution times will have higher priority to be selected. 

3- 1- 2- pheromone value matrix
The pheromone value matrix ( ihτ ) is a matrix of k rows 
and l columns where k and l are number of required skills 
and maximum efficiency levels of skills. In the proposed 
MOACO, the pheromone value matrix is updated through 
three updating pheromone rules, namely, local pheromone 
updating, global pheromone updating and pheromone 
evaporation procedures. In this paper, the initial value for 
elements of pheromone matrix ( 0τ ) are considered as 1 and 
then updated by two pheromone updating rules.  
local pheromone-updating rule:
The local pheromone is updated during the construction 
of solution and whenever a new task is sequenced and, 
subsequently, the required efficiency levels of skills are 
allocated. The local pheromone updating is done using Eq. 
(16), through which, [ ]0,1ξ ∈  corresponds to the control 
parameter of pheromone as in Eq. (16). Eq. (17) guarantees  

0ihτ τ≥  during the algorithm.
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( ) ( )0 01 ,                                                                                                                    16ih ihτ ξ τ ξτ τ≤ − + ≤
            

(16)

( ) ( )01 .                                                                                                                          17ih ihτ ξ τ ξτ= − +          (17)

The global pheromone-updating rule:
This procedure provides pheromone updating at the end 
of each iteration by allowing participation of all ants. The 
procedure is designed to accelerate the exploration of new 
paths or solutions in the solution region. In our proposed 
approach for global pheromone updating, every ant can leave 
the pheromone  procedure, however, the better the solution 
is, the more pheromone could be left by the ant [23]. In 
this stage, first, the dominant rank and crowding distance 
of each constructed solution is computed. Then, the value 
of pheromone is updated using Eq. (18) at the end of each 
iteration.

  . new old
ih ih

x

Q
D

τ τ= +
                                                                

(18)

In Eq. (18), Q is the pheromone-updating factor considered 
as a parameter and  xD is the non-dominant rank of the thx  
solution. 
Pheromone evaporation:
Pheromone evaporates iteratively which guaranties the 
exploration of new areas in the search space. Pheromone 
evaporation is done by decreasing the value of pheromone in 
every iteration (see Eq. (19)).

( )1 . ih ihτ ρ τ= −
   

                     (19)

By determining the heuristic function and pheromone 
updating rules, the solutions are constructed according to Eq. 
(20). In order to avoid generating infeasible solutions, the 
following points are taken into consideration when the tasks 
and skills are selected: (1) precedence relations shall be met, 
(2) all the required skills shall be allocated to each associated 
task.
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In Eq. (20), a
ihp  denotes the probability of locating activity 

i /skill k at position h by ant a. Position h denotes a part of 
sequence in which activity i is selected there and the efficiency 
level in which the required skill is applied. In addition, 
the pheromone value ( ihτ ) and heuristic function ( ihη ) are 
embedded in   a

ihp with regards to the control parameters α  
and  β . It is noticeable that hϑ  is the set of activities that 
could be located at position  h .

3- 1- 3- Decoding procedure
Having specified the tasks’ sequences and skill assignments, 
the next step is to schedule the tasks within the planning 
horizon according to the announced earliest and latest start 
times. With regard to the sequences defined in the previous 
section, the tasks are then scheduled at time t considering Eq. 
(21),

( )t max 1,     ,     
ipr iF es= +          (21)

where 
iprF  and ies  denote the completion time of preceding 

activities of task i and the earliest start time of task I, 
respectively. This procedure ensures that activities do not 
start before their earliest start time. Besides by considering the 
precedence relations in the solution construction mechanism, 

the value of 
iprF  will be automatically resulted less than latest 

start time ( )ils . 

3- 2- Comparison measures
Four measures are introduced in this section to evaluate the 
performance of the developed MOACO. 
Mean ideal distance (MID): defines the distance between 
the ideal solution (the best solution) and the Pareto solutions 
calculated by:

n
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where max
,totalif  min

,totalif  are the minimum and maximum values 
of the objective functions via all the applied algorithms, and 

),( 21
bestbest ff  are the coordinates of the ideal point. Lower value 

of this criterion is preferable.
Diversification Metric (DM): finds the spread of a Pareto 
solution set. The higher the value of DM is, the more efficient 
the algorithm would be. DM is computed as below: 

2

1

(min ) ,  
I

i i
i

DM f maxf
=

= −∑
         

(23)

. where min if  and max if  are the minimum and the maximum 
value of each fitness function among all non-dominated 
solutions achieved by the algorithms.
Number of Pareto solutions (NPS): exhibits the number of the 
Pareto solutions that each algorithm have found. Although 
NPS does not include comprehensive information about the 
quality of the solutions, higher values of SNS is preferable.
Spread of non-dominance solution (SNS): This criterion 
comtes the diversity of the Pareto archive solution. Higher 
values of SNS represent superiority of the algorithm. The 
value of this criterion is computed as:

( )2

1  ,  
1

n
ii

MID D
SNS

n
=

−
=

−
∑           (24)

where
2 2

1 2iD f f= +                                                                                                                            (25)

3- 3- Parameter tuning
We adopt the Taguchi method to tune the 9 affecting 
parameters (factors) of the proposed MOACO. Herein, 
the signal to noise ratio, i.e. S

N , is used to evaluate the 
performance of the algorithm as:

2( )10 log   ,    s yS
N nr

 
= ×  

 
                            (26)

where nr defines the number of orthogonal arrays and y 
represents the response values. If a parameter’s level has the 
highest S

N , then it will become the most beneficial level of 
the parameter. To do so, we have considered the MID factor 
as the response value.   
Table 1 demonstrates the nine affecting factors of the proposed 
MOACO and shows the three levels of the corresponding 
factors. In Table 1, maxiter  denotes the maximum number of 
iterations, antn  represents the number of ants, Q  and 0τ  stand 
for the pheromone updating factor and initial pheromone, 
respectively, and α  and β  are associated by the pheromone 
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exponential weight and the heuristic exponential weight, 
respectively. Besides, ρ  and ξ  represent the evaporation rate 
and the control parameter of pheromone while NPF  defines 
the maximum number of Pareto members.  It is notable that 
an instance including 25 activities, 4 skills and 3 levels is 
considered to set the parameters of proposed MOACO 
through the L27 orthogonal array design, implemented on the 
MINITAB software.
In Tables 2 and Fig. 1 the responses for signal to noise ratios 
of proposed MOACO are represented. Besides, the best value 
of signal to noise ratios associated with each parameter level 
is high-lighted in Table 2. 

3- 4- Instance generation 
With considering the number of activities (n), number of 
candidate skills (K), and the maximum number of skill levels 
(L), the problem instances are classified into two different 
sizes of small and large. Moreover, it should be noted that 
the precedence relations are taken from the PSPLIB. The 
execution times of applying the candidate levels of the skills 
to perform activities ( )iklp  follow a uniform distribution 

in the interval [15, 20] while the number of the resources 
required to perform activity i for each level of the skills ( )iklr  
are generated uniformly from the interval [1, 6]. For each task, 
the required number of skills is generated randomly between 
1 and the maximum number of skills (K).  It is considered 
that the skill levels with higher indices will lead to lower 
executing times and less number of the required resources but 
with higher implementation costs ( )t

klIC  and lower energy 
consumption cost ( t

klEC ). Finally, t
klIC  and  t

klEC follow the 
uniform distribution in the intervals [100, 500] and [6, 15], 
respectively.  

4- Computational results
All the designed test problems were solved by the proposed 
MOACO coded in MATLAB R2013b, with a core i5 CPU and 
4 GB memory. Each problem instance has been solved three 
times and the average results are considered to evaluate the 
algorithms. The quantitative results have been compared with 
the optimal solutions obtained by epsilon-constraint method 
on GAMS 22.9. It should be noted that as GAMS software is 
unable to solve problems with larger sizes than 30 activities, 
large-sized problems (problem number 31 and larger) are 
solved by the proposed MOACO. Computational results of 
the proposed MOACO and epsilon-constraint method based 
on four comparison criteria are demonstrated in Tables 3 
and Table 4. The first four columns of Tables 3 and Table 4  
reflect the characteristics of each problem instance according 
to which NPr  and taskN  represent the problem number and 
the number of activities while sN  and lN  represent the 
number of skills and the maximum number of the candidate 
levels of proficiency for each skill, respectively. As it is clear 
from Table 3, epsilon-constraint method achieved the best 
MID in comparison with the proposed MOACO wherein on 
the basis of DM criterion, MOACO with the average value 
of 619368 outperforms epsilon-constraint method with the 
value of 216379. Computational results obtained by the 
proposed MOACO in case of NPS determine the supremacy 
of MOACO in comparison with epsilon-constraint method 

Table 1. Levels of key factors of MOACOs 

Key parameters

Parameter levels maxiter antn Q 0τ α β ρ ξ NPF

Level 1 3 N× 10 0.8 1 1 1 0.001 0.1 100
Level 2 4 N× 15 0.9 1.2 1.5 1.2 0.005 0.15 150
Level 3 5 N× 20 1 1.5 2 1.5 0.05 0.2 200
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Fig. 1. Taguchi results for MOACO

Table 2. Response for S/N ratios of MOACO-ALL parameters

Parameter 
levels maxiter antn Q 0τ α β ρ î NPF

Level 1 66.56 66.09 66.38 66.35 67.32 66.31 66.55 66.54 66.49

Level 2 66.42 66.87 66.49 66.33 66.60 66.39 66.67 66.61 66.31

Level 3 66.34 66.37 66.45 66.64 65.40 66.62 66.11 66.18 66.52

Delta 0.22 0.78 0.11 0.31 1.92 0.30 0.56 0.43 0.21

Rank 7 2 9 5 1 6 3 4 8
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Table3.  Computational results obtained by the proposed MOACO and epsilon-constraint method for small-size problems 
based on MID and DM

Small sized problems

Pr.N taskN sN lN
MID DM

MOACO Epsilon- constraint MOACO Epsilon- constraint

1 5 2 2 111.8525 105.852 367325 46077

2 5 2 3 113.1171 107.617 622669 52418

3 10 2 2 86.92738 80.927 530257 38514

4 10 2 3 186.1505 182.65 703388 42518

5 10 3 2 137.6298 121.13 511600 85517

6 10 3 3 206.2158 202.216 582870 27001

7 15 2 2 109.1855 102.686 556489 83986

8 15 2 3 206.3811 193.881 600110 99758
9 15 3 2 123.3991 119.399 503891 90176

10 15 3 3 195.1995 179.7 582515 82457

11 15 4 2 179.8422 160.842 553867 97059

12 15 4 3 261.056 251.556 507727 130259

13 20 2 2 128.8272 123.827 650942 130711

14 20 2 3 289.401 286.401 696739 170398

15 20 3 2 123.4329 145.433 321045 161282

16 20 3 3 269.3247 262.825 731107 287447

17 20 4 2 183.3332 183.833 663928 225327

18 20 4 3 258.0679 240.068 594514 383514

19 25 2 2 188.0846 191.085 567354 103449

20 25 2 3 224.542 214.042 602514 322528

21 25 3 2 173.4966 175.497 748824 239614

22 25 3 3 208.8058 191.806 687856 734345

23 25 4 2 184.9479 172.948 826017 303214

24 25 4 3 278.6913 258.191 857230 420058

25 30 2 2 160.3933 150.893 805875 240252

26 30 2 3 226.9243 211.424 535256 129874

27 30 3 2 237.9200 218.92 634696 303159

28 30 3 3 251.0515 251.551 896798 398745

29 30 4 2 198.0849 189.585 690568 264359

30 30 4 3 275.8161 272.316 447065 797348

average 193.270 184.636 619368 216379
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Table 4. Computational results obtained by proposed MOACO and epsilon constraint method for small-size problems based
on NPS and SNS.

Small sized problems

Pr.N taskN sN lN
NPS SNS

MOACO Epsilon 
constraint MOACO Epsilon 

constraint
1 5 2 2 9 6 555772.3 79472.689
2 5 2 3 8 9 644172.5 91089.704
3 10 2 2 7 4 588467.0 188453.25

4 10 2 3 20 15 739437.2 202127.47

5 10 3 2 5 6 666931.1 162683.78

6 10 3 3 15 12 649995.7 322581.19

7 15 2 2 10 8 704973.3 185546.38

8 15 2 3 17 12 741238.6 353325.92

9 15 3 2 10 10 704900.9 299637.58

10 15 3 3 13 13 708612.6 447917.43

11 15 4 2 12 11 688574.7 361803.10

12 15 4 3 6 6 660998.0 565954.34

13 20 2 2 7 7 781160 320836.60

14 20 2 3 15 14 765879.8 584770.62

15 20 3 2 9 6 782040.4 306170.82

16 20 3 3 18 10 799064.6 649824.25

17 20 4 2 9 9 754416.2 530094.72

18 20 4 3 22 17 762284.1 781503.06

19 25 2 2 8 8 661413.5 419569.86

20 25 2 3 25 16 745980.2 402055.55

21 25 3 2 12 8 709208.1 483952.5

22 25 3 3 23 17 737845.9 696265.09

23 25 4 2 9 7 828466.5 646693.75

24 25 4 3 18 17 771834.3 1016250.4

25 30 2 2 15 13 738285.9 349092.46

26 30 2 3 21 17 639672.0 604667.90

27 30 3 2 12 7 701382.8 685388.78

28 30 3 3 15 14 741485.9 886819.39

29 30 4 2 14 10 660531.2 558800.43

30 30 4 3 20 16 564022.9 952888.20

average 13.466 10.833 706634.98 471207.91
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Table 5. Computational results obtained by the proposed MOACO for large-sized problems

Large-sized problems

Pr.N taskN sN lN
MOACO

MID DM NPS SNS

31 50 3 2 219.983 428608 12.000 1033521
32 50 3 3 261.859 1186682 20.000 1447225
33 50 3 4 388.193 2250153 18.000 1655024
34 50 4 2 252.48 512263 14.000 1123168
35 50 4 3 355.069 1208360 13.000 1911604
36 50 4 4 398.388 2796026 17.000 3191041
37 50 5 2 311.802 751482 10.000 1729456
38 50 5 3 436.202 1954957 15.000 2030673
39 50 5 4 476.99 1339372 15.000 3884731
40 50 6 2 358.476 851606 14.000 1612785
41 50 6 3 393.119 2341547 17.000 3048884
42 50 6 4 727.285 4421114 13.000 4350098
43 50 6 5 691.353 7871687 18.000 6429073
44 60 3 2 258.97 777606 16.000 1202844
45 60 3 3 379.991 1873402 16.000 1978346
46 60 3 4 348.204 2444159 15.000 2449458
47 60 4 2 287.045 797650 19.000 1352465
48 60 4 3 443.203 1935927 20.000 2319340
49 60 4 4 446.914 2184827 15.000 3358087
50 60 5 2 325.697 710863 15.000 1685462
51 60 5 3 456.882 2567311 22.000 2700971
52 60 5 4 506.751 4033916 21.000 4109297
53 60 6 2 348.61 1045599 17.000 2055279
54 60 6 3 290.267 1894112 22.000 2795617
55 60 6 4 491.004 4389356 21.000 4405311
56 60 6 5 453.199 3051385 14.000 6990081
57 60 7 2 513.167 1311770 22.000 2654193
58 60 7 3 514.812 3197033 21.000 3311974
59 60 7 4 565.966 6422731 19.000 5984801
60 60 7 5 1145.078 8714693 20.000 7102748

average 434.8986 2508873 17.033 2996785



Sh. Javanmard et al., AUT J. Model. Simul., 50(2) (2018) 129-140, DOI: 10.22060/miscj.2018.13848.5084

137

by achieving 13.466 versus 10.833. Furthermore, in terms of 
SNS, the proposed MOACO achieved better performance by 
obtaining the value 706634.98 versus the value of 471207.91 
gained by epsilon-constraint method for small problem sizes.
As epsilon-constraint method was unable to solve the large-
sized problems in a reasonable computational time, MOACO 
has been applied to tackle the problem of larger sizes. 
According to Table 5, the average value of MID, DM, NPS 
and SNS are achieved as 434.8986, 2508873, 20.333 and 
2996785, respectively.
The Pareto fronts obtained by MOACO and epsilon 
constraint method on problem number 15 and the Pareto 
fronts obtained by MOACO on problem number of 52 are 
depicted in Fig. 2 and Fig. 3.

4- 1- Sensitivity analysis
In this section, a sensitivity analysis is done to investigate 
the effect of energy consumption cost on final scheduling 
of activities. To this end, an illustration consisted of 4 
activities and 4 skills, each of which introduces three levels 
of efficiency, is taken into consideration. Execution times 
and implementation cost of efficiency levels of candidate 

skills are represented in Tables 6 and 7. As an example, Task 
1 requires concurrent application of skills a, b, c and d that 
could be implemented in 3 levels of efficiency, each of which 
resulted in a specific execution time and cost. Besides, time-
based energy consumption cost regarding efficiency levels of 
candidate skills is represented in Table 8. 
To accomplish the sensitivity analysis, energy consumption 
cost is shifted within -20% to +300% and the changes made 
to the scheduling of activities has been reported in Table 
9. As can be seen, by increasing energy consumption cost, 
total energy cost and total application cost of multi-skilled 
resources are increased while makespan is decreased. In 
other words, by increasing the energy consumption cost, the 
activities will be scheduled as soon as possible.

5- Summary and conclusion
In this paper, a bi-objective energy-based integration of 
the multi-skilled project scheduling problem and resource 
investment problem, named EB-MSRIP, was formulated 
and solved. Indeed, this was the first work that considers 
minimizing the total cost including the implementation of 
multi-skilled resources as well as the energy consumption 
cost of multi-skilled resources as an objective in the project 
scheduling. The second objective minimizes project’s 
makespan. Application of the proposed model enables 
decision makers to obtain the best availability for efficiency 
levels of multi-skilled resources along with the best schedule 
of the activities while energy costs are considered. A mixed-
integer programming formulation was proposed for EB-
MSRIP, where its validity is established based on 30 small 
scales within application of epsilon-constraint method by 
GAMS software. Afterwards, the ant colony optimization 
(ACO) was developed to overcome the computational 
complexities of large-sized problems. The performance of the 
proposed ACO was evaluated by means of four performance 
measures within 60 test instances. Results achieved by 
epsilon-constraint method in terms of MID, DM, NPS and 
SNS were compared with MOACO.  Therefore, regarding 
the advantages of proposed MOACO, the larger scales of 
problems were solved through the proposed MOACO and the 
computational results were depicted in terms of comparison 
measures. As it was shown, the MOACO algorithm obtained 
the best results in terms of DM, NPS and SNS but worst 
results based on MID. 
As this paper considers the cost of energy consumption in the 
field of multi-skilled project scheduling, several extensions 
could be noted for future researches. One can extend the 

Fig. 2. Obtained Pareto fronts of MOACO and epsilon-
constraint method on problem number 15

Fig. 3. Obtained Pareto fronts of MOACO-ALL and MOACO-
ELITE on problem number 52

Table 6. Execution times and resource requirements of tasks

Skill a Skill b Skill c Skill d

Level 1 2 3 1 2 3 1 2 3 1 2 3

Task 1 4 3 1 4 2 1 4 3 2 4 3 1

Task 2 4 3 1 - - - - - - - - -

Task 3 4 3 2 3 2 1 4 3 2 - - -

Task 4 3 2 1 - - - 6 4 2 3 2 1
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current work to develop a sustainable model when there is 
a dynamic policy for energy tariffs. Another extension can 
be consideration of bonus and penalty strategies for low and 
high energy consumptions as well as extending the problem 
to  multiple project scheduling problems. 

Parameters
E Set of  prerequisite relations between activities

Si Set of required skills to execute activity i  

iklp Execution time of activity i using the l th level 
of skill k

iklr Number of workforces needed to perform 
activity i using l th level of skill k

t
klEC Energy consumption cost for the l th level of 

skill k at time t

t
klIC Implementation cost of applying l th level of 

skill k at time t

[ ],  i ies ls Earliest and latest start times of activity i

[ ],  i ief lf Earliest and latest finish times of activity i

ikN 1 , if activity i needs skill k ; 0  , otherwise

n Number of activities

Decision variables:

ikS Start time of applying skill k to perform 
activity i

iS Start time of activity i

ikC Completion time of applying skill k to 
perform activity i

iC Completion time of activity i

t
klR Availability of the l th level of skill k at time t

ikly 1 , if activity i is performed by the l th level 
of skill k; 

0  , otherwise
t
ikly 1 , if activity i is in progress by the l th level of 

skill k between [t-1, t]; 0  , otherwise
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