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1- Introduction
Fossil energy market is one of the most important energy 
sources, affecting the economy of many countries. Since 
the oil and gas prices are cardinal inputs in macro-economic 
models, volatility of these prices is always important for oil 
exporting and importing countries. Therefore, Brent oil and 
natural gas have a great impact on variables such as economic 
growth and inflation  [1,2], energy markets [3,4], and financial 
markets [5-7]. The monetary variables and international 
financial variables have been identified as the most effective 
factors to oil prices. Also, the direct relationship between time 
and uncertainties and sudden shocks in energy markets have 
been previously proven [8-10]. One of these price shocks in 
the energy markets is the growth of oil price to 148 dollars per 
barrel in July 2008 and then the drop in oil price to 40 dollars 
per barrel in late December. This kind of volatility has caused 
the volatility and price predictions of oil and gas to be of great 
importance for studying. However, in previous studies, it has 
been emphasized that it is  difficult to forecast the volatility 
and the price of oil [11]. There are two states concerning 
forecasting time series: a) according to tavailable data, time-
series models are attributed to them; b) independent from the 
time series that is called model-free. One of the problems 
in the first state is the changes in the data and the extreme 
volatility that increases the model’s error and, as a result, 
the forecasts would be far from reality. In fact, no particular 
model can ever be attributed to all data  [12]. According to 
existing literature, there are different models to  estimate  
and forecast  volatility in energy markets. As for traditional 
econometric models, Auto-Regressive Integrated Moving 
Average (ARIMA), Generalized Autoregressive Conditional 
Heteroskedasticity (GARCH) , Cointegrated Vector Auto 
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Regreurssive  (VAR) and Artificial Neural Networks (ANN) 
have popularly been used for the forecasting of Brent oil and 
natural gas volatility. For example, Xiang and Zhuang [13] 
used the ARIMA model to forecast the monthly prices of 
Brent oil and crude oil in a sample period from November 
2012 to April 2013. Farzanegan and Mrakwardt [14] utilized 
the Vector Auto Regressive (VAR) model to examine the 
dynamic relationship between the volatility of oil prices and 
macroeconomic variables in Iran such as inflation, industrial 
production growth rates, and net government expenditure. 
Kang et al. [15] modeled the volatility of Brent, Dubai and 
West Texas Intermediate  (WTI) based on the GARCH, 
IGARCH, CGARCH, and FIGARCH models. Sozen and 
Arcaklioglu [16] presented a new model of ANN to forecast 
consumption of oil products in Turkey. They designed three 
different models in which different variables are used, and, 
in the end, by using error measure, they chose an appropriate 
model to forecast the consumption of oil products in Turkey. 
different definitions and different tools were suggested to 
forecast the risks related to price shocks in energy markets. 
In recent years, Value at Risk has been a popular measure. 
in a way that nowadays the risk metrics are known as the 
equivalent of Value at Risk [17]. A seminal paper in this 
regard is that of Cabedo and Moya [18] that estimated Value 
at Risk of daily oil price over 1992–1998 using the Historical 
Simulation Approach. Fan et al.  [19] estimated Value-at-
Risk via GARCH-type models based on the Generalized 
Error Distribution (GED) for both the extreme downside 
and upside of the daily spot WTI and Brent crude oil prices 
from May 20, 1987 to August 1, 2006, Simultaneously. Su 
[20] estimated the Value at Risk of the seven stock indices 
in developed and emerging markets by using EGARCH 
models with generalized student’s distribution and Historical 
Simulation Approach. Owing to the fact that Value at Risk is 
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not a coherent risk measure and is deprived of sub-additivity 
property, it can be bounded by coherent risk measures like 
Conditional Value at Risk. For example, Youssef et al. [21] 
multiple-step-ahead forecasted Value at Risk and Conditional 
Value at Risk of crude oil and gasoline market via three 
long-memory-GARCH-models, including FIGARCH, 
HYGARCH, FIAPARCH, and Extreme Value Theory (EVT). 
Kim and Lee [22] estimated Value at Risk and Conditional 
Value at Risk of stock returns of Hyundai Motors, Randgold 
Resources Limited (Gold), and NASDAQ by using nonlinear 
regression models of 2000 observations from October 11, 
2005 to July 1, 2013. Mabrouk [23] estimated and multiple-
step-ahead forecasted the volatility and Conditional Value at 
Risk of seven stock indices (Dow Jones, Nasdaq 100, S&P 
500, DAX30, CAC40, FTSE100, and Nikkei 225) and three 
exchange rates vis-a-vis the US dollar (GBP- USD, YEN-
USD and Euro-USD) via three long memory GARCH-type 
models (FIGARCH, HYGARCH, and FIAPARCH). Taylor 
[24] estimated and multiple-step-ahead forecasted Value at 
Risk and Conditional Value at Risk of FTSE 100, NIKKEI 
225 and S&P 500 by using a semi-parametric approach based 
on the Asymmetric Laplace distribution at 95% and 99% 
confidence levels. Degiannakis and Potamia [25] estimated  
multiple-step-ahead forecasted Conditional Value at Risk 
of stock indices , commodities, and exchange rates by using 
GARCH-type models .
In recent studies, Exponential Smoothing (ES) models have 
been used to forecast demand [26, 27], heat [28], pig prices 
[29], and air transportation [30]. But the multiple-step-ahead 
forecasting of Value at Risk and Conditional Value at Risk has 
not been applied to any study by ES-type models. The Holt-
Winters Exponential Smoothing model (a kind of  ES models) 
modified the data at the level and trend with two parameters 
( 21,λλ ). This property has caused the aforementioned model 
to be robust and computationally stable. Thus, in this paper, 
volatility, Value at Risk, and Conditional Value at Risk 
of fossil energy markets are forecasted via Holt-Winters 
Exponential Smoothing model (HWES) and other ES-type 
models, and results were compared to GARCH-type models 
and Classic model.

2- Methodology

2- 1- Framework

In this study, we seek to obtain the best model for multiple-step-
ahead forecasting of volatility, Value at Risk, and Conditional 
Value at Risk of fossil energy markets from February 2010 to 
December 2016. To this end, we divide the historical Brent 
oil and natural gas data into a training dataset (from February 
2010 to August 2016) and a testing dataset (from August 2016 
to December 2016). In the training dataset, Value at Risk and 
Conditional Value at Risk are estimated by using the GARCH-
type models consisting of GARCH, Exponential GARCH 
(EGARCH), and Threshold GARCH (TGARCH) with two 
Estimation window lengths of 600 and 1000 samples. To 
identify a benchmark model (the model that has the lowest 
estimation of Value at Risk’s and Conditional Value at Risk’s 
errors), the unconditional coverage test, conditional coverage 
test, and Lopez loss function test are utilized. Then, in the 
testing dataset, the Value at Risk and Conditional Value at 
Risk are forecasted based on the benchmark model one, five, 
and twenty steps ahead via the ES-type models consisting 

of Simple ES (ESE), Holt-Winters ES (HWES), and Double 
Holt-Winters ES (DHWES). To assess the performance, the 
proposed models are compared with the classic model (the 
most common model for multiple-step-ahead forecasting 
of Value at Risk and Conditional Value at Risk in previous 
studies) via Blanco and Ihle loss function test and Lopez 
loss function test. In addition, the volatility is forecasted by 
using GARCH-type models and ES-type models one and five 
steps ahead. Then, the aforementioned models are ranked by 
the Root-Mean-Square Error (RMSE), RMSE-LOG, Mean 
Absolute Error (MAE), and MAE-LOG.

2- 2- Value at Risk
Value at Risk is a statistical measure of risk, and it estimates 
how much a set of investments might lose, given normal 
market conditions, in a time period such as a day [31]. Value 
at Risk can suggest that a certain amount of money be kept. 
Therefore, even if the maximum loss occurs, the investors 
will  be able to fulfil their obligations. That is why the Value 
at Risk is referred to as a Capital Adequacy Ratio (CAR) for 
financial institutions and capital markets. Value at Risk can 
be described as a measure to a percentile of profit distribution 
or loss distribution for any given time horizon and confidence 
level of α. Value at Risk follows the following equation [32]:

)()()( xqXVaR α
α −= ,                                                                                                                         (1)

where:
[ ]αα >≤= )(:inf)( xXPXxq .                                                                                (2) 

Value at Risk can also be formulated as follows [33]:

α≤≥− ++ |)|Pr( 11 t
c

tt VaRVV    or   
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c

tt VaRVV ,                                              (3)

where tV  and 1+tV  are the values of the portfolio at the present 
time and 1+tV is the value of the portfolio at the future time, 
respectively. However, Value at Risk is not a coherent risk 
measure because it is deprived of sub-additivity property. Sub-
additivity property suggests that if a portfolio is composed of 
several sub-portfolios, then the risk of the portfolio will not 
be greater than the sum of the risks of the sub-portfolios. Sub-
additivity property is shown as follows [34]:

)()()(,,, YPXPYXPYXVYXYX +≤+⇒≥∈+                (4)

Therefore, Conditional Value at Risk is used instead of Value 
at Risk in recent studies.

2- 3- Conditional Value at Risk
If X is a continuous random variable, then conditional Value 
at Risk is defined as follows:
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And, if the function is a discrete distribution, then Conditional 
Value at Risk is calculated as follows:
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Also, if the function is a continuous distribution, then 
Conditional Value at Risk is formulated as follows [35]:
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2- 4- Estimating and forecasting methodology

2- 4- 1- Autoregressive Conditional Heteroscedasticity 
(ARCH)
Autoregressive Conditional Heteroscedasticity was introduced 
by Engel  [36] as one of the nonlinear models for financial 
time series. ARCH models assume that the volatility is 
time-dependent. This property helps models to maintain the 
dynamics. ARCH model is shown as follows:

2 2

0 1 1t tσ α α ε −= + ,                                                                                                                            (8)

where t
2σ  is the variance of the forecast at time  t , 1

2
−tε  is 

the error (return residuals) at time 1−t , and 10 ,αα  denote 
constant coefficient and ARCH coefficient, respectively. 
Also, the ARCH model (q) can be formulated as follows:

2 2

0
1

q

t i t i
i

σ α α ε −
=

= +∑ .                                                                                                        (9)

2- 4- 2- Generalized Auto Regressive Conditional 
Heteroskedasticity (GARCH)
The GARCH was presented as a generalized ARCH model 
by Bollerslev [37]. The most common version of the model is 
GARCH (1, 1). This model can be written as follows:

2 2 2

1 1t t tω α βσ ε σ− −= + +                                                                                                       (10)

where t
2σ  is the variance of forecasts at time  t, 1

2
−tσ  is the 

variance of forecasts at time 1−t , and βαω ,,  are constant 
coefficient  , ARCH coefficient,  and GARCH coefficient,  
respectively. Also, the GARCH (p, q) model can be formulated 
as follows:    
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GARCH model is used to estimate the parameters of the 
maximum likelihood model:
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The above fraction has the standard normal distribution and 
the denominator of the fraction is calculated by using the 
maximum likelihood model:
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Each parameter that maximizes L can maximize ln L as well. 
Therefore, we maximize the logarithmic likelihood function  
as follows,
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2- 4- 3- Threshold Generalized Auto Regressive Conditional 
Heteroskedasticity (TGARCH)

TGARCH model was introduced by Zakoian  [38]. The 
TGARCH model can be  defined as follows:

2 2 2 2

11 1 1tt t t tIω α γ βσ ε ε σ−− − −= + + +                                                             (16) 
where 1−tI  follows the following equation:
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In this model, the good news, i.e. 0≥tε , and bad news, 
i.e. 0<tε , have different effects on the conditional variance . 
 The good news has the α  effect and the bad news has the 

γα +  effect. If 0>γ  then, we can conclude that there is a 
leverage effect. On the other hand, if 0≠γ  then, the effect 
of news is asymmetric. Also, the TGARCH (p, q) model is 
formulated as follows [39]:

2 2 2 2
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2- 4- 4- Exponential Generalized Auto Regressive 
Conditional Heteroskedasticity (EGARCH)
EGARCH model was introduced by Nelson [40]. The 
aforementioned model follows the following equation:
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This equation suggests that the leverage effect is exponential. 
Also, the non-negative predictions of the conditional variance 
in this equation are guaranteed. The original version of 
EGARCH model can be written as follows: 
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2- 4- 5- Simple Exponential Smoothing (SES) model
The Simple Exponential Smoothing model is based on a 
recursive formula. The forecast for each new observation is 
updated and the newer information gains more weight than 
older information [41]. The forecasted value of each year in 
this model is equal to the sum of the total forecasted amount 
of the previous year; In addition to difference between the 
actual amount of the same year, and the forecasted amount of 
the previous year [42].
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where 1
^

+tY  is the forecasted amount at time 1+t ,  tY  is the 
actual amount at time  t   andλ  is the smoothing coefficient.

2- 4- 6- Holt-Winters Exponential Smoothing model (HWES)
Whenever there is an increasing or decreasing trend, the 
results obtained from the Simple Exponential Smoothing 
model are lower or higher than the actual value, respectively. 
To solve this problem, a trend parameter is added to the 
Simple Exponential Smoothing model, which is referred to 
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as Holt-Winters Exponential Smoothing model  [43].
))(1(

^

111
^

tttt FYYY +−+⋅=+ λλ ,                    :Level equation (22)

( ) ( ) tttt FYYF ⋅−+−⋅= ++ 2121 1 λλ ,                   :Trend equation (23) 
^ ^

|t h t t tY Y hF+ = + ,                               : Forecasting equation (24)

where 1+tF  is smoothing index at time 1+t ; 1
^

+tY  is the 
forecasted value based on Simple Exponential Smoothing 
at time 1+t  ;  tY  is the actual amount at time  t  . The 
parameters  1λ  and 2λ  are the smoothing coefficients in the 
level and trend, respectively, and h  is the number of steps in 
forecasting.

2- 4- 7- Double Holt-Winters Exponential Smoothing model 
(DHWES)
DHWES model can be considered as a special case of Holt-
Winters Exponential Smoothing model where 1λ is equal to

2λ [44].

))(1(
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( ) ( ) tttt FYYF ⋅−+−⋅= ++ 211 1 λλ ,                  : Trend equation (26)
^ ^

|t h t t tY Y hF+ = + .                            : Forecasting equation (27)

Family of Exponential Smoothing models requires to 
determine the smoothing coefficient. If the smoothing 
coefficient is close to zero, then, it obtains  more weight to the 
recent events. By increasing the weight of recent events, the 
number of days decreases in the volatility forecasting. On the 
other hand, if  the smoothing coefficient is near to one, then 
it is less sensitive to the recent events, making forecasting 
more stable  (not necessarily more accurate). Therefore, the 
smoothing coefficient is between 0 and 1 and the optimal 
value is obtained from the following equation [45]:

2
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t t t

t
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= −∑                                                 (28)

2- 4- 8- Classic model
The classic model is the most common model for multiple-
step-ahead forecasting of Value at Risk and Conditional 
Value at Risk in previous studies. The following equations 
are used to multiple-step-ahead forecasting of Value at Risk 
and Conditional Value at Risk via classic model [ 46]:

TVaRVaR daydayT 1=                                                                                                                        (29)

TCVaRCVaR daydayT 1=                                                                                                    (30)

For example, in most banks the covered time period is one 
day; on the other hand, the Basle Committee requires ten 
days. This means that Value at Risk must be accumulated. If 
risks are not correlated over time, then, aggregation is simple, 
summarized by their sum. In this case, moving from a one-
day  to a ten-day Value at Risk is calculated as follows:

10 1 10day dayVaR VaR= ,                                                                                                     (31)

where VaR denotes Value at Risk. 

2- 5- Estimation and forecast evaluation

2- 5- 1- Estimation and forecast evaluation of volatility
To evaluate the forecasting performance of volatility models, 
four loss functions were used [47]:
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where t

2^
δ  denotes the volatility forecast obtained using a 

GARCH-type model or  ES-type models at time t  ; t

2

δ  is the 
actual volatility, and N is the number of time horizon.

2- 5- 2- Evaluation of VaR and CvaR  estimation    

a) Unconditional coverage test
This test was presented by Kupiec [48] which is based on 
the rate of failure. If the amount of the actual loss is larger 
than the VaR, then it is  known as a failure. If the probability 
of each failure is constant, then, the total number of failures 
follows a binomial distribution ),( aB ν  in which ν  and α   
are the number of samples and coverage level , respectively. 
The statistical hypothesis testing is as follows:
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forecasting. The statistical likelihood of this test is as follows:
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where uccLR  has the chi-square distribution with one degree 
of freedom. If the ratio of the failure probability is higher than 
this, the null hypothesis is rejected, and it cannot be accepted 
that the model forecasted the VaR correctly; hence the model 
is invalid. Otherwise, the accuracy of the forecasted VaR is 
confirmed.

b) Conditional coverage test
Christoffersen [49] presented conditional coverage test based 
on first-order Markov chain. To implement the conditional 
coverage test, a transition matrix is formed as follows:

00 01
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π π
π π
 =   ∏  ,                                                                                                                                  (38)
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happens after i . Finally, the test statistic is calculated by the 
following equation:

0100 10 11
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01 01 11 111 12

1
cc
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The ccLR statistic has a chi-square distribution with one degree 
of freedom, and when the ratio probability of failure is higher 
than this, the null hypothesis is rejected. Otherwise, it will 
obtain a passing mark. 

c) Lopez  loss function test
The lopez loss function test assumes each loss higher than 
VaR as a failure and assigns one to that number. Otherwise, 
this function adopts a zero. The lopez loss function is defined 
as follows [50]:

1
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d) Blanco and Ihle loss function test
This loss function is similar to Lopez loss function. If the loss 
is higher than the VaR, then it is assumed as a failure and the 
function is as follows:

t

tt
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VaRL )( −  , i.e.

the Blanco and Ihle loss function test are defined as follows 
[51]:
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The final score of Lopez loss function test and Blanco and 
Ihle loss function test are calculated by equation (43), where 

tC  is equation (41) or equation (42), P  is confidence level, 
and n  is the number of observations,

2
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2 n

t
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QPS ( C P ) .
n =

= −∑                                                                                            (43)

3- Results and discussion

3- 1- Results
In this paper, as mentioned earlier, the data used is the 
daily Brent oil and natural gas logarithmic returns from 
February 2010 to December 2016. They follow the equation  

)(
1−

=
t

t
t P

PLogR ,

where tR is return at time t ; tP  and 1−tP  are prices at 
time t and 1−t , respectively. The diagrams of prices and 
logarithmic returns of Brent oil and natural gas are  shown in 
Figs. 1 and 2, respectively. 
According to Fig. 2, it can be noticed that the daily Brent oil 
and natural gas logarithmic returns have an extreme volatility 
which can be regarded as outlier data. Ignoring the outlier 
data reduces the accuracy of forecasting models. Also, a 
summary of statistics of the variables is presented  in Table 1.

Fig. 1. Daily Brent oil and natural gas prices (from February 
2010 to December 2016)

Fig. 2. Daily Brent oil and natural gas logarithmic returns 
(from February 2010 to December 2016)

Table 1. Statistics of Brent oil and natural oil.

Brent oil Natural gas

Mean -0.000295 0.000431

Maximum 0.090605 0.114388

Minimum -0.099605 -0.106044

Std. Dev. 0.018727 0.025353

Skewness -0.061051 0.080059

Kurtosis 5.763912 4.456162



E. Mohammadian Amiri, S. B. Ebrahimi, AUT J. Model. Simul. Eng., 50(1)(2018)83-94, DOI: 10.22060/miscj.2018.13473.5073

88

Table 1 shows that the daily logarithmic returns of Brent 
oil and natural gas have an asymmetric distribution with 
positive and negative skewness coefficient, respectively. 
On the other hand, kurtosis coefficient of both indices is 
higher than three whereas the kurtosis coefficients of the 
normal distribution is approximately equal to three. This 
implies that both indices have kurtosis coefficients that are 
bigger than kurtosis coefficients of the normal distribution. 
Finally, the high Jarque-Bera coefficients in Figs. 3 and  4 
show that aforementioned indices are far apart from a normal 
distribution   (the Jarque-Bera coefficient of the normal 
distribution is equal to zero). Thus, based on  the skewness, 
kurtosis, and Jarque-Bera coefficients, it can be concluded 
that the data of Brent oil and natural gas follows student’s t 
distribution. For this reason, the estimating and multiple-step-
ahead forecasting are assumed with student’s t distribution.

Fig. 3. Normality test results of Brent oil

Fig. 4. Normality test results of natural gas

Table 2. Results of unit root tests.

Variable ADF PP

Level (Constant and trend)

Brent oil -42.53023(0.0) -42.49038(0.0)

Natural gas -44.13243(0.0) -44.79599(0.0)

(Constant, no trend)

Brent oil -42.47023(0.0) -42.43689(0.0)

Natural gas -44.13987(0.0) -44.79344(0.0)

Figures in brackets are probability values.

Table  2 presents the results of unit root tests based on 
Augmented Dickey–Fuller  (ADF) test and Phillips–Perron 
(PP) test. In ADF and PP tests, the null hypothesis implies 
the time-series has a unit root against the alternative of 
stationarity. Results of unit root tests show that the Brent oil 
and natural gas series are stationary.

3- 2- Estimation and forecasting results of volatility models
Table 3 presents the estimation parameters of the volatility 
models for Brent oil natural gas returns. In accordance 
with prior discussions, it is  necessary to measure constant 
coefficient  (ω ) , ARCH coefficient  (α ), GARCH coefficient  
( β ), level coefficient ( 1λ ), and trend coefficient  ( 2λ ) for 
the estimating and the multiple-step-ahead forecasting of 
volatility. They are as follows:

Table 3. Estimation parameters of models for Brent oil and natural gas returns.

Parameter GARCH(1,1) EGARCH(1,1) TGARCH(1,1) SES DHWES HWES

ω 0.000072*                  
0.000036**

0.117696*
0.011376**

0.000049*
0.000386**

α 0.777902*
0.094581**

0.080747*
0.299495**

0.071853*
0.119911**

β 0.112460*
0.400846**

0.984699*
0.310087**

0.817557*
0.373282**

γ -0.084558*
0.003139**

0.074499*
-0.048233**

1λ
0.365000*
0.096000**

0.743000*
0.069400**

0.215000*
0.59500**

2λ
0.743000*
0.069400**

0.133000*
0.038000**

Estimates marked with an asterisk (⁎) and (⁎⁎) are those of Brent oil and natural gas returns, respectively.
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Table 4. Evaluation of one-step-ahead volatility forecast of Brent oil and natural gas return: GARCH as a benchmark

Parameter

RMSE
(Rank)

RMSE_LOG
(Rank)

MAE
(Rank)

MAE_LOG
(Rank)

Oil
(Rank)

Gas
(Rank)

Oil
(Rank)

Gas
(Rank)

Oil
(Rank)

Gas
(Rank)

Oil
(Rank)

Gas
(Rank)

GARCH(1,1) Benchmark

EGARCH(1,1) 0.00000354
(5)

0.00000049
(2)

0.00981328
(5)

0.00074601
(2)

0.00000015
(5)

0.00000002
(2)

0.00043886
(5)

0.00003336
(2)

TGARCH(1,1)
0.00000148

(3) 0.00000027
(1)

0.00386991
(3) 0.00042217

(1)

0.00000006
(3) 0.00000001

(1)

0.00017306
(3) 0.00001888

(1)

SES
0.00000182 

(4) 0.00000329
(5)

0.00432911
(4)

0.00479113
(5)

0.00000008
(4)

0.00000015
(5)

0.00019360
(4)

0.00021427
(5)

DHWES 0.00000084
(2)

0.00000242
(4)

0.00204770 
(2)

0.00357013
(4)

0.00000003
(2)

0.00000011
(4)

0.00009157
(2)

0.00015966
(4)

HWES 0.00000081 
(1)

0.00000102
(3)

0.00198407 
(1)

0.00159105
(3)

0.00000002 
(1)

0.00000005
(3)

0.00008873
(1)

0.00007115
(3)

Table 5. Evaluation for the five-step-ahead volatility forecast of Brent oil and natural gas return: GARCH as a benchmark

Parameter

RMSE
(Rank)

RMSE_LOG
(Rank)

MAE
(Rank)

MAE_LOG
(Rank)

Oil
(Rank)

Gas
(Rank)

Oil
(Rank)

Gas
(Rank)

Oil
(Rank)

Gas
(Rank)

Oil
(Rank)

Gas
(Rank)

GARCH(1,1) Benchmark

EGARCH(1,1) 0.00005175 
(4)

0.00027530
(5)

0.02191496 
(4)

0.19036017
(5)

0.00000517 
(4)

0.00002753
(5)

0.00219150 
(4)

0.01903602
(5)

TGARCH(1,1) 0.00007396 
(5)

0.00014068
(4)

0.03302477 
(5)

0.05706500
(4)

0.00000740 
(5)

0.00001407
(4)

0.00330248 
(5)

0.00570650
(4)

SES 0.00001511 
(2)

0.00000007
(2)

0.00558826 
(2)

0.00002133
(2)

0.00000151 
(2)

0.00000001
(2)

0.00055883 
(2)

0.00000213
(2)

DHWES 0.00002306 
(3)

0.00000025 
(3)

0.00840692 
(3)

0.00007734 
(3)

0.00000231 
(3)

0.00000003 
(3)

0.00084069 
(3)

0.00000773 
(3)

HWES 0.00001488 
(1)

0.00000002 
(1)

0.00550421 
(1)

0.00000632 
(1)

0.00000149 
(1)

0.00000000
(1)

0.00055042 
(1)

0.00000063 
(1)

Tables 4 and  5 show the evaluation results of one- and  
five-step-ahead volatility forecast of Brent oil and natural 
gas return. In the one-step-ahead forecasting, HWES 
and TGARCH models have an acceptable forecasting 
performance for volatility estimation. Also, in five-step-
ahead forecasting, HWES and SES models have an accurate 
forecasting. Overally, the HWES model has the least 
prediction volatility error compared to other models across 
all forecasting horizons and subsamples used.

3- 3- Estimating and forecasting results of VaR and CVaR 
To forecast Value at Risk and Conditional Value at Risk, 
GARCH models were combined with HWES model (the 
model that has the least forecasting volatility error compared 
to other models). Therefore, the tY

^
parameter in the equation 

of HWES model is estimated by the most accurate estimation 
between GARCH models (benchmark model). To identify 
the benchmark model (on which the Value at Risk and 
Conditional Value at Risk forecasted via HWES model are 
based), the unconditional coverage test, conditional coverage 
test, and Lopez loss function test are utilized. The results of 
the aforementioned tests are as follows:
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Table 6. Backtesting results of Value at Risk (VaR) estimation: window length of 600 samples.

Parameter

Unconditional
Coverage test

Conditional
Coverage test

Lopez  loss func-
tion test

Oil
(P_value)

Gas
(P_value)

Oil
(P_value)

Gas
(P_value)

Oil
(Rank)

Gas
(Rank)

GARCH(1,1) 4.3433    
(0.0372) accept 5.4759    

(0.0193)   accept 0.6237    
(0.4297) accept 0.6956    

(0.4043)    accept 0.0170 
(3)

0.0180
(1) 

EGARCH(1,1) 1.0138    
(0.3140) accept 5.5671

(0.4337) accept 0.3759   
(0.5398) accept 3.0353    

(0.0815) accept 0.0132
(1)

0.0208
(2)

TGARCH(1,1) 3.3239    
(0.0683) accept 5.4759    

(0.0193) accept 0.5558    
(0.4560) accept 0.6956    

(0.4043) accept 0.0161
(2)

0.0180
(1)

Table 7. Backtesting results of Value at Risk (VaR) estimation: estimation window length of 1000 samples.

Parameter

Unconditional
Coverage test

Conditional
Coverage test

Lopez  loss func-
tion test

Oil
(P_value)

Gas
(P_value)

Oil
(P_value)

Gas
(P_value)

Oil
(Rank)

Gas
(Rank)

GARCH(1,1) 4.9273    
(0.0264) accept 11.5996    

(0.0007)   reject 0.5249    
(0.4688) accept 0.9032    

(0.3419)    accept 0.0197 
(2)

0.0258
(1) 

EGARCH(1,1) 3.0157    
(0.0416) accept 11.5996    

(0.0007)   reject 0.3759   
(0.5398) accept 0.9032    

(0.3419)    accept 0.0137 
(1)

0.0208
(1)

TGARCH(1,1) 4.9273    
(0.0264) accept 7.9898    

(0.0047) reject 0.5249    
(0.4688) accept 0.7010    

(0.4024) accept 0.0197 
(2)

0.0208 
(1)

Table 8. Backtesting results of Conditional Value at Risk (CVaR) estimation: window length of 600 samples.

Parameter

Unconditional
Coverage test

Conditional
Coverage test

Lopez  loss func-
tion test

Oil
(P_value)

Gas
(P_value)

Oil
(P_value)

Gas
(P_value)

Oil
(Rank)

Gas
(Rank)

GARCH(1,1) 0.1845    
(0.6675) accept 1.6512    

(0.1988) accept 0.2756    
(0.5996) accept 0.4319

(0.5111) accept 0.0113
(3)

0.0142
(2)

EGARCH(1,1) 0.6940    
(0.4048) accept 1.7542

(0.1736) accept 0.1220    
(0.7269) accept 0.4327    

(0.5107) accept 0.0076
(1)

0.0142
(2)

TGARCH(1,1) 0.2510    
(0.6163) accept 0.5212    

(0.4703) accept 0.1546    
(0.6942) accept 0.3238    

(0.5694) accept 0.0085
(2)

0.0123
(1)

Table 9. Backtesting results of estimation Conditional Value at Risk (CVaR) estimation: window length of 1000 samples.

Parameter

Unconditional
Coverage test

Conditional
Coverage test

Lopez  loss func-
tion test

Oil
(P_value)

Gas
(P_value)

Oil
(P_value)

Gas
(P_value)

Oil
(Rank)

Gas
(Rank)

GARCH(1,1) 0.2896    
(0.5905) accept 0.8064    

(0.3692) accept 0.1972    
(0.6570) accept 0.2500    

(0.6171) accept 0.0122 
(3)

0.0137 
(3)

EGARCH(1,1) 0.7710    
(0.1344) accept 2.4950    

(0.1142) accept 0.0769    
(0.7815) accept 0.3746    

(0.5405) accept 0.0076
(2)

0.0167 
(2)

TGARCH(1,1) 0.0265    
(0.8706) accept 1.5490    

(0.2133) accept 0.1508    
(0.6978) accept 0.3091    

(0.5782) accept 0.0106 
(1)

0.0152 
(1)
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Based on the previous discussions presented in this study,  the
uccLR and ccLR statistics have a chi-square distribution with 

one degree of freedom (6.63). When the probability ratio of 
failure is higher than those, the null hypothesis is rejected; 
otherwise, it will obtain  a passing mark in the unconditional 
coverage test and conditional coverage test, respectively. 
The estimation models of Value at Risk and Conditional 
Value at Risk have been approved in all tables except Table 
8 for estimation Value at Risk of Brent oil natural gas with 

  
Fig. 5. Conditional Value at Risk of Brent oil returns with an estimation window length of 600 samples

Fig. 6. Conditional Value at Risk of natural gas returns with an estimation window length of 600 samples

Fig. 7. Conditional Value at Risk of Brent oil returns with an estimation window length of 1000 samples

Fig. 8. Conditional Value at Risk of natural gas returns with an estimation window length of 1000 samples

an estimation window length of 600 samples. According 
to Lopez loss function test, the EGARCH and TGARCH 
models are the best models to  estimate the Value at Risk and 
Conditional Value at Risk in both two estimation window 
lengths of 600 and 1000 samples for Brent oil and natural 
gas markets, respectively. Therefore, the EGARCH and 
TGARCH models are the benchmark models for estimation 
of Value at Risk and Conditional Value at Risk.
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According to all the figures, it can be stated that the number 
of failures is almost less than or equal to the limit allowed 
for estimation of Conditional Value at Risk with estimation 
window length of 600 and 1000 samples. In addition, there is 
no evidence for a cluster of failures occurrence.
After determining the benchmark models, the Value at Risk 
and the Conditional Value at Risk are forecasted via HWES 
model. To evaluate the forecasting performance of the HWES 
model, this model was compared to the classic model (the 
most common model for the multiple-step-ahead forecasting 
of Value at Risk and Conditional Value at Risk in previous 
studies) via Lopez loss function test and Blanco and Ihle loss 
function test. The results of the aforementioned tests are as 
given in Table 10.

4- Conclusions 
There are several models for forecasting volatility, Value at 
Risk, and Conditional Value at Risk. This paper  analyzed 
the forecasting performance of two classes of volatility 
models, namely GARCH-type models and ES-type models 
and two classes of Value at Risk and Conditional Value at 
Risk models, namely ES-type models and Classic model via 
seven different loss functions. The Holt-Winters Exponential 
Smoothing model modified the data at the level and trend with 
two parameters and it is a well-known adaptive model used to 
model time series characterized by trend [52]. The multiple-
step-ahead forecasting of Value at Risk and the Conditional 

Value at Risk by ES-type models have not been used in any 
study erstwhile. According to Tables 4 and 5  HWES model 
(a kind of  ES models) has the least forecasting volatility 
error compared to other models. This model is proposed to 
forecast the volatility of fossil energy markets. So, when 
HWES model is adopted, it leads to investigating of the level 
and trend, simultaneously, and filters the sudden changes by 
smoothing coefficients. Consequently, it provides a robust 
and computationally stable forecasting. Also, according to 
Lopez loss function test scores and  Blanco and Ihle loss 
function test scores in Tables 10 and  11, it can be concluded 
that the HWES model has a better forecasting performance 
than the classic model in one-, five-, and twenty-step-ahead 
forecasting of Value at Risk  and Conditional Value at Risk. 
Overally, the Holt-Winters Exponential Smoothing model 
provides a robust forecasting for volatility , Value at Risk, and 
Conditional Value at Risk, that fits the continuous Brent oil 
and natural gas price movements and provides an efficient 
risk quantification across all forecasting horizons.

Table 10. Backtesting results of one-, five- and twenty-step-ahead forecasting Value at Risk (VaR)

Param-
eter

One-step-ahead Five-step-ahead Twenty-step-ahead

Lopez  loss function 
test

Blanco & Ihle 
loss function test

Lopez  loss 
function test

Blanco & Ihle 
loss function 

test
Lopez loss func-

tion test

Blanco & Ihle 
loss function 

test
Oil

(Rank)
Gas

(Rank)
Oil

(Rank)
Gas

(Rank)
Oil

(Rank)
Gas

(Rank)
Oil

(Rank)
Gas

(Rank)
Oil

(Rank)
Gas

(Rank)
Oil

(Rank)
Gas

(Rank)

Classic 
model

0.0831
(2) 0.0138(2) 0.0073

(1)
0.0516

(2)
0.0900

(2)
0.0900

(2)
0.0900

(2)
0.0900

(2)
0.0900

(1)
0.0900

(1)
0.0900

(2)
0.0900

(1)

HWES 
model

0.0312
(1)

0.0035
(1)

0.0304
(2)

0.0313
(1)

0.0814
(1)

0.0043
(1)

0.0425
(1)

0.0899
(1)

0.2100
(2)

0.0900 
(1)

0.0269
(1)

0.0900
(1)

Table 11. Backtesting results of one-, five- and twenty-step-ahead forecasting Conditional Value at Risk (CVaR)

Param-
eter

One-step-ahead Five-step-ahead Twenty-step-ahead

Lopez  loss func-
tion test

Blanco & Ihle 
loss function 

test

Lopez  loss 
function test

Blanco & Ihle 
loss function test Lopez loss function 

test

Blanco & Ihle 
loss function 

test
Oil

(Rank)
Gas

(Rank)
Oil

(Rank)
Gas

(Rank)
Oil

(Rank)
Gas

(Rank)
Oil

(Rank)
Gas

(Rank)
Oil

(Rank)
Gas

(Rank)
Oil

(Rank)
Gas

(Rank)

Classic 
model

0.1004
(2)

0.0138
(2)

0.0223
(2)

0.0497
(1)

0.0900
(2)

0.0900
(2)

0.0900
(2)

0.0900
(1)

0.0900
(1)

0.0900
(1)

0.0900
(2)

0.0900
(1)

HWES 
model

0.0485
(1)

0.0035
(1)

0.0199
(1)

0.0715
(2)

0.0814
(1)

0.0043
(1)

0.0870
(1)

0.0900
(1) 0.2100(2) 0.0900 

(1)
0.0297

(1)
0.0900

(1)
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