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1- Introduction
In theory, a Parallel Manipulator (PM) generally allows for 
a better dynamic performance than a serial manipulator [1]. 
Furthermore, PMs offer higher accuracy, speed, acceleration, 
and stiffness. However, PMs commonly suffer from a limited 
workspace compared to their serial counterparts [2].
Over the past decades, many novel designs have been 
proposed to overcome workspace limitations of the PMs, 
including: axis-symmetric PMs [3-5] which employ 2-7 
actuated arms rotating around a common axis of rotation 
and robots with actuated carts on parallel guide-ways, 
e.g. Tripteron, Quadrepteron and Pentaptereon from the 
Université Laval Canada [6, 7]. Despite all disadvantages that 
limit the use of PMs, such as  smaller workspace, they offer 
some advantages over serial manipulators like  high rigidity, 
high speed, acceleration and accuracy [2]. Nowadays, PMs 
due to their high positional accuracy and high speed are used 
in several industries, such as CNS machining tools which  are 
referred to as Parallel Kinematic Machine [8]. In theory, a PM 
allows for a better dynamic performance than a serial one [1]. 
The 3-DOF translational PM under study, called Tripteron, 
was first built at the Laval University [9]. It belongs to 
a class of PMs known as Multipteron [10] which is arisen 
from the type synthesis performed for PM exhibiting three 
translational motion patterns. The kinematic analysis of the 
Multipteron family was discussed in [10] and the inverse and 
forward kinematic of Tripteron and its singularity analysis 
were investigated in [11]. In [12], experimental results of the 
controlling of a 3-DOF DPM via an HRI interface was given.
The objective of the inverse dynamics’ model of a mechanism 
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is to calculate the required actuation force/torque in order for 
achieving a specified trajectory, typically, as a function of 
the position, velocity, and acceleration of the joint variables 
and the coordinates of the end-effector of the manipulator. 
Dynamics’ model is essential for simulation, control and 
optimal design of the manipulators. However, dynamics’ 
formulation of PMs is often complicated due to their multiple 
closed-loop chains [2]. There are several approaches to 
formulate the dynamical equations of PMs. Euler-Lagrange 
[13, 14], virtual work [15-17] and Newton-Euler methods 
[18-20] are among the three popular methods for dynamical 
analysis of PMs. The Newton-Euler method has been shown 
to be effective for performing the inverse dynamics of PMs 
and unlike Lagrangian formulation, it does not requires 
evaluation of derivatives of  any function. Virtual work and 
Euler-Lagrange methods only depict relationship between 
external wrenches and actuation forces without providing 
reaction parameters in the joints. Thus, these methods are 
advantageous over the Newton-Euler method when internal 
forces are not required. However, Newton-Euler method 
obtains all the internal wrenches which are important and 
indispensable for optimal design and understanding the 
behavior of dynamical reaction of the manipulator. Several 
studies  have been conducted on the dynamical analysis 
of PMs. In [21], the inverse dynamics of PMs, including 
redundant PMs is presented. In [22, 23], the Newton-Euler 
method is used for modeling the Gough-Stewart platform. 
In [24], an approach based on the manipulator’s generalized 
momentum was studied and, then, applied to this manipulator. 
In [25], Newton method is employed to develop the dynamical 
model of the metamorphic parallel mechanism [26]. 
Dynamical analysis of over-constraint manipulators is 
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challenging due to redundant constraints imposed by each 
limb of the manipulator and has inspired several studies 
[25, 27, 28]. From a mechanical standpoint, over-constraint 
mechanisms are defined as systems which have more DOF 
of mobility than they expected to have from Chebychev–
Grübler–Kutzbach (CGK) criterion, a criterion which cannot 
take into account redundant constraints in its formulation. 
When the equilibrium equations are written for an over-
constraint manipulator, the number of equations will be less 
than the number of the unknowns, mathematically speaking, 
an underdetermined system of equations, and, consequently, 
the dynamical equations of the manipulators will be 
unsolvable. 
The main contribution of this paper is the developing of 
an explicit compact formulation for the dynamical model 
of an over-constraint 3-DOF translational PM via Newton-
Euler approach by changing the kinematic structure of the 
manipulator to an equivalent constrained manipulator without 
changing the motion pattern of the system. In addition, the 
forces and torques in all passive joints are obtained, and 
this can be regarded as the advantage of the Newton-Euler 
formulation over other methods mentioned above. 
The remainder of this paper is organized as follows. In section 
2, a description of the manipulator is presented. Section 3 
provides the vector representation of the inverse kinematic 
problem of the 3-DOF translational PM considering the 
position, velocity, and acceleration of the end-effector. In 
section 4, the inverse dynamics’ equations of the manipulator 
are formulated based on the Newton-Euler approach and a 
closed form for its dynamics is presented. Section 5 presents 
the simulation performed on SimMechanics in order to 
evaluate accuracy of the presented model. Furthermore, 
the results obtained from the analytical model are put into 
contrast by those obtained from SimMechanics model and 
experimental results. Finally, the paper concludes with some 
discussions and hints for ongoing works. 	  

2- 3-DOF Translational Parallel Manipulator

Fig. 1. The 3-DOF decoupled PM constructed in the Human 
and Robot Interaction Laboratory, University of Tehran.

As illustrated in Fig. 1, the 3-DOF translational PM called 
Tripteron is composed of three identical kinematic chains 
as PRRR which can move independently. The notation 

PRRR describes the joints in the kinematic chains from 
the actuator to the end-effector in which P and R stand for 
prismatic and revolute joints, respectively. Moreover, the 
actuated joint, which is the prismatic joint, in this case, is 
underlined. From the types synthesis performed on this PM, 
the direction of the axes of the revolute joints in each chain is 
parallel to the direction of its corresponding prismatic joint. 
In order to preserve the orthogonality of the mechanisms, 
all the directions of prismatic actuators form an orthogonal 
coordinate frame. 
The present manipulator is an isotropic and fully decoupled 
manipulator. Thus, each of the linear actuators controls one 
of the translational DOFs. The latter issue leads to a fully 
decoupled motion which results in an identical motion for 
its inverse Jacobian matrix. Consequently, as revealed in 
reference [11], it can be inferred that the manipulator has a 
singularity-free workspace which is a definite asset in control 
and practice. 
Furthermore, Tripteron is an over-constrained manipulator. 
By using the Chebychev–Grübler–Kutzbach formula [29] for 
the mobility of this mechanism, we obtain:
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Fig. 2. Geometric interpretation of Remark 1.
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where M is the mobility, s  denotes the mobility of an 
unconstrained body (six for spatial kinematic chains), n  
represents the number of bodies in the mechanism, j  is 
the number of joints, and, finally, iλ  indicates the number 
of degrees of freedom allowed by the ith joint. Since there 
are eleven bodies and twelve 1-DOF joints (3 P-joints and 
9 R-joints) in the Tripteron, the above formula results  in 

0M = . Thus, the Tripteron is indeed an over-constrained 
manipulator. 

3- Kinematic Analysis
Prior to solving the kinematic equations, the following remark 
is stated, which will be needed further on:

Remark 1. As shown in Fig. 2, A , B  and C  are the 
vertices of an arbitrary triangle and AHC∆  is a right triangle 
( ˆ 90AHC = ) with 1h   and 2h   edges. Then, ˆBAH  angle can be 
calculated as follows.
By writing the law of cosines for ABC∆ , 1̂θ   and 2̂θ   can be 
expressed as: 

2 2 2
1

1̂ cos .
2

b c a
bc

θ −  + −
=   

 
 				            (2)
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Fig. 3. Vector notation for the kinematic modeling of the 
Tripteron.

1 1
2

2

ˆ tan .h
h

θ −  
=  

 
 					              (3)

Thus, ˆBAH  angle can be obtained from the following 
equation:

2 2 2
1 1 1

1 2
2

ˆ ˆ ˆ cos tan .
2

b c a hBAH
bc h

θ θ − −   + −
= + = +       

 	          (4)

3- 1- Position analysis
As shown in Fig. 3, the origin of the world coordinate system 
is connected to each prismatic actuator guide-way’s base 
point by the vector b. The position of the center of each 
prismatic actuator from the guide-way’s base line is denoted 
by p. Furthermore, u and l are vectors along and equal to 
upper and lower link of each arm, respectively, and c is the 
vector connecting the revolute joint attached to the end-
effector to its reference point. In what follows, the position, 
velocity, and acceleration of different parts of Tripteron are 
derived in terms of the position, velocity, and acceleration of 
the end-effector.

3- 2- Inverse displacement analysis
The vector representation of the manipulator under study 
is depicted in Fig. 3. Suppose that the position of the end-
effector is denoted by [ ] TX Y Z=r . Here, a vector loop 
closure equation can be written for the limb corresponding to 
the x-prismatic joint as follows:  

T[ ] .x x x x x X Y Z+ + + + =b p u l c  			         (5)

According to the fact that xp  is along the x-direction, xu , xl  
and xc  are perpendicular to the x-direction. Taking the dot 
products of both sides of Eq.(5) with î , the position of the 
x-prismatic joint can be expressed as:

ˆ ˆ( . ) .x xX i i= −p b  				            (6)

Inserting Eq.(6) into Eq.(5)  leads to:

,x x xλ = +u l  					              (7)

where T ˆ ˆ[0 ] ( . ) .x x x xY Z i iλ = − − +b c b can be obtained as:
T ˆ ˆ[0 ] ( . ) .x x x xY Z i iλ = − − +b c b  		          (8)

Refer to Remark 1. By substituting c  with  xu , a  with xl , 
b  with xλ , 1h  with ˆ.xZ k−b , and 2h  with  ( ) ˆ.x xY j− +b c , the 
angle between xu  and the y-axis can be written as follows:

( )

2 2 2
1 1

ˆ.
cos tan ˆ2 .

.x x x x
x

x x x x

Z k
Y j

λ
α

λ
− −+ − −

= +
− +

   
       

u l b
u b c

 	          (9)

Thus, having computed xα , one can obtain xu  as:

ˆˆ(cos sin ),x x x xu j kα α= +u  				          (10)

and the vector xl  can be obtained by inserting Eq.(10) into 
Eq.(7):

ˆˆ(cos sin )x x x x xu j kλ α α= − +l 				         (11)

Similarly, considering the fact that yp  and zp  are respectively 
along the y- and z- directions, by taking the dot products of 
both sides of Eq.(5) with ĵ  and k̂ , the position of the y- and 
z-prismatic joints can be expressed as:

ˆ ˆ( . )y yY j j= −p b  				          (12)

ˆ ˆ( . )z zZ k k= −p b  				          (13)

By Inserting  Eqs.(12)  and (13) into Eq.(5) and considering 
Remark 1, one can obtain yu  and zu  as:

ˆˆ( cos sin ),y y y yu i kα α= − +u  			         (14)

ˆ ˆ( cos sin ),z z z zu j iα α= − −u  			         (15)

where 
yα  and zα  are:

2 2 2
1 1

ˆu .
cos tan ˆ2u .

,y y y y
y

y y y

l Z k

i X

λ
α

λ
− −

+ − −
= +

−

   
        

b

b
		       (16)

2 2 2
1 1

ˆu .
cos tan ˆ2u .

.z z z z
z

z z z

l i X
j Y

λ
α

λ
− −+ − −

= +
−

   
       

b
b

		        (17)

The variables yλ  and zλ   are defined as:
T ˆ ˆ[ 0 ] ( . ) ,y y yX Z j jλ = − +b b  			         (18)

T ˆ ˆ[ 0] ( . ) .z z zX Y k kλ = − +b b  		      	      (19)

Furthermore, by inserting  Eqs.(14) and (15) into Eq.(17), one 
can obtain:

ˆˆ(cos sin ),y y y y yu j kλ α α= − +l  			         (20)

ˆˆ(cos sin ).z z z z zu j kλ α α= − +l  			         (21)

3- 3- Invese velocity analysis
Let [ ]TEE X Y Z=v     be the vector of the output velocities of 
the end-effector. Taking the derivative of Eq.(5)  with respect 
to time and knowing that ˆ( )x ux xiω= ×u u  and ˆ( )x lx xiω= ×l l  
yields:

T ˆ ˆ ˆ[ ] ( ) ( ),x ux x lx xX Y Z p i i iω ω= + × + ×  

 u l  		        (22)

where uxω  and lxω  are the magnitudes of the angular velocity 
of the x-upper link and the x-lower link, respectively. Dot 
product of both sides of Eq.(22)  with î , xl  and xu , will 
respectively lead to the following three equations:

,xp X= 



 						          (23)
T[0 ] . ˆ,ˆ( ).

x
ux

x x

Y Z i
i

ω =
×

  l
u l

 				         (24)

T[0 ] . ˆ.ˆ( ).
x

lx
x x

Y Z i
i

ω =
×

  u
l u

 				          (25)
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Since Eq.(22)  is also valid for the y and z axes, dot product of 
both sides of Eq.(22) with ĵ  and k̂  yields: 

yp Y= 
 						           (26)

zp Z= 
 						          (27)

Also, dot product of both sides of Eq.(22) with yl  and zl  
gives:

T[ 0 ] . ˆ,ˆ( ).
y

uy
y y

X Z
j

j
ω =

×

  l
u l

				          (28)

T[ 0] . ˆ.ˆ( ).
z

uz
z z

X Y k
k

ω =
×

  l
u l

 			    	       (29)

Finally, by taking the dot product of both sides of Eq.(22) 
with yu and zu , the following relations can be obtained:

T[ 0 ] . ˆ,ˆ( ).
y

ly
y y

X Z
j

j
ω =

×

  u
l u

	  			         (30)

T[ 0] . ˆ.ˆ( ).
z

lz
z z

X Y k
k

ω =
×

  u
l u

	  			        (31)

3- 4- Inverse acceleration analysis
For the dynamical modeling of the present manipulator, 
one should determine the acceleration vectors in the 
center of masses of the links. Assume that the acceleration 
of the end-effector is [ ]TEE X Y Z=a    . Taking the time 
derivative of Eq.(22) with respect to time and knowing that 

2ˆ( )ux x ux xiω ω= × −u u u  and 2ˆ( )x lx x lx xiω ω= × −l l l

  yield:

( ) ( )T 2 2ˆ ˆ ˆ[ ] ( ) ( ) .x ux x ux x lx x lx xX Y Z p i i iω ω ω ω= + × − + × −  

  u u l l  	   (32)

Taking the inner product of both sides of Eq.(32) with î  gives 
the linear acceleration of the prismatic actuators as follows: 

.xp X= 
 					     (33)

The inner product of Eq.(32) with xl  and xu  leads to the 
following equations:

2 2 T. . [0 ] . ,ˆ( ).
ux x x lx x x x

ux
x x

Y Z
i

ω ωω + +
=

×

 



u l l l l
u l

 		  (34)

2 2 T. . [0 ] . .ˆ( ).
ux x x lx x x x

lx
x x

Y Z
i

ω ωω + +
=

×

 



u u l u u
l u

 		  (35)

Assume that the distance of the center of mass of the x-upper 
link from the revolute joint connected to its corresponding 
prismatic actuator is ux xuγ  and the distance of the center of 
mass of the x-lower link from the revolute joint connected to 
the x-upper link is lx xlγ . The accelerations of the center of 
mass of the x-upper link, uxa , and the x-lower link, lxa , can 
be respectively obtained from:

( )2ˆ ˆ( ) ,ux x ux x ux x ux xp i u iγ ω ω= + × −a u u  		  (36)

( )2 2ˆ ˆ ˆã ( ) + ( ).lx x lx x lx x lx x ux x ux xp i l i iω ω ω ω= + × − − × a l l u u  	   (37)

Since Eq.(32) is also valid for the y and z axes, the same 
methodology to assess the kinematic characteristics of the 
other links has been applied. Taking the inner product of both 
sides of Eq.(32) with ĵ  and k̂  attains the linear accelerations 
of the y and z prismatic actuators as:

yp Y= 
 						           (38)

zp Z= 
 						           (39)

Inner product of Eq.(32) with yl  and zl   leads to the following 
equations:

2 T2. . [ 0 ] .
ˆ( ).

uy y y ly y y y
uy

y y

X Z
j

ω ω
ω

+ +
=

×

u l l l l
u l

 



 		        (40)

2 2 T. . [ 0] .
ˆ( ).

uz z z lz z z z
uz

z z

X Y
k

ω ωω + +
=

×
u l l l l

u l

 



 		       (41)

Furthermore, the inner product of Eq.(32) with yu  and zu
leads to:

2 2 T. . [ 0 ] .
ˆ( ).

uy y y ly y y y
ly

y y

X Z
j

ω ω
ω

+ +
=

×

u u l u u
l u

 



 		       (42)

2 2 T. . [ 0] .
ˆ( ).

uz z z lz z z z
lz

z z

X Y
k

ω ωω + +
=

×
u u l u u

l u

 



 		        (43)

Assume that the distance of the center of mass of the y- 
and z-upper links from the revolute joint connected to their  
corresponding prismatic actuators are respectively uy yuγ  
and uz zuγ , and the distance of the center of mass of the y- 
and z-lower link from their revolute joints are ly ylγ  and 

lz zlγ , respectively. The acceleration of the center of mass of 
the y- and z-upper links, and the y- and z-lower links, can be 
respectively obtained as:

( )2ˆ ˆ( ) ,uy y uy y uy y uy yp j u jγ ω ω= + × −a u u 		       (44)

( )2 2ˆ ˆ ˆ( ) ( ),ly y ly y ly y ly y uy y uy yp j l j jγ ω ω ω ω= + × − − + × a l l u u     (45)

( )2ˆ ˆ( ) ,uz z uz z uz z uz zp k u kγ ω ω= + × −a u u 	                     (46)

( )2 2ˆ ˆ ˆ( ) ( ).lz z lz z lz z lz z uz z uz zp k l k kγ ω ω ω ω= + × − − + × a l l u u          (47)

4- Dynamic Analysis

îĵ
k̂

U-Joint

S-JointR-Joint

Fig. 4. The modified fully-constrained manipulator.
As aforementioned, the manipulator is an over-constraint 
manipulator. Thus, in order to solve the dynamical model 
through Newton-Euler approach, one should lessen the 
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dynamical constraints of the manipulator by replacing some 
of the joints with ones with more DO, without changing the 
overall kinematic constraints imposed to the end-effector. 
In this paper, in order to equalize the number of equations 
and the number of the unknowns, as shown in Fig. 4, the 
revolute joints connecting the end-effector to the lower 
links associated with the y- and x- limbs are replaced by a 
spherical and a universal joint, respectively. Now, by using 
the Chebychev–Grübler–Kutzbach formula for the mobility 
of the modified mechanism, one obtains 3M = , which says 
that the modified 3-DOF mechanism has been determined. 
In Fig. 5, the forces and moments applied to the links of the 
modified manipulator are shown. In the latter figure, LxEEF  
and LxEEM  are respectively the reaction force and moment of 
the x-lower link, acting on the end-effector. Also, UxLxF  and 

UxLxM  are respectively the reaction force and moment of the 
x-upper link, acting on the x-lower link. The x-lower link 
is also subjected to the gravitational force, that is ˆ

lxm gk− , 
at its center of mass. Establishing all the external force and 
moment components on the x-lower link and balancing the 
moment components around the revolute joint connecting the 
lower link to the upper link give:

ˆ( g ) ,x lxEE UxLx LxEE lx lx x lx lxm kγ− × + − = × + + l F M M l a H          (48)

Fig. 5.  Free-body diagram of the understudy manipulator after 
dynamical constraint reduction.

where lxH  is the angular momentum of the x-lower link around 
its  center of mass. By considering the fact that x-lower link 
only rotates along x-direction, lxH  can be written as:

ˆ,lx lx lxI iω=

H  					          (49)

where lxI  represents the mass moment of inertia along the 
direction normal to the x-lower link at its center of mass. 
Since UxLxM  and LxEEM  do not have any component along the 
î  direction, by taking the dot product of both sides of Eq. (48) 
with î , one has:

ˆˆ ˆ( ). ( ).( ) .x LxEE lx lx x lx lx lxi m i gk Iγ ω× = × + + l F l a   	       (50)

In Fig. 5, PxUxF  and PxUxM  are respectively the reaction force 
and moment of the x-prismatic joint acting on the x-upper 
link; balancing the moment components around the revolute 
joint attached to the x-prismatic joint results in:

( )
( ) ( ) ˆˆ  ( g )

ˆ  + ( g ).

PxUx LxEE x x LxEE

lx lx ux ux lx lx x x lx

ux ux x ux

I I i m k

m k

ω ω γ

γ

− − + × =

+ + + × +

× +

 

M M l u F

l u a

u a

	 	      (51)

Since UxLxM  and LxEEM  do not have any component along 
î  direction, by taking the dot product of both sides of the 
latter equation with î , and using the general formula of 

.( ) .( ) .( )× = × = ×a b c b c a c a b , the following could be obtained:

( )( ) ( ) ( )ˆˆ ˆ. ( ) . ( g )

ˆˆ                 ( ).( g ).

x x LxEE lx x x lx lx

lx lx ux ux ux ux x ux

i i m k

I I m i k

γ

ω ω γ

+ × = × + +

+ + + × + 

l u F l u a

u a
 	       (52)

Now, in order to obtain LxEEF , LxEEF  is projected into three 
components, first component x

LxEEF  along the x-direction, 
second component a

LxEEF  along the axis of the x-lower link, 
and third component n

LxEEF  normal to the plane containing the 
axis of the x-lower link and the x-direction. By using the latter 
assumption, one can write LxEEF  as:

ˆ ˆ( ),x a n
LxEE LxEE LxEE lx LxEE lxF i F F i= + + ×F e e  		       (53)

where lxe  is the unit vector in xl  direction. With a similar 
decomposition, LyEEF  and LzEEF  are obtained:

ˆ ˆ( ),y a n
LyEE LyEE LyEE ly LyEE lyF j F F j= + + ×F e e  		       (54)

ˆ ˆ( ),z a n
LzEE LzEE LzEE lz LzEE lzF k F F k= + + ×F e e  		       (55)

where lye  and lze  are the unit vectors in yl  and zl  directions. 
Inserting  Eq.(53) into Eqs.(50) and (52) yields the following 
equations:

ˆˆ( ).( g ) ,n lx lx
LxEE lx lx lx lx

x

IF m i k
l
ωγ= × + −


e a 		       (56)

 	 ˆˆ( ).( g )
ˆ( ).

. ˆ ˆ( ). ( ).
ˆ ( ( . ) ) ˆ.( g ).ˆ( ).

a x ux
LxEE ux ux

x x

lx lx x x x ux ux ux ux

x x x x

lx x lx x x x
lx

x x

i kF m
i

I l I I
i i

m i k
i

γ

ω ω ω

γ

× +
=

×
+

− +
× ×

× −
+ +

×

  

u a
e u

u e
e u e u

u u e e a
e u

 			        (57)

By appying a similar procedure for the y and z limbs, the 
following results are obtained:

ˆˆ( ).( g ) ,ly lyn
LyEE ly ly ly ly

y

I
F m j k

l
ω

γ= × + −


e a 		       (58)

ˆ( ). ,n lz lz
LzEE lz lz lz lz

z

IF m k
l
ωγ= × −


e a  			         (59)

ˆˆ( ).( g ) .
ˆ ˆ( ). ( ).

ˆ ( ( . ) ) ˆ          .( g ),ˆ( ).

y uy ly ly x y y uy uya
LyEE uy uy

y y y y

ly y ly y y y
ly

y y

j k I l I
F m

j j

m j
k

j

ω ω
γ

γ

× + +
= −

× ×

× −
+ +

×

 u a u e
e u e u

u u e e
a

e u

	       (60)

ˆ( ). .
ˆ ˆ( ). ( ).

ˆ ( ( . ) ) . .ˆ( ).

a z uz lz lz x z z uz uz
LzEE uz uz

z z z z

lz z lz z z z
lz

z z

k I l IF m
k k

m k
k

ω ωγ

γ

× +
= −

× ×

× −
+

×

 u a u e
e u e u

u u e e a
e u

 	     (61)

According to Fig. 5, after imposing the external force and 
moment vectors on the end-effector and writing the force 
equilibrium equation for the end-effector, the following is 
obtained:
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T
.LxEE LyEE LzEE EEm X Y Z + + =  

  F F F  		        (62)

Inserting Eqs.(53),(54) and (55) into Eq.(62), yields:
T ˆˆ ˆ

ˆ                              ( )
ˆˆ                              ( ) ( ).

x y z a
EE LxEE LyEE LzEE LxEE lx

a a n
LyEE ly LzEE lz LxEE lx

n n
LyEE ly LzEE lz

m X Y Z F i F j F k F

F F F i

F j F k

  = + + + 
+ + + ×

+ × + ×

   e

e e e

e e

 	      (63)

The inner product of Eq.(63) by î , ĵ  and k̂  respectively 
results in:

ˆ ˆ( ) ( . )
ˆˆ( . ) ( . ),

x n a
LxEE EE LzEE lz LyEE ly

a n
LzEE lz LyEE ly

F m X F j F i

F i F k

= + × −

− −

 e e

e e
 		        (64)

ˆ ˆ( ) ( . )
ˆ ˆ( . ) ( . ),

y n a
LyEE EE LxEE lx LxEE lx

a n
LzEE lz LzEE lz

F m Y F k F j

F j F i

= + × −

− −

 e e

e e
 		        (65)

ˆˆ( . ) ( . )
ˆ ˆ( . ) ( . ).

z n a
LzEE EE LyEE ly LxEE lx

a n
LyEE ly LxEE lx

F m Z F i F k

F k F j

= + −

− −

 e e

e e
 		        (66)

Now, by applying Newton’s second law to the x-limb, the total 
force that is acting on the prismatic joint is obtained from:

( )
ˆ

ˆg .
px LxEE lx lx ux ux px x

lx ux px

m m m p i

m m m k

= + + +

+ + +

F F a a
	 		       (67)

The force that the actuator of the x-limb exerts on  the 
platform is given by taking the dot product of Eq. (67) by î  
and is as follows:

ˆ ˆ ˆ. . . .x
px LxEE lx lx ux ux px xi F m i m i m p= + + + F a a  		       (68)

By following a similar procedure for the y and z limb, the 
following results can be obtained:

ˆ ˆ ˆ. . . ,y
py LyEE ly ly uy uy py yj F m j m j m p= + + + F a a  		       (69)

( )
ˆ ˆ ˆ. . .

g.

z
pz LzEE lz lz uz uz

pz z lz uz pz

k F m k m k

m p m m m

= + +

+ + + +

F a a
 		        (70)

5- Model Validation and Discussion
In order to verify the performance of the proposed 
mathematical dynamical model of the manipulator, a 
simulation study is performed in this section, and the obtained 
results from the mathematical model will be  compared 
with the corresponding results of the SimMechanics model. 
Actuation and joint forces and torques are calculated for 
both phases and  are compared to understand the dynamic 
requirements in the joints and links of the manipulator. In the 
simulation, the physical parameters of the manipulator are 
obtained according to the CAD model and are given in Table 
1. The mass of the end-effector is assumed to be 0.75EEm =  
Kg and the gravity vector is taken as 2ˆ9.81  m/sk− .

Table 1. Geometric and inertia properties of the manipulator.     

i x=  i y=  i z=  

ib T[0 0.04 0.063] T[0 0.04 0.063] T[0 0.04 0.063]

il 0.392 0.392 0.392

iu 0.443 0.443 0.443

lim 1.75 1.75 1.75

uim 2 2 2

uiγ 0.5 0.5 0.5

liγ 0.5 0.5 0.5

liI 0.0224 0.0224 0.0224

uiI 0.0327 0.0327 0.0327
* All of the parameters are in SI units.

In order to verify the accuracy of the proposed dynamical 
models by SimMechanics and experimental data, the 
forces related to the prismatic joints are studied which are 
shown in Fig. 7 with a solid green line. In order to obtain 
the experimental data, the Tripteron manipulator is driven 
by means of a PID controller to track a desired trajectory. 
The control action is applied with a frequency of 150 Hz. 
The internal encoder of each servo motor provides the joint 
positions, and the actuation torques are measured indirectly 
by means of the motors’ current1. The measurements were 
taken with a frequency of 150 Hz. Since direct numerical 
differentiation of the measured joint angle yields noisy 
results, the determination of joint velocity and acceleration 
were carried out by fitting the measured joint angles to 
Fourier series as presented in [23]. In order to reduce the 
effect of noise in sampled measurements, trajectories were 
repeated several times and the measurements were averaged; 
then, a second order low pass digital Butterworth with a 
normalized cut of frequency of 5 Hz was applied. Also, in 
order to avoid phase distortion of the filtered signals, the 
filtfilt function of Matlab was used.
For the simulation study, the end-effector exhibits a sinusoidal 
motion along each direction. The motion of the end-effector 
is written below as a function of time:

0.7 0.1sin(4 )
0.4 0.1sin(2 )
0.2 0.1sin(2 )

X t
Y t
Z t

= +
 = +
 = +

 				          (71)

1 The relationship between the current and the torque was obtained 
through experiments that were conducted on the servo motors.
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Fig. 6. Comparison between the experimental and simulated 
trajectories.
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Fig. 7. Results of the experimental and simulation study for the 
motion presented in function (71).

Fig. 6 shows the comparison between the desired trajectory 
and the one tracked by the manipulators’ actuated joints. 
From Fig. 7, it can be seen that the obtained results from 
the proposed model, SimMechanics, and experimental study 
are coherent which validate the correctness of the dynamic 
equations. 

 Table 2. RMSE for the results shown in Fig. 7 based on the 
analytical solution.

Model RMSE
SimMechanics model 0.147
Experimental results 6.56

In order to validate the correctness of the analytical model for 
joint forces and torques, two diagrams are presented in Fig. 
8 and Fig. 9 for the trajectory defined in function (71), which 
correspond to the internal forces between the upper link and 
prismatic joint (Fig. 8) and moments imposed by the upper 
link to the lower link (Fig. 9). It can be seen that the results 
derived by SimMechanics and those obtained from formulas 
are in a good agreement which  confirms the correctness of 
the mathematical model. 
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Fig. 8. Results of the analytical model and simulation study for 
the joint force between prismatic joint and upper link in each 

arm for the motion presented in function (71).
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Fig. 9. Results of the analytical model and simulation study for 
the joint torque between upper links and lower links in each 

arm for the motion presented in function (71).
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The Root Mean Square Error (RMSE) for the difference 
between the mathematical solution and the results from the 
SimMechanics model and practical data for this study are 
reported in Table 1. The difference between an analytical 
solution and the experimental result is mainly due to the 
friction force between the slider blocks and the guide rails.
The results of these two figures and several practical tests 
reveal that the torques and forces  exerted to the links of the 
z-arm are significantly higher  than those  of the other links. It 
can be deduced that for designing such a manipulator, joints 
and links should be stronger in the z-arm since they bear 
higher torques and forces.

Fig. 8. Results of the analytical model and simulation 
study for the joint force between prismatic joint 
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6- Conclusion
This paper addressed the mathematical modeling of the 
kinematics and dynamics of a 3-DOF translational PM. 
The kinematics of a mechanism is defined via a vector-loop 
closure approach and all the expressions are expressed using 
vector notation which, afterward, made it possible to have a 
compact dynamics’ formulation. The dynamical model of the 
manipulator was developed using Newton-Euler approach 
and a compact formulation was obtained for the first time. 
To illustrate the accuracy of the proposed dynamical model, a 
simulation study was performed for a given trajectory and the 
obtained results from the analytical formulas, SimMechanics 
model, and experimental tests were compared. The RMSE 

for the SimMechanics and experimental test were obtained 
at 0.147 and 6.56, respectively. We believe the present error 
between the experimental test and the analytical formula is 
due to two main factors: The friction between the prismatic 
joints and their guide rails, and the difference between the 
value of the inertial parameters used in the dynamical model 
and their actual value. Furthermore, the results provided 
some insights into the amount of force in passive joints and 
by performing several tests, it revealed that the joints and 
links corresponding to the z-direction  undergo higher forces 
and torques which should be taken into account in the design 
stage. Ongoing work will includ stiffness analysis, modeling, 
and identification of the friction in order to make the model 
more accurate.

Nomenclature

EEa  The vector of acceleration of the end-effector

la  
The acceleration of the center of mass of the lower 
link

c The vector connecting the revolute joint attached to 
the end-effector to its reference point

UF The reaction force of the upper link

lH The angular momentum of the lower link around 
its mass center

UM Reaction moment of the upper link

p The distance of the center of each prismatic actua-
tor from the guide-way’s base line

u The vector along and equal to upper link of the arm

α  
The angle between upper link and the horizontal 
line 

lω The vector of the angular velocity of the lower link

ua  
The acceleration of the center of mass of the upper 
link

b
The vector that connects the world coordinate 
system to the prismatic actuator guide-way’s base 
point

LF The reaction force of the lower link

pF The force exerted on the platform by the actuator

l The vector along and equal to lower link of the arm

LM Reaction moment of the lower link

r The position of the end-effector in the world coor-
dinate system

EEv The vector of the output velocities of the end-ef-
fector

uω  The vector of the angular velocity of the upper link
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