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ABSTRACT 

This paper investigates a multi-period rectilinear distance 1-center location problem considering a line-

shaped barrier, in which the starting point of the barrier follows the uniform distribution function. In 

addition, the existing points are sensitive to demands and locations. The purpose of the presented model is 

to minimize the maximum barrier distance from the new facility to the existing facilities during the finite 

planning horizon. Additionally, a lower bound problem is generated. The presented model is mixed-integer 

nonlinear programming (MINLP); however, an optimum solution is reached. 
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1.  INTRODUCTION 

The center location problem was first introduced in 

[49]; however, the continuous center problem was 

referred to [50]. Since we have a minimax objective 

function for the center model, it seems that it will be most 

applicable to emergency cases. Some potential 

applications of the center problem are: quick services 

(e.g., hospital emergency services, fire stations, and 

police stations), distribution (e.g., warehouses and 

garages), military purpose, government, and general (e.g., 

parks and hotels).  

The solution space of the center problems are 

generally classified into planar and network space. One 

of the most common location problems is the restricted 

planar location problem that is classified into one of the 

categories: (1) forbidden regions (e.g., national parks or 

other protected areas), in which the opening a facility is 

prohibited but traveling through is permitted, (2) 

congested regions (e.g., big lakes or forest), in which 

opening a facility is prohibited but travelling through is 

possible with additional cost, and (3) barrier regions 

(e.g., military areas, mountain ranges, big rivers and the 

lake), in which both opening and travelling are forbidden. 

For the ease of better understanding, see Table 1. 

 

 

 

TABLE 1 

CATEGORIES OF RESTRICTED LOCATION PROBLEMS. 

 
Forbidden 
Regions 

Congested 
Regions 

Barrier 
Regions 

Travelling Allowable 
Allowable with 
penalty 

Unallowable 

Establishing Unallowable Unallowable Unallowable 

 

There are too many environmental behaviors that 

influence the location of the facilities during the planning 

horizon. For instance, the demand or the position of the 

customers in different seasons may vary. So, where and 

when the facility must be opened is the concern of the 

decision makers. In a dynamic environment, considering 

time-dependent inputs impacts on strategic decision 

making processes. On the other side, opening and 

expansions the facility in long term are the key cases, in 

which decision makers must focus on. Therefore, many 

researchers are motivated to study dynamic location 

problems. Ref [54] classified the dynamic facility location 

problems into two principal classes: (1) location, in which 

a profitable site is selected for a defined time horizon and 

(2) location–relocation, in which a primary location, 

relocation or development of facilities is selected.  

 

 

In this paper, the authors pay attention to the multi-

period planar center location problem in the presence of a 

line barrier which randomly occurs on a given horizontal 

route. According to our knowledge, there is no work done 

in this field. This paper is presented as follows: Section 2 
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is divided into two parts: (1) containing a review on the 

studies published about facility location problems with 

barriers and (2) including a brief survey on dynamic 

single facility location problems, separately. In Section 3, 

an MINLP model to solve the dynamic center problem in 

the presence of a probabilistic line barrier with the 

rectilinear distance metric is proposed. We present the 

lower bound problem for the presented model in Section 

4. We illustrate an example in Section 5 to show the 

validity of the presented model in detail. Then we solve 

several sample problems in different size. Finally, Section 

6 contains conclusion and further research directions. 

2.  RELATED STUDIES 

A.  Location problems with a barrier 

So far most of the research has focused on the Weber 

problem and suggested different variations and 

modifications of this problem. Other objective functions, 

such as the minimax or maximin objective, have been 

rarely considered. Many studies to the center problem in 

the presence of barriers are based on rectilinear or block 

norm distances that allow for the problem decompositions 

and discretizations. A polynomial algorithm for restricted 

Euclidean center location problems is presented in [3]. 

Ref [10] and [11] considered a constrained rectilinear 

distance minimax location problem and presented a 

geometric solution approach. Nickel studied the restricted 

center location problems under polyhedral gauges in [44]. 

Ref [15] considered the rectilinear distances center 

facility location problem with polyhedral barriers and 

derived a finite dominating set result for the problem. 

Although similar ideas to a more general class of location 

problems were extended in [13] and [14]. After that, the 

same problem using the block norm distances in place of 

the rectilinear distances was studied in [16]. Ref [23] 

considered the minimax location problems in the presence 

of polyhedral barriers with the Euclidean distance. They 

proposed a solution approach based on propagation of 

circular wavefronts. Considering such barriers, the 

Euclidean multi-facility location–allocation problem and 

proposed two heuristics to solve the problem was 

presented in [5]. In the presence of the arbitrary shaped 

barriers, Ref [47] first considered a single finite-sized 

facility location problems with the Manhattan (i.e., 

rectilinear) distance metric. Based on the work of [47], a 

new facility location problem applying a contour line was 

presented in [33]. Ref [46] extended the work of [47] for 

finite facility location problem with only user–facility 

interactions. Ref [43] considered the rectilinear distance 

center problem in the presence of arbitrary shaped 

barriers. 

Katz and Cooper first studied the planar Euclidean 

Weber problem and one circular barrier in [32]. They 

suggested a heuristic algorithm based on the sequential 

unconstrained minimization technique (SUMT) for 

solving this problem. In the same problem, Ref [37] 

divided the feasible region into some convex regions, in 

which the number of these convex regions is bounded by 

O(N2) where N is the number of existing facilities. Found 

a way of overcoming, the Weiszfeld technique and 

genetic algorithms (GAs) were applied in [6]. Aneja and 

Parlar studied the Euclidean Weber problem in the 

presence of convex or non-convex polyhedral barrier 

regions in [1]. Using simulated annealing (SA), they 

determined some candidate points, and then constructed a 

visibility graph to evaluate the shortest path between any 

candidate point and existing facility location. Ref [35] 

developed a reduction result for the same problem, in 

which the non-convex barrier location problem reduced to 

a set of convex location problems. Then, an exact and a 

heuristic algorithm were presented to solve such a planar 

location problem with barriers. Then, Ref [36] considered 

the Weber location problems in the plane in the presence 

of line barriers with a finite number of passages. She 

proved that the time complexity of the problem 

exponentially grows by increasing the number of 

passages. The big square small square (BSSS) method, a 

branch-and-bound based technique in [29], to 

approximate the global optima of the Euclidean Weber 

problem with the convex polyhedral forbidden regions 

was developed in [40]. In the presence of convex 

polyhedral barriers, Ref [7] addressed the Euclidean 

Weber problem and presented the FORBID heuristic 

method to decompose the feasible region. Larson and 

Sadiq worked on the discretization results for the 

rectilinear Weber problem with arbitrary shaped barriers 

in [39]. Generalized results of [39], considering both 

arbitrary shaped barriers and convex forbidden regions 

were provided in [4]. Ref [26] developed a similar 

discretization for a general class of distance functions. 

Formulations of a mathematical programming model, 

where facilities were finite-sized shape or point and 

barriers were rectangular, were proposed in [52]. For line 

barriers considering various distance functions, Ref [38] 

proposed an algorithm for multi-criteria location 

problems. Ref [8] presented a solution approach for the 

rectilinear Weber problem with a probabilistic line 

barrier. Furthermore, they provided an extensive 

overview of facility location problems in the presence of 

barrier regions. Then the multi-facility location problem 

in the presence of a probabilistic line barrier in extended 

in the Ref [56]. 

B.  Dynamic location problems  

Here, it is given the research papers published in this 

field briefly. The dynamic Weber problem was formerly 

introduced by Wesolowsky in [53]. Ref [34] investigated 

the dynamic location problem in a finite planning horizon 

and proposed a mixed-integer linear programming model. 
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Min studied on the facility location problems with 

considering dynamic relocation and expansion of 

capacitated public facilities as the objective functions in 

[42]. To solve the problem, a fuzzy goal programming 

approach was presented. Also, this study was a case that 

implemented successfully on Columbus public library 

facilities. Frantzeskakis and Watson-Gandy formulated a 

dynamic facility location problem over a given planning 

horizon. The dynamic programming and branch-and-

bound methods were the proposed approaches to solve 

such problems in [22]. Galvão and Santibañez-Gonzalez 

(1990) described a multi-period facility location problem 

and developed a heuristic method based on dynamic 

programming and a Lagrangean heuristic method in [24]–

[25]. Drezner and Wesolowsky investigated multiple time 

break and linear change of weights over time in [19]. 

They considered location on multiple time breaks and 

devise two algorithms for a minimax location problem. 

Ref [48] presented a dynamic capacitated plant location 

problem as a combinatorial optimization problem and 

proposed a Lagrangian relaxation-based technique to 

solve the problem. Ref [31] improved an exact algorithm 

for the dynamic facility location problem by integrating 

mixed-integer with dynamic programming methods.  

Ref [21] developed a multi-criteria dynamic location 

problem, in which the total number of facilities to be 

located is uncertain. Ref [41] presented a multi-criteria 

multi-period model as a physical programming model that 

determines the optimal relocation site. They described 

that physical programming allows the decision maker to 

express criteria preferences not in the traditional form of 

weights but in terms of ranges of different degrees of 

desirability. Ref [30] formulated a mixed-integer 

programming model for multi-period multi-commodity 

two-echelon capacitated facility location problems and 

proposed a Lagrangean relaxation and a heuristic method 

to solve the problem. Ref [9] considered multi-period 

multi-stage multi-commodity capacitated facility location 

problem, in which the facility relocation is allowed. To 

solve such a problem, they proposed an algorithm by 

integrating a branch-and-bound method and dynamic 

programming over the planning horizon. Antunes and 

Peeters studied a complex dynamic location problem 

based on a real case in Portugal and used SA to solve this 

problem in [2]. Puerto and Rodríguez-Chía studied on a 

generalized dynamic single facility location problem in 

one and two dimensional spaces in [45]. They proposed a 

solution method based on the Weiszfeld algorithm to 

solve the problem. In addition, they proved the global 

convergence of their method. Based on [51], which 

described a branch-and-bound algorithm that uses a dual 

ascent procedure for the dynamic simple plant location 

problem, and [20], which evaluated the performance of 

seven approximate methods for dynamic location 

problems and combined different methods to find more 

effective solutions, a dynamic location problem was 

considered in [17] and an efficient primal-dual heuristic 

method to obtain a good results was proposed. Ref [18] 

considered capacitated and uncapacitated multi-objective 

dynamic location problems with relocation more than 

once during the planning horizon. They proposed the 

memetic algorithm to solve such problems. Ref [21] 

investigated a time-dependent weights single facility 

location-relocation problem for the rectilinear, squared 

Euclidean or Euclidean distances where the time horizon 

can be finite or infinite. They also considered a location-

dependent relocation cost to make the research closer to 

the real-world situations. An optimal solution was found 

by their proposed algorithm. 

3.  PROBLEM DEFINITION 

A.   Assumptions  

 Existing facilities are located in the feasible region in 

each period. 

 New and Existing facilities’ shape is point. 

 Facilities are located on the plane (i.e., 2 ).   

 Location of the existing facilities is deterministic and 

dynamic during the planning horizon (location 

sensitive). 

 Weight associated with demand of the existing facilities 

is deterministic and dynamic during the planning 

horizon (demand sensitive). 

 Length of the planning horizon is finite. 

 Rectilinear distance is considered. 

 Barrier’s shape is line. It means that the width of barrier 

is negligible. 

 Length of the barrier is constant and known. 

 Location of the barrier is probabilistic and distributed 

uniformly with known parameters. 

B.  Preliminaries definitions 

Let  Ex= {Xih ,n : i =1,…,I, h=1,…,H} be a finite 

set of existing facilities over the planning horizon, where I 

is the number of existing facilities and H is the length of 

planning horizon. Let {B1, . . .,BG} be a finite set of 

barrier and B
G

g 1 g. B The interior of barrier regions, 

called int(B), is prohibited for opening a new facility, as 

well as traveling through int(B). Thus, the feasible 

region,  \ intnF B , for locating and traveling is 

given by [55]. By our definition of B and F , there is an 

exception only in line barriers that have an empty 

interior, in which travelling is also forbidden at non-

interior points of a barrier.  

To clarify the concept of distance function
B

pd , called 

the p-norm barrier distance, consider two arbitrary points 

,X Y F. Suppose  ( , ) inf ( )
B

d X Y lp X Y
 


, PX-Y 
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is feasible X,Y path, where l(PX-Y) is the length of the 

feasible X-Y path. Let dp(X,Y) be the p-norm distance 

between ,X Y F.Two arbitrary points (i.e., 

,X Y F ) are called p-visible if ( , )B

p
d X Y = dp(X,Y), 

that is the presence of barrier is not in effect on the 

visibility of two points  X,Y . On the other hand, the p-

norm distance between ,X Y F is called p-shadow, if: 

( , ) ( , ),
B

d dp pX X X X1 12 2 that is the barrier is in 

effect. For one feasible point, X F , the set of visible 

points can be defined as: 

 

 visibled ( )X =  : ( , )
B

Y d X YpF  = pd (X,Y)  

 

 

 

In other words, the set visible contains points from the 

feasible region, Y, which are p-visible with a given 

feasible point X. For a feasible point X F , the set of 

shadow points is defined as:  

shadowd(X) =  :Y F
Bd X,Yp ( ) > ,d X,Yp ( ) (i.e., 

if the distance between X and Y is p-shadow, then it 

becomes barrier distance, [55]). In this paper, a rectilinear 

distance metric (i.e., p=1) is considered. 

According to [27] and [28], the taxonomy of the 

presented location problem can be mentioned as 1/ 2 / B 

=1 probabilistic line/ Bd
1

/maxdynamic, in which position 1 

contains the number of new facility must be located, 

position 2 shows 2-dimensional continuous location 

problems or planar problems, position 3 indicated the 

special features of location problems where barrier 

restriction in considered, position 4 gives the information 

about the distance function. In this paper, a rectilinear 

barrier distance is given, in which position 5 denotes the 

objective function. Indices, parameters and decision 

variables are stated as follows: 

Indices and parameters 

i Index of the existing facilities 

h Index of periods 

I Number of the existing facilities 

H Planning horizon 

wih Weight of the ith facility in period h 

xih x-coordinate of the ith facility in period h 

yih y-coordinate of the ith facility in period h 

b y-coordinate of the barrier 

l Length of the barrier 

L1 Lower bound of uniform distribution function  

L2 Upper bound of uniform distribution function 

1 ,

0 ,

ih

ih

if y b
s

otherwise


 


 

 

Decision variables 

x x-coordinate of the new facility  

y y-coordinate of the new facility  

1 ,

0,

if i thexisting facility and the new facility inperiod h are located ontheopposite halfplanes
t
ij otherwise







 

1 ,

0,

ih

ij

if x x l
a

otherwise

  
 


 

1 ,

0,

if the new facility in period h is located on the upper halfplane
p

otherwise





 

 

 

 

 

C.   Mathematical model 

Considering I existing facilities over H periods, the 

multi-period rectilinear center problems with barriers can 

be formulated by: 

  min max ,, ,x y i h
 
 
 F

Bw .d X X
ih 1 ih

,  (1) 
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where  X = x,y  is the coordinates of the new facility and  

 ih ih ihX = x ,y is the coordinates of the ith existing facility 

in period h. Regarding to the line barrier that has a fixed 

y-coordinate at b and a probabilistic x-coordinate, we 

introduce a starting point of the line barrier as Xs where Xs 

is a continuous random variable with known parameters. 

The probability density function of Xs is as follows:  

1
,s1 2( )s 2 1

0 ,

L X L
L Lf X

otherwise


   




 

 
Figure 1: A probabilistic line barrier. 

 

So, the difference between upper and lower limits of Xs 

is mentioned as: r=L2-L1. In addition, the ending point of 

the line barrier, called Xe, can be calculated as: Xe =Xs+l, 

(see Figure 2). Canbolat and Wesolowsky extensively 

discussed on the all possible cases of locating the existing 

facilities and the new facility related to the line barrier 

position on the plane and introduced the barrier 

conditions when it is in effect in [8]. 

They proved that the barrier conditions can be 

represented in the form of: 

   max , min , ,x l x l X x x isi i
      

Whereas calculating the exact distance between the 

optimal facility and the existing facilities, due to a 

probabilistic barrier, is impossible, the expected barrier 

distance must be considered. In addition, since the x-

coordinate of the barrier location follows uniform 

distribution function, the y-coordinate of the distance 

function remains constant. So, expression (2) is enhanced. 

   min max ,, ,
y yx y i h ih

      F
Bw .E d x

ij 1 ih
x,  (2) 

Equivalently, the expression (2) can be reformulated in 

the form of:  

min ,x y F ,  

   ,x x y y i h
ih ih

     
 
Bw . E d

ij 1
 

The expected barrier distance was completely 

discussed in [8]. They proposed the expected barrier 

distance of x from xi that can be generally written by: 

 
, i.

i
B i i

1 i

i i

2
l - -

+ - ; - < l
2r

- ; - l

x x
x x x x

E d (x, x ) =

x x x x 

 
 

    
 
 

 (3) 

It means that when the absolute value of the distance 

difference of the new and the existing facility is less that 

the length of the line barrier, the expected barrier distance 

increases. However, a modification of Expression (3) in 

the dynamic environment is given by: 

 
, , .

ih
B ih ih

1 ih

ih ih

2
l - -

+ - ; - < l
2r

- ; - l

x x
x x x x

E d (x, x ) = i h

x x x x 

 
 

    
 
 

 

(4) 

To describe the above expression, the plane is divided 

into two half-planes. When the existing facility i in period 

h (i.e., Xih) and the new facility (X) are located in the 

opposite half-planes, then the barrier affects on the 

expected distance (i.e., while X and Xih locate in the same 

half-plane, the barrier will not affect on the distance).  

We suppose that if the ith existing facility and the new 

facility locate in opposite halfplane in period h, tih is equal 

to 1; otherwise, it is zero. We can also state the binary 

variable tih in the form of: 

 

 

   

1 ( )
, , .

0

ih ih

ih

ih ih

y b AND y b OR y b AND y b
t = i h

y b AND y b OR y b AND y b

     
 

     

 (5) 

Then, we define aih as a binary variable that 

determines whether the barrier affects on the distance or 

not. We can pose aih as follows: 

1 ,

0,

if x x l
ih

a
ih

if x x l
ih

 


 






 ,i h  (6) 

As the summary, the multi-period rectilinear center 

location problem in the presence of a probabilistic line 

barrier is presented as a mixed-integer nonlinear 

programming model by: 

min ,x y F  (7) 

Subject to:  

 
. ,

ih

ih

2
l - -

a t + -
ih ih

2r

x x
x x y y i h

ih


 
    
 
 

w
ih

           
(8) 

2 . 2 .y p b p y b          (9) 

,p s t
ih ih

  ,i h  
(10) 

2 . 2 ,l a a x x x x l
ih ih ih ih

    
 ,i h  

(11) 

, {0,1} ,t a
ih ih

 ,i h  (12) 

{0,1} ,p   (13) 

, , 0x y    (14) 

It is clear that in none of the periods, the new facility 

location does not allow to locate in the route of barrier 

(i.e., yh  b). The objective function (7) minimizes the 

maximum barrier distance in the conjunction of 

Constraint (8). Constraint (9) indicates that the new 

(x, y) 

 

(xi, yi) 

 

Xs 

 

Xe 

 

y= b 

 

y 

 

l 

 

x 
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facility locates in the above halfplane or not. Constraint 

(10) guarantees that in each period when Xih and X locate 

in the opposite halfplane, the barrier can be in effect. 

Constraint (11) depicts that in each period when the 

distance between X  and Xih is less that the length of 

barrier the barrier can affect on the distance. It is worthy 

to note that in period h when the two previous constraints 

are satisfied, the barrier affects on the distance between X 

and Xih. Constraints (12) and (13) introduce the binary 

variables. Constraint (15) expresses the non-negative 

continuous variables. 

The presented model is run by the Lingo 9.0 software, 

and then an optimal solution is obtained for a small-sized 

problem in a reasonable computational time. It is worth 

noting that obtaining an optimal solution for this type of 

complex, large-sized problem in a reasonable time by 

using traditional approaches is extremely difficult. 

4.  LOWER BOUND 

As location problems with barriers are generally 

difficult to solve, applying relaxation methods to reach a 

good lower bound are essential. Perhaps the simplest way 

to obtain lower bounds for location problems with 

barriers is to consider the corresponding unconstrained 

problems, simply discarding the barrier regions in  B . 

Ref [55] proved that the optimal solution of the 

unconstrained problem may not be feasible for the 

constrained problem with a barrier. While the barrier is 

static, the author introduced the restricted location 

problem involving forbidden regions R, in which it is 

forbidden to place a new facility in the interior of the 

forbidden region; however, trespassing through is 

allowed. Based on [55], we present a lower bound 

problem for the multi-period center location problem with 

forbidden region to place and available to trespassing 

through the region which is a lower bound for the 

problem with forbidden region to place as well as to 

trespassing. Let 
*
Bz  be the optimal objective value of a 

presented problem with barrier, 
*
Rz  be the optimal 

objective value for such a problem with forbidden 

regions, and 
nb

*
z  be the optimal objective value for such a 

problem without any restriction. To find the lower bound, 

this problem must be relaxed to the multi-period center 

location problem, while locating the facility on the route 

of the line barrier in not permitted. The desired problem 

with forbidden regions is presented below. This problem 

can be named as 1/ 2 /R =line/d1/maxdynamic according to 

the [27] and [28].  

min
, ,x y y b

 
 F,

 (15) 

s.t.   

   ,ih-x x y y i h
ih

   w
ih

,  (16) 

, , 0x yh h   
 

 

Regardless of  y  b, the problem is equivalently 

transformed to the multi-period problem without any 

restrictions (i.e.,  
* * *

R Bnbz z z  ). So, we encounter with 

an unconstrained multi-period 1-center problem. 

5.  NUMERICAL EXAMPLES 

To better understand, we illustrate an example to seek 

the best new facility location among 10 existing facilities 

in the presence of a line barrier with the length of 20 on 

the plane during 2 periods in planning horizon, in which 

not only the demand of existing facilities are dynamic, 

also the location of existing facilities are dynamic during 

planning horizon. The data for the demands and 

coordinates of existing facilities for the typical example 

are given in Table 2, in which (xih,yih); wi denotes the ith 

existing facility location in period h and the demand of 

each facility point in period h. It is supposed that the x-

coordinate of the line barrier follows the uniform density 

function with known parameters U(0,60), and its y-

coordinate is fixed at b=40. Fig. 2 depicts graphically the 

location of the existing facilities in two periods and the 

line barrier. Indeed, the location of the new facility in the 

presence of the line barrier is also depicted. To show the 

capability of the problem, the given multi-period center 

location problem, as a lower bound problem, is also 

solved and the related point is presented. The presented 

model is performed by the Lingo 9.0 software and an 

optimal solution is obtained. Moreover, the multi-period 

center location problem, as the lower bound problem, is 

also solved and the associated results are illustrated in 

Table 3. It is worth noting that optimal optimum solution 

is found. 

To point out the efficiency of the proposed model, five 

sample problems in different size are solved. The data are 

generated via the uniform random generator function as 

the coordinates of the existing facilities location. Then, 

we transform the data to the interval of [20,60] by the 

uniform transformer function as, 20+(60-20)×α, where 

[0,1] is the generated uniform random number. Via the 

same random generator function, the weights of all 

facilities are also generated in the range of [1,10]. Sample 

problems are then solved and the results are reported in 

Table 4. The results in Table 4 indicate the coordinates of 

the optimal center point during the number of period and 

the minimum objective value, respectively, for the 

problem in the presence of a probabilistic line barrier and 

without barrier. 

TABLE 2 
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COORDINATES OF THE EXISTING FACILITIES. 

              Existing facilities 

period 1 2 3 4 5 6 7 8 9 10 

1 (41,46);3 (34,34);3 (23,23);2 (59,49);3 (34,52);2 (33,58);3 (52,35);4 (43,29);4 (41,25);3 (57,23);4 

2 (28,44);2 (27,33);4 (49,34);3 (49,57);1 (35,26);1 (37,42);3 (56,22);3 (30,52);2 (53,46);1 (41,52);2 

 
TABLE 3  

RESULTS FOR THE EXAMPLE PROBLEM. 

Multi-period Center location problem with barrier Multi-period Center location problem 

x* y* 
Objective 

function 
Solver type 

Number of 

iterations 
x* y* 

Objective 

function 
Solver type 

Number of 

iterations 

47.000 38.414 101.6571 Global Opt 3654 42.058 33.343 101.1429 Global Opt 62 

 

 
Figure 2: Typical example. 

 

Additionally, the number of iterations (Iter) and the 

computational time is also provided for each sample 

problem for both, in the presence of barrier and forbidden 

region (stated as lower bound problem). The objective 

value obtained from the problem in the case of the 

presence of a probabilistic line barrier, is compared with 

the case of forbidden region. It is shown in Figure 3. It can 

be concluded that the differences are negligible. On the 

other side, for the computational time a comparison 

between the desired problem with barrier and with 

forbidden region is illustrated in Figure 4. It is clear that 

the larger size of problem in the presence of the 

probabilistic line barrier, the longer computational time. 

But in the case of forbidden region, there are not any 

meaningful differences between elapsed time of sample 

problems.   

6.  CONCLUSION 

In this study, a general mixed-integer nonlinear 

programming (MINLP) model to find a point in the 

presence of a probabilistic line barrier has been presented. 

This model minimizes the maximum traveled weighted 

rectilinear barrier distance on the plane that has not been 

paid attention in the literature. The proposed model was 

solved by the Lingo 9.0 software and the global optimum 

has been obtained for each sample problem. Furthermore, 

a lower bound problem to find a good solution has been 

presented and a comparison with the original problem has 

been carried out. The results have been shown that for the 

large size sample problems which took a long 

computational time, the proposed lower bound problem 

could be applied with a negligible error on objective value 

and shorter computational time. As future research, 

considering other probability distribution can be extended. 
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Other objective function, such as maximin, can be 

regarded as another extension, in which the minimum 

distance is maximized. The application of this objective is 

in hazardous location problems. Using the Euclidian 

distance functions can be also another extension for this 

work. For the Euclidian distance, the visibility and the 

shadow conditions must strongly regard. Considering the 

mobility of the existing facilities is advised for the future 

topics.  

 

TABLE 4  

RESULTS FOR THE SAMPLE PROBLEMS. 

S
am

p
le

 

p
ro

b
le

m
 

E
x

is
ti

n
g

 

fa
ci

li
ty

 

P
er

io
d

  
In the presence 

of Barrier region 

In the presence of 

Forbidden region 

10-2 10 2 x* 39.403 39.402 

y* 39.286 39.277 

z* 228.830 228.75 

No. Iter. 235.000 132 

Time(sec.) 1 0 

20-2 20 2 x* 36.669 37.684 

y* 40.001 41.211 

z* 267.019 265.263 

No. Iter. 1815 96 

Time(sec.) 5 0 

50-2 50 2 x* 41 41 

y* 40.733 41 

z* 272.667 270 

No. Iter. 1333 107 

Time(sec.) 8 1 

50-4 50 4 x* 39.600 38.702 

y* 39.979 40.877 

z* 345.79 345.789 

No. Iter. 482 199 

Time(sec.) 5 1 

100-4 100 4 x* 36.958 37.431 

y* 40.001 39.569 

z* 360.365 360 

No. Iter. 750 69 

Time(sec.) 19 1 

 
Figure 3: Comparison between objective values. 

 

 
Figure 4: Comparison between computational times. 
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