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ABSTRACT 

In order to better understand the mechanical properties of biological cells, characterization and 
investigation of their material behavior is necessary. In this paper hyperelastic Neo-Hookean material is used 
to characterize the mechanical properties of mouse oocyte cell. It has been assumed that the cell behaves as 
continuous, isotropic, nonlinear and homogenous material for modeling. Then, by matching the experimental 
data with finite element (FE) simulation result and using the Levenberg–Marquardt optimization algorithm, 
the nonlinear hyperelastic model parameters have been extracted. Experimental data of mouse oocyte 
captured from literatures. Advantage of the developed model is that it can be used to calculate accurate 
reaction force on surgical instrument or it can be used to compute deformation or force in virtual reality 
based medical simulations. 
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1.  INTRODUCTION 

Studying of biological cells behavior is very important 
and can help to diagnose disease with different 
mechanical properties. For example, the progression of 
the disease state of Malaria infected red cell by 
micropipette aspiration experiment has been reported in 
[1] and it has been observed that with progression of the 
disease, the rigidity in the cell has been increased. 

Many researchers have been investigating the 
mechanical properties of biological cells and many 
experiments have been developed. Some of these 
experiments which have been done on biological cells are 
cell injection or cell indentation [2], micropipette 
aspiration [3], laser/optical tweezers [4], magnetic 
twisting cytometry [1], AFM indentation [5] and fluid 
shear flow [1]. 

These different experimental techniques have led to 
many mechanical models which constructed by various 
researchers; such as liquid drop models, spectrin network 
model for erythrocytes ,cytoskeletal models for adherent 
cells, solid models, fractional derivative model[1], 
artificial neural network[6-10] and adaptive neural 
fuzzy[11,12]  models for deformation and force 
prediction. 

However, due to the difficulties of testing and 

complexities of nonlinearity modeling, the 
characterization of biological cells material properties 
have not been sufficiently covered. For example, in 
studying the properties of biological cells using the 
micropipette aspiration technique, different material 
parameters have been reported [3, 13-15].  

In this research, inverse finite element optimization 
algorithm have been used to estimate hyperelastic 
material parameters for computing Young modulus and 
Poisson’s ratio of mouse oocyte cell in cell indentation 
experiment. By matching the simulated forces to the 
experimental data, the algorithm iteratively finds the 
hyperelastic parameters.  Finite element simulation has 
been implemented with Abaqus/Standard 6.9 and it has 
been coupled with optimization algorithm which has been 
implemented in Matlab software. Experimental data of 
mouse oocyte captured from [16] which earlier have been 
generated by Yu sun and his co-workers [17]. 

2.  MATERIAL MODEL  

In virtual reality based medical simulators, haptic 
rendering is based on linear elastic modeling with small 
deformation assumptions [18]. Since medical instruments 
induce large deformations [18], linear elastic models are 
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not accurate and cell behavior under large deformations 
(such as this study) must be described by the nonlinear 
elasticity theory [18]. 

On the other hand, for the time-independent 
experiment (such as underlying cell injection experiment 
[17]), hyperelastic material model which its parameters 
can be determined by the strain energy potential function 
(U ) is suitable. For this purpose the neo-Hookean strain 
energy potential this is widely used in soft tissues and 
biological cells simulations [3, 18], has been selected to 
describe the near incompressible hyperelastisity. The 
form of the three dimensional incompressible neo-
Hookean strain energy potential is given by [19]: 
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where U  is the strain energy per unit of the reference 
volume, 10C  and 1D  are material parameters; 1I  and elJ  
,respectively, are the first deviatoric strain invariant and 
elastic volume ratio. 

3.  MODEL PARAMETER ESTIMATION ALGORITHM  

In order to enter the complex contact and boundary 
conditions between the micropipette and cell into the 
modeling, inverse finite element optimization algorithm 
has been applied (Figure 1). By fitting the simulated 
forces from the finite element simulation to the 
experimental forces; the algorithm iteratively finds the 
hyperelastic material parameters. 
 

 
Figure1: Inverse finite element optimization algorithm. 

 
 

In order to compare the matching of the finite element 
modeling predictions to the experimental data, the fitness 
parameter δ is used to measure deviation between the 
experimental data and the modeling results [2, 4]. 
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where expF  , simF  and n ,respectively, are the 

experimental force, simulated force and total number of 
data. In order to update the hyperelastic parameters the 
finite element simulations are automatically iterated using 
the Levenberg–Marquardt optimization algorithm [20, 
21]. In each iteration, the hyperelastic parameters are 
updates as: 

1 exp( ) ( ( ) ( ))T
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Where 
TH J J Iλ= +                           (4) 
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In the above relations, P  is the estimated hyperelastic 
parameters matrix and  J  , H  ,respectively, are 
Jacobean and Hessian matrix. The simulation parameters 
are included in the algorithm implicitly. For this reason, 
with varying and perturbing each hyperelastic parameter, 
running the finite element simulation and then evaluating 
the effects of perturbation, the Jacobean matrix are 
numerically computed.  

It has been assumed that the cell is a homogenous, 
isotropic and continuous solid. The finite element model 
has been built with ABAQUS/CAE 6.9. The inverse 
finite element optimization algorithm has been 
implemented in Matlab software (Mathwork, R2008a, 
USA). After running the first simulation with initial 
guesses, the Matlab program reads the output Abaqus file 
and evaluates the next parameters. Then the updated 
hyperelastic parameters are written into a new input file 
to utilize by the next simulation of Abaqus program. The 
optimization algorithm has been coupled with the finite 
element simulation to repeat the algorithm automatically. 
After a certain number of iterations if the fitness 
parameter (δ ) reaches a constant value, the algorithm 
will be finished and, the optimized hyperelastic 
parameters ( 10C , 1D ) will be determined. 

Then, the initial shear modulus, 0µ , and initial bulk 

modulus, 0K , can be determined using the following 
relations [19]: 

0 102Cµ =             (6) 
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Also, the Poisson’s ratio,ν , [19] and Young 
modulus, E ,[22] are determined as:  
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4.  RESULTS AND DISCUSSIONS  

The convergence history of the objective function 
(δ ) using the inverse finite element optimization 
algorithm which indicating a rapid convergence have 
been shown in Figure 2.  
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Figure2: Objective function (δ ) values versus the number of 
iterations. 

 
Also, the normalized hyper elastic parameters versus 

the number of iterations have been shown in Figure 3. 
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Figure3: convergence history of the normalized hyperelastic 
parameters.  

 
The values of initial and optimized hyperelastic 

parameters and fitness function have been presented in 
Table 1. 

 

TABLE1 
THE VALUES OF INITIAL SHEAR MODULUS, BULK MODULUS, 

POISSON’S RATIO AND YOUNG MODULUS FOR MOUSE OOCYTE 
CELL. 

0 ( )MPaµ  
0 (1 )K MPa  ν  ( )E KPa  

0.0103 187.8095 0.5 30.8 

 
The force-deformation curve of the cell using the 

optimized hyperelastic parameters in comparison with the 
experimental observations has been shown in Figure 4. 
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Figure4: comparison of the finite element predicted forces with 
experimental data versus deformation. 

 
However, a limitation which may happen by the 

implemented optimization algorithm is that it may give a 
local minimum. Therefore, by changing the initial guess 
values, the sensitivity and robustness of the algorithm 
with respect to these variations have been tested. Results 
show that the algorithm is unaffected by the rate of the 
initial guesses when they have been varied (5, 10, 20). 
The results of sensitivity analysis for six different initial 
points have been shown in Figure5. 

 
Figure5: Convergence history of the objective function, starting 
from six different initial guesses.  
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The initial shear modulus, initial bulk modulus, 
Poisson’s ratio and Young modulus which have been 
,respectively, computed using relations 1 to 4 have been 
presented in Table 2. 

 
TABLE 2 

THE INITIAL AND OPTIMIZED NEO-HOOKEAN PARAMETERS AND 
THE FINAL VALUE OF THE FITNESS FUNCTION. 

Initial parameters 
Estimated 
parameters δ  

10 ( )C MPa  1( )D MPa  
10 ( )C MPa  

1( )D MPa
 

0.0058 0.011 0.0051 0.0106 
0.0047 

 
From Table 2, it is observed that estimated Poisson’s 

ratio isν = 0.5. This subject confirms the assumption of 
in compressibility which has been previously considered 
in the case of mouse oocyte and other biological cells [2, 
17]. Moreover, in previous studies on mouse oocyte cell 
[2, 17], it has been reported that its membrane Young 

modulus is 17 kPa which is lower than the Young 
modulus of the whole cell that has been calculated in this 
study. 

5.  CONCLUSION  

Here, the procedure of inverse analysis for estimation 
of hyperelastic parameters through best fit of a cell model 
to given experimental data, has been described. The 
algorithm has been applied to a mouse oocyte cell model 
in cell indentation experiment. It was observed that 
computed Young modulus of the whole cell is grater that 
the Young modulus of its bio membrane .Also, the 
evaluated Poisson’s ratio confirms the fact that cell 
material has an incompressible behavior. Moreover, the 
sensitivity of the algorithm on six different initial guesses 
was also tested. Convergence was successfully illustrated 
in all cases. One application of the model is that it can be 
implemented to the virtual reality based simulations to 
estimate virtual forces or deformations in real time.  
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