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ABSTRACT 

Amongst possible choices for identifying complicated processes for prediction, simulation, and 

approximation applications, high-order Takagi-Sugeno (TS) fuzzy models are fitting tools. Although they 

can construct models with rather high complexity, they are not as interpretable as first-order TS fuzzy 

models. In this paper, we first propose to use Deformed Linear Models (DLMs) in consequence parts of a TS 

fuzzy model, which provides both complexity and interpretability. We then prove that in order to minimize 

considered error indices, linear and nonlinear parts of DLMs can be optimized independently. A localization 

of DLMs in input-space of the TS fuzzy model is done using an appropriate sigmoid-based membership 

function, which can represent a fuzzy subspace with enough smoothness and flat top. An incremental 

algorithm is also proposed to identify the suggested fuzzy model. Then, through an illustrative example, the 

formation of DLMs to approximate a nonlinear function is demonstrated. The applicability and effectiveness 

of the introduced fuzzy modeling approach is examined in three case studies: prediction of a chaotic time 

series, identification of a steam generator model, and approximation of a nonlinear function for a sun sensor. 

The obtained results demonstrate the higher accuracy and better generalization of our modeling approach as 

compared with those of some other well-known state-of-the-art approaches. 

KEYWORDS 
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1.  INTRODUCTION 

Parametric nonlinear models are a good option for 

identification of nonlinear behaviors of a process. 

Alongside classical architectures and artificial neural 

networks, fuzzy systems introduce a vast useful family of 

nonlinear models. Takagi-Sugeno (TS) fuzzy systems are 

one of the most useful classes of fuzzy systems [1]. 

Consider a TS fuzzy model with   fuzzy rules; the  fuzzy 

rule is described as follows: 
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M  rules according to: 
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From a different perspective –which we will consider in 

the rest of the paper, a TS fuzzy model consists of sub-

models (consequent parts), which are localized in fuzzy 

subspaces by MFs. With respect to orders of 

functions )(xkf , we have zero-order, first-order or high-

order TS fuzzy models.  

To localize sub-models in appropriate fuzzy subspaces 

and concurrently supply required nonlinearities, each 

identification approach must posses enough complexity. 
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Accordingly, numerous complex architectures for TS 

fuzzy models and their corresponding learning algorithms 

have been developed [2]-[22]. 

Parameter adaptation techniques are one of 

alternatives to provide the required complexity. Adaptive 

Network-based Fuzzy Inference System (ANFIS) [2] is a 

known instance, where parameters, in a five layer 

network structure, are adapted through back-propagation 

and may also be combined with a least squares 

estimation. In [3], the Dynamic Evolving Neural-Fuzzy 

Inference System (DENFIS) with adaptive online and 

offline learning algorithms is proposed. In [4], an 

evolving approach to identify a hierarchical structure for 

a TS fuzzy model is presented, where structural 

improvement and parameter tuning are performed 

sequentially. Applying fuzzy clustering methods for 

identification of suitable fuzzy sets is another acceptable 

alternative to achieve the required complexity in a fuzzy 

model. Modified versions of Gath-Geva clustering have 

been developed in [5] and [6] to identify the premise 

parts of the fuzzy rules.  In [7], an identification 

approach through hybridization of fuzzy clustering and 

support vector learning is suggested for a Takagi-

Sugeno(TS)-type fuzzy network. In [8], an online fuzzy 

clustering is introduced which is independent of common 

spatial features. This clustering approach is utilized in 

identification of a developed version of TS model.  In [9], 

an improved version of fuzzy c-regression model 

clustering (NFCRMA) is introduced for identification of 

a TS fuzzy model. In this approach, orthogonal least 

square is exploited to identify the consequent part 

parameters. Evolutionary algorithms, such as genetic 

algorithms, provide global optimization approaches for 

identification of better structure and appropriate inputs 

for TS fuzzy models. [10], [11] and [12] are examples of 

this. In some approaches, using recurrent structures in a 

TS fuzzy model provides the required complexity, 

[13][14][15]. In some other approaches, using a sequence 

of structural optimization and parameter tuning is 

proposed. In [16], a model-tree learning algorithm is 

proposed. There, at each step, a rule is selected and split 

into two new ones. In a method extending this, merging 

of fuzzy rules is suggested in addition to splitting, [17] 

and [18]. In [19], to identify a first order TS fuzzy model, 

the structure optimization and parameter tuning are 

performed sequentially, based on an output error index.  

In another set of alternatives, there exist several 

identification approaches for high-order TS fuzzy 

models. In [3], a type of DENFIS that utilizes a set of 

Multi-Layer Perceptron(MLP) network as nonlinear sub-

models in TS fuzzy model is used. Parameters of these 

sub-models are trained with the back-propagation (BP) 

algorithm. In [20], to cancel noise of a temporal process, 

a high-order recurrent neuro-fuzzy system is suggested. 

Actually, in this recurrent model, the feedback 

connections are implemented through finite impulse 

response synaptic filters leading to a higher-order 

network with enhanced temporal capabilities. In [21], a 

specified class of artificial neural networks, Extreme 

Learning Machines(ELM), are suggested to be integrated 

with fuzzy logic. The result is a high-order Takagi-

Sugeno-Kang fuzzy model where sub-models are derived 

from multiple ELMs. In [22], quadratic polynomials have 

been used as sub-models, which are optimized through a 

version of parallel genetic algorithms. High-order TS 

fuzzy models, unlike first-order ones, can supply required 

nonlinearities mainly through nonlinear sub-models. 

However, optimization of their nonlinear sub-models is 

more challenging and the resulting fuzzy model is not 

interpretable like first-order TS fuzzy models. 

In this paper, we suggest specific nonlinear sub-

models which can be optimized partially and can be 

interpreted like linear sub-models. Each sub-model is the 

product of a linear model and a quadratic function. 

Through two theorems it is, then, proven that linear and 

nonlinear parts of the sub-models can be optimized 

independently, locally and globally. It is explained 

afterwards, how we can interpret the resulting high-order 

TS fuzzy model like first-order ones. We call such sub-

models "Deformed Linear Models" (DLMs) and the 

resulting fuzzy model as a TS-DLM fuzzy model.  

The rest of the paper is organized as follows: 

Section 2 explains about DLMs and their optimization in 

the TS-DLM fuzzy model. In Section 3, we introduce 

sigmoid MFs to localize DLMs in input-space. Section 4 

explains about an incremental identification approach for 

TS-DLM. Section 5 is devoted to case studies: A function 

approximation problem is considered, which illustrates 

how DLMs are localized in input-space. Next, the TS-

DLM fuzzy model is evaluated and compared in 

prediction of a chaotic time series, identification of a 

steam generator model, and approximation of a nonlinear 

function for a sun sensor. Finally, the paper is concluded 

in Section 6. 

2.  DEFORMED LINEAR MODELS 

Consider a linear model
k

T
y �z= , where R∈y , 

1×∈ nRx and 
1)1( ×+∈ nR� denote its output, input and 

linear parameters, respectively; and also, we have 

]1[ TT xz = . Corresponding to the considered linear 

model, a DLM is defined as follows: 
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The quadratic function )(xβ  is a nonlinear coefficient for 

the linear model; nn×∈ RS is a symmetric matrix and 
1×∈ nRc  is a focal point for )(xβ . The coefficient at focal 
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point is equal to one; however, it can be convexly 

increased or decreased in different directions with respect 

to eigenvectors and eigenvalues of S . Fig. 1 shows a 

given 2-dimensional linear model and some of its 

generated DLMs through Equation (3). 

In this work, we utilize some instances of the defined 

DLM in Equation (2) as sub-models in a TS fuzzy model 

as follows:  
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Figure 1: Equation (3) is used to created several DLMs that are 

derived from a given linear model 

 

One can easily interpret the above defined high-order 

TS fuzzy model like the first-order ones: It is sufficient to 

consider )()( xx kk ψβ as a non-normalized MF and leave 

linear parts of DLMs as linear sub-models in TS fuzzy 

model. This new interpretation of TS-DLM fuzzy model 

facilitates its development in some uses like control 

applications. In the following theorems, it is proven that 

DLMs in the TS-DLM fuzzy model can be optimized 

partially globally and locally. We use ‘ ⊗ ’ notation for 

Kronecker product and ‘ (.)vec ’ as an operator to 

vectorize a matrix [23]. 

 

Theorem 1:  Consider a nonlinear process with a single 

output, R∈y , and an n-dimensional input,
1×∈ nRx ; we 

denote observed input-output data points of the process 

with Qiyii ,,2,1),,( �=x  ; Consider the represented 

TS-DLM fuzzy model in Equation(4) for this process. It 

can be shown that:  

a) Suppose Mkk ,,2,1, �=�   are known. nn

k

×∈ RS  , 
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b) Suppose Mkk ,,2,1, �=S  are known. The computed 

Mkk ,,2,1, �=�    through Equation (6) provide 

optimum solutions to minimizing J . 
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Proof: The proof is given in Appendix A.                      � 

 

Theorem 2:  Consider a nonlinear process with a single 

output, R∈y , and an n-dimensional input,
1×∈ nRx and 

denote observed input-output data points of the process 

with Qiyii ,,2,1),,( �=x  .Consider the represented TS-

DLM fuzzy model in Equation(4) for this process. It can 

be shown that: 

a) Suppose each k�   is known. kS  , which satisfies 

Equation (7), is the optimum answer 

minimizing � =
−=

Q
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iiikk yyJ
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b) Suppose each kS  is known. The computed k�  

(through Equation (8)) provides optimum solution to 

minimizing kJ . 
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where 1×∈ Q

k RY and )1( +×∈ nMQ

k RZ  are matrices 
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whose i -th rows are defined as 
iif

k

i yy
5.0))(( xψ=

�
and 

iikik

k

i zxxz )())(( 5.0 βψ=
�

, respectively. 

Proof: The proof is given in Appendix B.                       
� 

Some important notes about the above theorems and 

computational complexity of the answers are explained 

below:  

 

1� Since 
fkB and kk

iA  are symmetric matrices, 
kffk BB = , 

and kS  is considered symmetric, approximately half of 

the linear equations (rows of Equations 5 and 7) are 

redundant. Hence, to compute Mkk ,,2,1, �=S , one 

must remove these redundant equations and then solve 

the remaining set of linear equations: 

2� It is obvious from the above theorems that Equations 

(5) and (6) provide global optimization where Equations 

(7) and (8) provide local optimization. It can be easily 

inferred that the local optimization method offers a better 

computational performance and higher numerical 

stability in comparison with the global one. This is due to 

matrix inversion operating on smaller matrices. However, 

it is expected that global optimization provides more 

accurate solutions. 

3.  SIGMOID MFS TO LOCALIZE DLMS 

Since DLMs can be optimized as nonlinear sub-

models, they can supply local nonlinearities for a process.  

So, to achieve better optimization performance, DLMs 

are put in the place to learn local nonlinearities of a 

process where MFs are utilized mainly in fuzzy 

partitioning. Accordingly, we should use smooth MFs, 

which have the ability to represent fuzzy subspaces with 

rather large flat tops around the focal points. 

Some MFs such as trapezoids may represent flat top 

regions but are not smooth. Gaussian Functions (GFs) are 

smooth but they vary around their focal points through 

exponential functions with quadratic arguments. Here, we 

suggest a smooth MF through sigmoid functions. These 

are exponential functions with first order arguments, 

which allow fuzzy subspaces with larger flat regions to 

be represented around focal points. Let nja j ,,2,1 �
�

=  

denote main axes of input-space. In correspondence with 

k -th fuzzy rule, consider k -th standard hyper-rectangle, 

which centered at ][ 21

k

n

kk

k ccc �=c .
k

jL  denotes its length 

along ja
�

. Now, with respect to k -th considered standard 

hyper-rectangle, k -th MF can be formulated as follows: 
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where )(⋅σ  is a sigmoid function and γ  determines 

its variation rate.  The function )(⋅k

jτ determines k -th 

fuzzy set of jx . As it is seen from Equation (9) , k -th 

MF is a product of nj
k

j ,,2,1,s)( �=⋅τ . Fig. 2(a) shows 

a function diagram of a )(⋅k

jτ  along ja
�

 with 8=γ , 

5.0=k

jc  and 1=k

jL  . As it can be seen the function is 

in its maximum at 5.0=k

jc (center), and reduces as it 

distances from its focal point, similar to a convex 

function, and converges to zero when jx  is far off from 

the center. Fig. 2(b) shows the diagram of the above 

defined MF with ]5.05.0[1 =T
c , 11

2

1

1 == LL  and 

8=γ . As it can be seen, it has produced a nearly flat 

region around the center but decreases and converges to 

zero when distancing from the center.  

 

 
 
Figure 2: (a) Diagram function of a fuzzy set for 

jx  with 

8=γ , 5.0=k

jc  and 1=k

jL  . (b) Diagram of a 2- dimensional 

MF with ]5.05.0[1 =Tc , 11

2

1

1 == LL  and 8=γ  . (c) Diagram 

of two equal fuzzy subspaces, which are the results of dividing 

the initial one -shown at (b)- along 
1a
�

. 

 

Now, suppose we want to replace the wk -th MF 
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orthogonally. To this end, it is sufficient for the centers 

and lengths of two new equal hyper-rectangles 1k  and 2k  

to be determined as follows (through the wk -th 

considered hyper-rectangle): 
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If we apply Equation (9) to the new hyper-rectangles: 

1k  and 2k , MFs )(
1

xkκ  and )(
2

xkκ  are achieved. Fig. 

2(c) shows a plot of functions of two new MFs, which 

are constructed through dividing the former diagram 

function —shown in Fig. 2(b)— along 1a
�

. 

4.  AN INCREMENTAL IDENTIFICATION APPROACH FOR 

THE TS-DLM FUZZY MODEL 

In this section, we present an incremental 

identification approach for the TS-DLM fuzzy model 

with introduced MFs. First, some main parts of the 

identification approach are explained:  

 

1. At first a big-enough standard −n dimensional 

hyper-rectangle, which involves all observed input data 

points, is defined: 
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where 1c  denotes its center and 
j

L1 denotes its length 

along ja
�

.  

2. Suppose we want to define k -th DLM through its 

normalized MF )( ik xψ  and its known related hyper-

rectangle. First, its linear parameters are computed 

through weighted least squares as follows: 
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where  1×∈ Q

k RY and )1( +×∈ nMQ

k RZ  are matrices whose 

th−i rows are defined as 
iik
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i yy 5.0))(( xψ=
� and 

iik

k

i zxz 5.0))((ψ=  respectively .   Then, with 

respect to kc  and k�  , 
kS  is computed through (7).  

Finally, with respect to kc  and 
kS , k� is updated 

through (8). 

 

3. In this approach, at each stage, a DLM in the TS-

DLM fuzzy model is chosen and replaced with two new 

ones.  To choose a DLM and replace it with two new 

ones, we need to evaluate DLMs in the TS-DLM fuzzy 

model. Therefore, we define local Sum of Squared Errors 

(SSE) index as follows. 
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The DLM, which has the highest local SSE is chosen: 
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4. To achieve a more accurate and valid TS-DLM 

fuzzy model, suitable interpolations between DLMs must 

be done. For this purpose, we performed numerous 

simulations for different cases. As a result, we practically 

observed that choosing γ    between 5 and 10 yields 

better results. Lower values of γ  are suggested to be 

used in cases where more extrapolation for a process is 

required. In this paper, 8=γ  is chosen for the considered 

examples. 

 

5. Two sets of data points are provided for train and 

test phases. Using the training data set, the fuzzy rules of 

the TS-DLM fuzzy model are learned. The algorithm 

stops if there is no significant reduction in SSE index. 

We use test data set to evaluate the identified model.  

 

6. Through a post-tuning procedure, one can optimize 

the parameters of DLMs, locally, through sequential 

computing of Equations (7) and (8) at the end of 

algorithm, N  times. Alternatively, one can do this 

globally through computing Equations (5) and (6) once.  

Fig. 3 presents a flowchart of the suggested 

identification algorithm with details.  



Amirkabir / MISC / Vol . 42 / No.2 / Fall 2010 ��

 

48 

 
Figure 3: The flowchart of incremental identification 

approach proposed for the TS-DLM fuzzy model 

 

5.  Case studies  

Here, we present the experimental results of applying 

the proposed identification algorithm to the TS-DLM 

fuzzy model for four different examples. The first 

example illustrates how DLMs are created to 

approximate a nonlinear function. Then, the performance 

of the proposed TS-DLM model is evaluated and 

compared in there different case studies:  prediction of 

the MG time series, identification of a steam generator 

model and approximation of a nonlinear function for a 

sun sensor.   

A.  An illustrative example 

 

Approximation of a Sinc function through the 

suggested fuzzy model is considered: 

(15)�
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1
21
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Seven hundred training data pairs and 350 test data pairs 

are selected randomly from the grid points of the range [-

10,10]× [-10,10] within the input-space of the Sinc 

function. We apply the algorithm explained in Fig. 3 to 

identify the TS-DLM fuzzy model for the Sinc function. 

Fig. 4 shows (Root Mean Square Errors) RMSE plots of 

training and test data sets versus number of rules.   

 

 
Figure 4: RMSE plots of train and test data sets versus number 

of rules for the Sinc function 

 

  
 
Figure 5: Some views of the approximated Sinc function with 

different number of DLMs. 
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Step1: Determine a standard −n dimensional hyper-

rectangle through (11) then put 1:=M .  

Step3: Among the M  available DLMs, select 

th−wk one which has the highest local SSE using 

equation (14).  

Start 

Step4: For 1=j up to nj =  repeat following 

steps 

1- Divide the th−wk  considered hyper-rectangle 

orthogonally into two hyper-rectangles 1k  and 2k  

Along ja
�

through (10). 

2- Compute their MFs, )(
1

xkκ  and )(
2

x
k

κ , 

correspond to hype-rectangles 1k  and 2k , through 

(9). 

3-Identify and optimize DLMs 1k  and 2k  through 

(12), (7) and (8), respectively.   

Step2: Define the first DLM by performing (12), (7) 

and (8) respectively. 

Yes 

 Step6: Is stop condition 

satisfied? 

No 

End 

Step7 (optional): Tune DLMs through one of 

following:  

1) Local tuning by (7) and (8) ( N  times).  

2) Global tuning by (5) and (6) (once). 

Step5: Choose one among all n  resulted TS-DLM 

fuzzy model in Step 4, which has minimum SSE 

then put 1: += MM  . 

 
0 20 40 60 80 100 

0 

0.05 

0.1 

0.15 

0.2 

Number of rules 

RMSE of Training data 

RMSE of Test data 



 

 Amirkabir / MISC / Vol . 42 / No.2 / Fall 2010  
49 

 

As it is seen in Fig. 4, the RMSE index decreases 

when the number of rules is increased; Fig. 5 shows a 

few views of approximated Sinc functions with different 

number of DLMS and normalized input data space. 

As it can be seen, the DLMs are localized in input-

space through introduced MFs. They can be identified 

from each other by their rectangle boundaries which are 

marked with bold black lines. The focal points of 

quadratic functions ( Mkk ,,2,1, �=c ) are the center 

points of determined rectangles. It is seen, clearly, while 

the number of rules in the TS-DLM fuzzy model is 

increased, the approximated function becomes more 

similar to a Sinc function. 

 

B.  Predicting chaotic dynamics (Mackey-Glass time 

series) 

Here, the TS-DLM fuzzy model is identified to predict 

the Mackey-Glass (MG) time series. The MG time series 

is generated through a delayed differential equation 

defined as follows. 
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The delayed differential Equation (15) is solved by 

fourth-order Runge-Kutta method with time-step 0.1 

from 0=t  to 5500=t  and the initial 

condition 2.1)0( =x , as well as delay 171 =τ . In this 

experiment, 3000 evenly sampled data points, for 

201=t  to 3200, are chosen as the training data set; 500 

data points, for t=5001 to 5500, are used as the test data 

set. The goal is 85-step-ahead predictions of time series 

based on its values at the current moment along with 6th, 

12th, and 18th lags. 
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This particular selection of training and test data as well 

as tx  and ty  make our results comparable with other 

reported results [3]. The No Dimensional Error Index 

(NDEI), which is defined as the ratio of the root mean 

square error over the standard deviation of the target 

data, is considered as the criterion for evaluation and 

comparison purposes. The suggested TS-DLM fuzzy 

model with introduced MFs is identified through 

proposed identification algorithm for the generated MG 

time series.  

 

Fig. 6 shows the RMSE plots of train and test data sets 

versus the number of fuzzy rules. As it is seen, the 

reduction rate of error index is kept on while 200<M . 

However, the optimum index is met at 190=M . 

 

 
Figure 6: the RMSE plots of train and test data sets versus 

number of fuzzy rules of the TS-DLM used in prediction of MG 

time series. 

 

Table 1 presents the MG time series prediction results, 

including,  number of rules (neurons) , number of 

training epochs, training times and computed NDEI for 

both training and testing  data. The five initial rows of 

given results in the table are the same with what is 

reported in [3]. Also, the achieved prediction results 

through a MATLAB implementation of NFCRMA 

algorithm ([9]), is presented in Table 1. For this purpose, 

to achieve better results, all suggested parameters are 

considered. 
TABLE 1 

 PREDICTION RESULTS OF SOME NONLINEAR MODELS ON MG 

TRAINING AND TEST DATA; THE FIRST FIVE ROWS OF RESULTS HAD 

BEEN REPORTED IN [3]. 

 

Methods 
Rules 

(Neu.) 

Epochs 

(Iter.) 

Train� 

NDEI 

Test� 

NDEI 

MLP-BP 60 500 0.021 0.022 

ANFIS 81 200 0.028 0.029 

DENFIS I 116 2 0.068 0.068 

DENFIS I 883 2 0.023 0.019 

DENFIS II 

(Mixed with 

MLP) 

58 100 0.017 0.016 

NFCRMA [9] 90 30 0.0225 0.024 

TS-DLM 

(without tuning) 
190 - 0.012 0.015 

TS-DLM 

(without tuning) 
70 - 0.037 0.037 

TS-DLM  

(local tuning) 
70 N=100 0.028 0.030 

TS-DLM  

(global tuning) 
70 � 0.019 0.026 

 

It is shown that the suggested TS-DLM fuzzy model with 

190=M  fuzzy rules provides significant improvement 

over other previous achieved results. It should be noted 

that one of other favorable results is for DENFIS II, 

which its sub-models are MLP-based models. However, 

the identified model by DENFIS II and MLP model do 

not have linear interpretations like first-order TS fuzzy 

models. To provide a TS-DLM fuzzy model with more 

concise structure, we also identify it with 70=M  fuzzy 

0.12  
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rules. As it is shown in this situation the result is 

favorable. However, to increase the performance of the 

model, local and global post-tuning is used despite their 

rather high training time. As it is shown in the Table 1, 

both post-tuning on the fuzzy model has increased the 

performance. Fig. 7 shows the original and predicted MG 

time series for considered test data points, (a), and the 

error signal of prediction by TS-DLM model with fuzzy 

rules, (b). 

 

 
Figure 7: The original and predicted MG time series for 

considered test data points, (a), and the error signal of 

prediction by TS-DLM model with 70=M  fuzzy rules, (b). 

 

To come up with a more thorough study of the 

performance of the TS-DLM fuzzy model, we have also 

identified the TS-DLM fuzzy models in various other 

states. Table 2 shows the prediction results for these 

states. 
TABLE 2 

 PREDICTION RESULTS OF SOME OTHER STATES FOR THE TS-DLM 

FUZZY MODELS. 

Methods rules Epochs 
Training 

NDEI 

Testing 

NDEI 

TS-DLM (without 

tuning) 
140 � 0.018 0.020 

TS-DLM (local 

tuning) 
140 N=100 0.014 0.015 

TS-DLM (global 

tuning) 
140 - 0.0065 0.1652 

TS-DLM  with 

Gaussian MFs 
70 - 0.055 0.062 

TS-DLM with linear 

submodels 
70 - 0.093 0.10 

 

Although performing global post-tuning has increased 

the performance for the model with 70=M  fuzzy rules, 

this may be unsuitable when the number of fuzzy rules is 

rather high. To illustrate the situation, we identify the TS-

DLM fuzzy model with 140=M  fuzzy rules. As it is 

shown in Table 2, comparing the favorable results 

obtained for local-tuning, global post-tuning shows 

unsuitable for the model with 140=M  fuzzy rules due 

to over-fitting problem. Also, to evaluate the sigmoid 

MF, we have identified the TS-DLM fuzzy model with a 

conventional MF, i.e., standard Gaussian function, hence, 

instead of using equation (9) in the identification 

algorithm, the following function is considered: 

(18)�
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where  3=α  provides a favorable interpolation 

coefficient [16]. It can be inferred from Table 2 that 

sigmoid MFs provide better performance for the TS-

DLM model. Also, it can be seen from Table 2, if only 

linear parts of DLMs are considered, or equally, 

Mkk ,,2,1, �== 0S , the performance of the model 

decreases considerably. Two last results demonstrate the 

high impact of sigmoid MFs and quadratic functions in 

improving the performance of the suggested fuzzy model.  

C.  Identifying a model for a steam generator 

In this case study, we identify a steam generator 

(dynamic) model through the introduced learning 

algorithm of the TS-DLM fuzzy model. Then, the 

performance of the TS-DLM fuzzy model is compared 

with those of the fuzzy models identified through 

MATLAB implementations of MLP-BP, ANFIS, 

DENFIS I, DENFIS II and NFCRMA methods. To 

achieve better results, all suggested parameter 

adjustments are considered. The data comes from DaISy: 

Database for the Identification of Systems, [24]. The 

considered output of model, ty
 , is steam flow (Kg./s). 

This model has seven inputs: fuel, air, reference level, 

disturbance and three lags of steam flow: 

),,( 321 −−− ttt yyy . Totally, 9600 input-output data point 

are sampled with sampling rate 3 sec. We assign 75% of 

these data points (initially-observed part) for training data 

and the rest 25% is assigned to test data. In this case, for 

all considered methods, we end the training phase of the 

models before occurrence of the over-fitting problem. 

The training and test RMSE plots versus number of rules 

are shown in Fig. 8. As it is seen, at M=8 fuzzy rules —

before the over-fitting problem intensifies— the training 

phase for TS-DLM is terminated.  

 
Figure 8: The RMSE plots of train and test data sets versus 

number of fuzzy rules of the TS-DLM fuzzy model identified 
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for the steam generator model. 

Table 3 presents the results including number of rules, 

epochs, training time and the achieved NDEI for training 

and test data. 
TABLE 3 

 THE IDENTIFICATION RESULTS OF SOME NONLINEAR 

IDENTIFICATION APPROACHES FOR THE STREAM GENERATOR 

MODEL 

Methods 
Rules 

(Neu.) 

Epoch. 

(Iter.) 

Train. 

NDEI 

Test. 

NDEI 

Train. 

Time 

(sec) 

MLP-BP 20 200 0.021 0.0240 292 

ANFIS 29 10 0.0186 0.0213 232 

DENFIS I 34 10 0.0190 0.0210 364 

DENFIS II 34 10 0.0188 0.0240 861 

NFCRMA [9] 15 30 0.0189 0.0209 695 

TS-DLM 

(without tuning) 
8 - 0.0186 0.0204 151 

TS-DLM  

(local tuning) 
8 N=10 0.0185 0.0204 195 

TS-DLM  

(global tuning) 
8 1 0.0185 0.0206 216 

As it is seen, the resulting TS-DLM model, with its much 

lower number of fuzzy rules, has favorable generalization 

capability in comparison with fuzzy models resulting 

through other approaches. However, the global tuning 

makes the testing NDEI worse due to over-fitting 

problem. 

D.  Approximation of a nonlinear function for a sun 

sensor 

Due to memory limitations in embedded systems, it is 

demanded that the large look-up tables of sensors or 

actuators be replaced by accurate-enough nonlinear 

models with concise structures. Here, we apply the 

proposed TS-DLM with its learning algorithm in Fig. 3 to 

approximate the look-up table of a sun sensor utilized in 

attitude control of satellites (courtesy of Space Research 

Center of Iran for the use of data). This look-up table has 

110 columns and 110 rows. Considering the indices of 

the rows and columns as inputs, a 3-dimensional surface 

for the look-up table is formed and is shown in Fig. 9. 

 
Figure 9: A 3- dimensional surface of the look- up table of a sun 

sensor (the variables 
1x �and 

2x  are indices of rows and columns 

of the table and y  is t ). 

 

Due to the rough region appearing in the last 30 rows 

of the table, they are memorized directly and the rest of 

the look-up table is considered for approximation. The 

maximum absolute difference of the estimated and 

original values of the table, Max , is considered for 

evaluation. In this case, the accuracy of the model 

providing 900<Max  is satisfactory. We apply all 

mentioned methods in Table 3 to identify a model for the 

current case study. In this case, there are no evaluation 

phase and only a model is trained to approximate the 

look-up table.  Table 4 shows the achieved modeling and 

approximation results of different methods.  

 
TABLE 4 

 THE MODELING AND APPROXIMATION RESULTS FOR THE LOOK-UP 

TABLE OF THE SUN SENSOR. 

Methods 
Rules 

(Neu.) 

Epoch. 

(Iter.) 

Train. 

NDEI 
Max 

Train. 

Time 

(sec) 

MLP-BP 15 100 0.0562 801 168 

ANFIS 10 50 0.0368 706 61 

DENFIS I 32 15 0.081 871 311 

DENFIS II 32 50 0.063 802 721 

NFCRMA [9] 20 30 0.0346 726 614 

TS-DLM  

(without tuning) 
6 - 0.0445 762 20 

TS-DLM  

(local tuning) 
6 N=20 0.031 753 71 

TS-DLM  

(global tuning) 
6 - 0.037 470 46 

 

TABLE 5. 

 PREMISE AND CONSEQUENCE PARAMETERS OF THE RULES OF THE 

IDENTIFIED TS-DLM FUZZY MODEL. 

Rule 
kc  kL  

kS
 k�  

1 �
�

�
�
�

�

75.0

75.0  
�
�

�
�
�

�

5.0

5.0  
�
�

�
�
�

�

−

−

0781.0042.0

042.00181.0

 �
�
�

�

�

�
�
�

�

�

−

−

13

3865

455  

2 �
�

�
�
�

�

375.0

5.0

 

�
�

�
�
�

�

25.0

1

 

�
�

�
�
�

�

− 002.00823.0

0823.03275.0

 �
�
�

�

�

�
�
�

�

�

−

−

1580

6303

324  

3 �
�

�
�
�

�

1875.0

5.0

 

�
�

�
�
�

�

125.0

1

 

�
�

�
�
�

�

704.103194.0

3194.05615.0

 �
�
�

�

�

�
�
�

�

�

−

−

2435

9498

300  

4 �
�

�
�
�

�

9375.0

5.0  
�
�

�
�
�

�

625.0

1  
�
�

�
�
�

�

−−

−−

691.18629.0

629.0122.0

 �
�
�

�

�

�
�
�

�

�

−

−

341

1565

52  

5 �
�

�
�
�

�

75.0

25.0  

�
�

�
�
�

�

5.0

5.0  
�
�

�
�
�

�

− 0643.01405.0

1405.0579.0

 �
�
�

�

�

�
�
�

�

�

−

−

543

4207

743  

6 �
�

�
�
�

�

3125.0

5.0

 

�
�

�
�
�

�

625.0

1

 

�
�

�
�
�

�

− 01.49361.1

3610.11197.0
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�
�

�

�

�
�
�

�

�

−

−

453

3191

83  

 

As it is seen in Table 4, the identified TS-DLM fuzzy 

model with global-tuning has the least number of fuzzy 

1x

y

2x
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rules and best Max index, and the identified TS-DLM 

fuzzy model with local-tuning has the best NDEI 

index. Table 5 presents premise and consequence 

parameters of the rules of the identified TS-DLM fuzzy 

model. Note that the considered input and output data 

points of the model have been normalized. 

6.  CONCLUSION 

In this paper, we proposed a new high order TS fuzzy 

model as an alternative for identification of complicated 

processes. Accordingly, Deformed Linear Models 

(DLMs) were suggested to be used as consequence parts 

of fuzzy rules. A DLM was defined as the product of a 

linear model and a quadratic function. It was explained 

that the resulting high-order TS-DLM fuzzy model can 

be interpreted like the first-order one, which facilitates its 

development in many areas like control applications. 

Also, through Theorem 1 and Theorem 2, we proved that 

linear or nonlinear models in DLMs can be optimized 

independently in two local and global manners. A fitting 

membership function for suggested fuzzy model, which 

is the product of some sigmoid functions, was introduced. 

Then, an incremental identification algorithm was 

proposed for the TS-DLM fuzzy model. At each stage, 

the DLM with highest local SSE was replaced with two 

new optimized ones. Simultaneously, one fuzzy rule was 

replaced with two new ones. Through an illustrative 

example, it was shown how DLMs in the TS-DLM fuzzy 

model were shaped to approximate a Sinc function. The 

proposed model was applied to predict the Mackey-Glass 

time series, to identify a steam generator model and to 

approximate a nonlinear function for a sun sensor. The 

comparison of the results with some other approaches 

demonstrated high accuracy and validity of the proposed 

model in considered prediction, identification and 

approximation case studies. It was further shown that one 

can provide a tradeoff among a smallness of the structure, 

accuracy, training times and over-fitting for this model by 

determining the number of fuzzy rules and performing 

post-tuning methods. 
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9.  APPENDIXES  

A.  Proof of Theorem 1 
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Here, we compute the extremums of J : 
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We can rewrite the above equation as follows:  
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As it can be known from (A.7), the problem of computing optimum ζ  

is the same least square optimization problem. Therefore, let Z  denote 

a data matrix whose i -th row is i�  and Y  denote an output vector 

whose i -th element is iy .  We know from least squares optimization 

technique that the optimum answer for �  is computed as follows:  
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We can get 
k�  through resulting �  from (A.8), easily.       
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B.  Proof of Theorem 2 

a) 
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Here, we compute the extremum of J as follows: 
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The problem of computing optimum k�  is a least squares 

optimization problem. Therefore, let kZ  denote a data matrix 

whose th−i  row is 
T

iz
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 and kY  denote an output vector 

whose th−i  row is

k

iy
�

. We know from least squares 

optimization technique that the optimum answer for k�  is: 
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