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ABSTRACT 

In this work calculation of energetics of transition metal surfaces is presented. The tight-binding model is 

employed in order to calculate the energetics. The tight-binding basis set is limited to d orbitals which are 

valid for elements at the end of transition metals series. In our analysis we concentrated on electronic effects 

at temperature T=0 K, this means that no entropic term will be presented and since we study unrelaxed 

structures, no elastic deformation contribution will be present either. Density of states is calculated for atoms 

at the surface and in the bulk for palladium by using the recursion method, when the potential includes only 

first and second nearest neighbor interactions. The surface energy of fcc (111) surfaces of Pd is also 

calculated. 
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1.  INTRODUCTION 

The study of energetics of surfaces is of prime interest 

for the understanding of various processes such as crystal 

growth, surface morphology, or roughening transition. 

Phenomenological study of metal surfaces is presently 

thus of interest in the science and technology. The study 

of these surfaces is presently the subject of intensive 

investigations since they may provide an appropriate 

substrate for growing nanostructures [1,2]. It is well 

known that the energetic properties of steps are 

fundamental in understanding epitaxial growth, surface, 

roughening transition and equilibrium crystallite shapes. 

Calculation the energy of flat surfaces of metals is thus of 

interest either since it is essential for calculation the 

energy of vicinal surfaces. Furthermore, steps have been 

shown to modify the adatom motion at surfaces It is thus 

of importance also for understanding diffusion at surfaces 

to chart the energetics of steps. 

For technological applications in relation to the use of 

surface properties, the understanding and control of 

roughness and instabilities phenomena for pure metal and 

alloy crystal surfaces is a prerequisite. Due to the very 

low symmetry of these systems, first-principle 

calculations are scarce and limited to a very small number 

of geometries and metals, for instance Al [3,4], Cu [5], Pt 

[6]. On the contrary many theoretical works have been 

based on semi-empirical potentials like embedded atom 

model (EAM) [7,8], Sutton– Chen potential [9] or 

effective medium theory (EMT) [10]. In another approach 

Vitos et al. [11] have derived step and kink energies of 

most transition metals from effective pair potentials (EPP) 

deduced from a first-principle data base of surface 

energies. 

More recently, Mehl and Papaconstantopoulos [12] 

have proposed a very attractive method to determine the 

tight-binding parameters at each atomic distance. The aim 

of this paper is, on the one hand, to show that by using a 

non-orthogonal basis set of pure d-band, calculation of 

surface energy is also possible and it is in agreement with 

experiments. 

The paper is organized as follows. In Sec. 2, the tight-

binding model used for calculating total energies of 

transition metals is presented. The model is made explicit 

for application on fcc(111) surfaces. In Sec. 3, numerical 

results for density of state and local density of state of Pd 

are presented and discussed in detail. In Sec. 4 result for 

surface energy of fcc(111) of Pd are presented and 
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compared with other methods Finally, conclusions and a 

summary are presented in Sec. 5. 

2.  MODEL 

Our aim is to compute the total energies of different 

crystal configurations in order to compare them. In a 

tight-binding (TB) Model, the crystal energy is usually 

expressed as being composed of an attractive and a 

repulsive part. 

( ) ( ) ( )coh band repE R E R E R= +        (1) 

 

Where Eband is due to the broadening of valence 

electronic levels into a band and Erep would be any other 

effect, notably the ion-ion repulsion. The repulsive energy 

will be described by a Born-Mayer pair wise potential 

limited to first nearest neighbor. 

Since we are interested in computing band energies for 

transition metals, we use a tight-binding scheme where 

only the d electrons are taken into account. It has been 

shown [13] that, at least for transition metals not too close 

to the extremes of the transition-metal series, the cohesive 

properties are by far dominated by the valence d 

electrons. The bulk band energy is written as: 

( )

FE

bandE EN E dE

−∞

= �  

          (2) 

 

 

Where N(E) is the total density of states and EF is the 

Fermi energy of the system. The zero energy is chosen to 

be at the center of gravity of N(E). When our system 

deviates from a bulk crystal, i.e., we deal with impurities, 

surfaces, etc., it is convenient to introduce the notion of 

local density of states (LDOS), which will be defined 

more precisely in the following. To each atomic site i, we 

assign a local density of states ni(E). For an atom at a site 

different from the bulk, the LDOS will be perturbed 

compared to a bulk atom:  ni(E)=n(E)+�ni(E) 

Where n(E) is the bulk density of states per atom and 

�ni(E) is the LDOS perturbation. The perturbation �ni(E) 

causes a perturbation �Vi of the potential at site i. Both 

perturbations are interdependent and should be calculated 

self-consistently. However, in metals, screening of charge 

takes place within an interatomic distance and the change 

of the potentials �Vi may be obtained by requiring local 

charge neutrality [14]. The band energy becomes: 

12 ( , ,... ....)

FE

band i j i i

i

E E n E V V dE N Vδ δ δ δ δ

−∞

� �
� �= −
� �
� �

� �  

  (3) 

 

 

Where Ni is the number of d electrons at site i and the 

second term in the brackets avoids the double counting of 

the change in electron-electron interactions responsible 

for the shift �Vi [14] The density of states of a system is 

calculated using a tight-binding Hamiltonian HTB. It is 

assumed that the set of d orbitals, �i� (� = xy, yz, zx, 

x2+y2, 3z2-r2) centered at all sites i, provides a complete 

orthonormal basis on which we can expand the electronic 

wave functions �n of energy En. The matrix elements of 

the Hamiltonian in this basis will be determined by the 

hopping integrals
i i j

Vλ µϕ ϕ , usually limited to 

nearest neighbors. 

The hopping integrals are completely determined by 

three hopping parameters (dd�, dd�, dd�) and the 

direction cosines of the vector Rij connecting sites i and j. 

The variation of these parameters with distance is 

taken to be exponential. The local density of states of a 

given atom is defined using the Green operator: 

1
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The quantity Gii can be expanded as a continued 

fraction [14]. 
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In order to calculate ( )iiG zλλ
 at first coefficients of 

expansion 
i
jb
λ

 and 
i
ja
λ

 should be calculated. 

When the corresponding coefficients are exact up to 

the level n, the LDOS has 2n exact moments. The more 

accurate a calculation is required to be, the more exact 

moments need to be included: 

( )

FE

i p
p iE n E dEµ

−∞

= �  

             (8) 

 

 

In this work, the LDOS of an atom in a system is 

evaluated by calculating exactly 12 first levels in a 

recursion scheme and replacing the remaining part of the 

continued fraction by the square-root terminator, which 

corresponds to using the asymptotic values for the 

remaining coefficients [14] In practice, a cluster of atoms 
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is built around the atom i for which we wish to calculate 

the LDOS. The number of atoms in the cluster is 

determined by the requirement that all atoms should be 

reached from i within nc jumps. A great advantage of this 

technique is that we do not need to assume any periodicity 

of the system. In this work atom up to 10th nearest 

neighbors is considered, in term of cluster size this means 

that in each cluster around an atom 10425 atoms are 

considered. 

3.  LOCAL DENSITY OF STATES 

The method is introduced to investigate transition 

metals and Pd is selected. In order to analyze electronic 

structures and modeling surfaces of transition metals the 

first stage is to calculate the local density of states of 

atoms at sites that are geometrically different from each 

others. At first the matrix representing hoping integral 

between first and second nearest neighbors in the bulk is 

calculated that result a 8 5 5× ×  matrix when only d 

orbital in the wave function is considered. This matrix 

elements results from tight binding hoping integral and 

direction cosine between considered atom and its 

neighbors. In this work these tight binding parameters are 

used: 

1 1 1

2 2 2

-0.661470473  0.440980315 -0.110245079

-0.116955645  0.07797043 -0.01949260

dd dd dd

dd dd dd

σ π δ

σ π δ

= = =

= = =

 

 

As it is explained in model at the next stage the matrix 

elements of green operator in the atomic orbital basis set 

are calculated. This quantity in continued fraction is 

expanded and the coefficient of expansion by using 

recursion method is calculated. The question is how many 

moments should be included in the computation of the 

LDOS. In order to reach sufficient accuracy in the 

calculated energy 12 exact level in the continued fraction 

are used-ie 24 exact moments- for (111) surfaces. In term 

of cluster size it translates to at most 10425 atoms per 

cluster. It is assumed that potential perturbation occur on 

all atoms that can be reached in 12 first and 6 second 

nearest neighbor jumps from the central atom of the 

system (chosen to be an atom in the bulk). We calculate 

local density of states for an atom in the bulk and at the 

(111) surface of Pd: 

 

 
Figure 1:  Local density of states for an atom at the (111) surface 

of Pd 

 

 

 
Figure 2:  Local density of states for an atom in the bulk and at 

the (111) surface of Pd 

 

When the LDOS of surface atom over energy band is 

integrated we saw that the total charge is not conserved 

and Fermi energy should alter such that total charge 

conserved. 

4.  SURFACE ENERGY 

Surface energy in the form of a required energy is 

defined for separating an infinite crystal into two semi-

infinite crystal in which intersect with special crystal 

orientation  is confined. It is shown in the previous 

section  that the total charge is not conserved in order to 

reconstructing the total number of electrons for the 

conservation proposes it is required to allow unreal (but 

small of Fermi level) to occur. 
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That n(E) and n	(E) is the LDOS of bulk and surface 

respectively. And L is the number of d orbitals. For small 

F
Eδ  we have: 

2 ( ) ( )

FE

band FE LN E E n E dEδ

−∞

= −�  

                    

(10) 

 

 

Electrons that is added or reduce is added or reduced to 

the Fermi level. By using the local density of states of 

surface and bulk atom that we presented in the previous 

section and above relation the surface energy is calculated 

and we result:  0.0975bandE eVδ =  

If this value is compared with experimental value and 

other numerical value [8] there is a good agreement, 

however in this work there is an improvement because we 

also considered second neighbor interactions.  

By using the technique presented in this paper the 

surface energy of other transition metals can be calculated 

in the series but it should attend that only for atoms at the 

end of transition metal series this relation can be used and 

for others must have some correction in relations. 

5.  CONCLUSION 

Surface energy of Pd is calculated in this method and it 

is shown that there is a good agreement with other works. 

In this work only d orbitals considered in model and it is 

concluded that for calculation the surface energy of Pd the 

role of d orbitals is majority. However considering only d 

orbitals is not the best model for calculation the energetic 

of all transition metals and s and p orbitals must be 

considered also. The technique that is introduced in this 

work does not need to assume any periodicity of the 

system and this is one of innovation of this method. The 

other innovation of this technique is that in this work 

atom up to 12th nearest neighbors is considered and the 

result is more accurate than other numerical result and has 

good agreement with experimental value. 

In this work the reconstruction effect is avoided. 

Calculation of surface energy with reconstruction effect in 

tight binding model is also possible but it is an 

inconvenient numerical calculation. 
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