
 

 Amirkabir / MISC / Vol . 43 / No.2 / Fall 2011  

 
33

                                          1 

Vehicle Stabilization via a Self-Tuning Optimal Controller 
M. Bayani i*; R. Kazemi ii and Sh. Azadiiii 

Received 17 September 2007; received in revised 23,September 2009; accepted 28 June 2011 

                                                           
i * Corresponding Author, 1Mohsen Bayani Khaknejad awarded MSc in Mechanical Engineering by K. N. Toosi university of technology and is 

with the Automotive Industries Research and Innovation Center of Saipa, Tehran, Iran (e-mail: msn.bayani@yahoo.com). 
ii R. Kazemi is the Associated Prof. in the Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran (e-mail: 

kazemi@aut.ac.ir). 
iii Sh. Azadi is the Assistant Prof. in the Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran (e-mail: 

azadi@aut.ac.ir). 

ABSTRACT 

Nowadays, using advanced vehicle control and safety systems in vehicles is growing rapidly. In this 
regard, in recent years new control systems, called VDC, have been introduced. These systems stabilize 
vehicle yaw motion, by yaw moment resulted from tire controlling forces. In this paper, an adaptive optimal 
controller applied to a vehicle to obtain a satisfactory lateral and yaw stability. To derive the control law, we 
use LQR method. Considering that various parameters are included in the controller structure, which their 
measurement is either expensive or practically impossible, a least squared estimator with variable forgetting 
factor is proposed to estimate them. To optimize the system and in order to exert the control yaw moment, an 
ABS brake system is implemented in a new architecture to distribute brake forces on wheels. The controller 
rules are derived based on the bicycle model and the estimator is designed based on the 7 DOE model of the 
vehicle. To simulate and evaluate the performance of the proposed controller the full vehicle model of the 
reference car in ADAMS/Car, with 214 DOE, is also implemented. Finally, the results of the vehicle 
response, equipped with the controller system, in a standard maneuver are presented. 
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1.  INTRODUCTION 

Nowadays, safety is one of the competition factors in 
auto-industries. Thus we are faced with a progressive 
implementation of control systems in vehicles; that is due 
to their great role in prevention of crashes and hazards. 
It is investigated that the main cause of severe collides, 
which result in maiming and financial charges, is the spin 
out of the vehicle about the vertical axis [1]. From 
vehicle dynamic point of view, this will happen due to 
excessive side slip and severe over steering. 

Lateral stability in ordinary cars is just controlled with 
the steering input. In critical situations in which vehicle is 
spinning around the vertical axis rapidly, the dynamic 
behavior of the vehicle would be nonlinear. This is 
mainly due to the saturation of tire lateral forces. 
Research indicates that in critical conditions the lateral 
dynamic factors don't show a response to the steering 
input. That is, the car is uncontrollable with the steering 
input [2]. 

 

In recent years, new control systems called VDC are 
introduced and implemented in modern vehicles. This 
system will control the yaw behavior of the car by 
exerting the corrective yaw moment about the vertical 
axis. This moment is mainly generated by the aim of 
lateral and longitudinal forces beneath tires. Bearing in 
mind that lateral tire forces are saturated in critical 
condition, this will be done by exerting unequal braking 
or traction forces beneath left and right tires. Considering 
that most of today cars are equipped with the ABS 
system, we can take advantage of it for generating the 
corrective forces. This approach is called differential 
braking. 

In this research a two layer vehicle dynamic adaptive 
controller will be introduced. In the upper layer the 
corrective yaw moment is calculated by the aim of an 
optimal controller. The well-known ABS system  as the 
chief operator is located in the lower layer and will exert 
the necessary braking torques on the wheels based on the 
orders laid down by the upper layer. In order to regulate 
and update the parameters of the controller we will 
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benefit an estimator. 
One of the first researches deals with vehicle dynamic 

control is done by Van Zanten and coworkers [1 & 2] the 
researchers of Bosch company in 1995. They presented 
their research in the Society of Automotive Engineers 
conference that could be considered as the birth of the 
VDC system, by considering all practical and 
implemental aspects. The structure of the proposed 
controller was a multi layer system in which the layers 
operate based on the state feedback and PID controller. 
Abe and co workers in 2001, analyzed vehicle lateral 
behavior with vehicle side slip controlling [3]. The 
control method used was the sliding mode control 
theorem. The final result of this research is the better 
performance of the direct yaw moment control system 
compared with a Four Wheel Steering system (4WS). 
Chung and Yi in 2006 designed a control system based 
on the sliding mode theorem to improve vehicle yaw 
stability [4]. In this research, vehicle instability 
boundaries are defined according to the side slip angle 
and its derivation and the control system will be active in 
case of exceeding from these boundaries.  There are also 
significant researches on identification of tire parameters. 
One can refer to the work done in 1993 by Huang and 
coworkers [5] to identify and estimate vehicle parameters 
using a gradient method. In 2003, Carlson and Gerdes 
published an article [6] in which they used a non-linear 
estimator to identify the effective radius of tire and its 
longitudinal slip coefficient via a nonlinear estimator. 
Tonelli and coworkers in 2006 estimated the maximum 
tire friction coefficient in contact with road surface. They 
evaluated the proposed method performance in condition 
that the tire slips or purely rotates [7]. Gebbi and 
coworkers in 2008 designed a six channel sensor with 
which accurate measurement of tire forces, to be used in 
VDC systems, would be possible. The important note is 
considering the price and capability for manufacturing 
when tackling such equipments [8]. Li and coworkers in 
2008 introduced a new algorithm for estimation of tire 
forces. The simulator they used was a hardware in the 
loop system with which the robustness of the system is 
examined in different road conditions [9]. 

2.  MODELING AND VALIDATION 

Due to restrictions in controller design based on the 
mathematical model, we have used the linearized bicycle 
model with longitudinal, lateral, Yaw DOFs [10], which 
is depicted in Fig. 1.  

 
Figure 1:  Bicycle model. 
 

To use vehicle dynamic equations of the bicycle 
model in deriving the optimal controller gain, we will 
linearize the equations by assuming that vehicle speed in 
small intervals is constant. Undoubtedly, velocity of car 
in each step of the solution procedure will be updated. By 
considering that the steering input is small and assuming 
the steady state condition, the following 2-DOF equations 
of car are obtained. 
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Here, Mz is the controlling moment. These equations 
can be represented in the state space form as: 
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Evidently, the limitation arose due to the simplified 
assumptions is just to calculate the controlling input 
rapidly and accurately as a function of the states and 
parameters of the system. 
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In order to simulate the vehicle behavior and evaluate 
the performance of the proposed controller in the virtual 
space, we use the 214-DOF full car model in 
ADAMS/Car. The model used here represents a sedan 
car equipped with McPherson suspension in front and 
torsion beam axel in rear. Sub-systems of the ADAMS 
model and their DOF are given in the Table 1: 

TABLE 1 
DOF OF ADAMS MODEL SUBSYSTEMS 

Sub-System DOF 

Front Suspension Assembly with Anti-Roll Bar and Tires 62 

Rear Suspension Assembly with Anti-Roll Bar and Rear Tire 116 

Steering Sub-System 8 

Power Train with Engine Block and Front Differential 22 

Car Body 6 
The full car model and front and rear suspension sub-

systems in ADAMS are shown in Figs. 2 to 4. 

 
Figure 2:  ADAMS full vehicle model. 

 
Figure 3:  Front suspension model in ADAMS. 

 
Figure 4:  Rear suspension model in ADAMS. 
 
The handling behavior of this model is validated with 

real test data of the reference car [11], which is given in 
Figs 5 - 6: 

 
Figure 5:  Steering angle vs lateral acceleration in 

CRC maneuver. 

 
Figure 6:  Roll angle vs lateral acceleration in CRC 

maneuver. 
3.  CONTROLLER DESIGN 

In this section, we will design the control system to 
derive the controlling yaw moment and consequently, the 
desired brake torques. To do this, we will make use of the 
optimal LQR theory. The operation of this system is 
depicted in Fig 8, for special cases. In the case (a), the 
vehicle is under steer. Here, the control system guides the 
vehicle to the desired pass, by exerting the braking force 
on the rear inner wheel. In case (b) the vehicle is over 
steer and to guide the vehicle to the desired pass, the 
controller exerts braking force to the front outer wheel. 

 

 

Figure 7:  VDC application, Left: oversteer car, Right: 
understeer. 
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As described before a two layer controller is 
implemented to achieve the stabilization of the car. 
Different components of the controller and identifier are 
depicted in Fig 8. 

  
 
Figure 8:  Closed loop diagram of the controlling system. 
 

A.  Criterion for Vehicle Dynamic Evaluation 
One of the main criteria for vehicle handling 

evaluation is monitoring the error between vehicle yaw 
rate and its desired value. The desired yaw rate is 
calculated in the steady state condition. Consequently, the 
variation related to the time is assumed to be zero. With 
this assumption, (3) can be rewritten as a series algebraic 
relations. With solving these new algebraic equations, the 
desired yaw rate becomes as (5): 
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In which L is equal to Lr+Lf and Ku is the under-
steering coefficient and is calculated as: 
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B.  Deriving the Controller Law 
For simplification and to reduce the calculation time 

we use the linear quadratic regulator theory. This will 
also yield an optimized controlling input which in turn 
leads to a less energy consumption [12]. Accordingly, we 
define the controller input as a function of feed-back 
signals of vehicle dynamic quantities, such as yaw rate, r, 
lateral velocity, v and feed-forward of the steering input, 
δ,.as: 
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Where, Ki is the controller gain. 
Based on the classical optimal control problems we 

should define a performance function to optimize the 
system response. Refer to the importance role of the car 
yaw rate and lateral velocity in evaluation of the overall 
lateral dynamic response of the vehicle, we opt these 
factors to form the performance index as: 
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Q is a positive semi-definite real matrix and R is a 

definite real matrix. Controller impute is involved in the 
equation to represent our desire to minimize the 
consumed energy. 

Kalman [12] demonstrated that the optimal answer 
which satisfies (9) can be presented as the result of the 
(9) to (11):  

(9) [ ])()()()()()( 1 tStXtKtBtRtU T +−= −  

(10) KBKBRQKAKAtK TT 1)( −+−−−=  

(11) KEDQXSBKBRAtS d
TT −++−= − )()( 1  

In which K is a symmetric 2×2 matrix and contains 
feed-back gains and S is a 2×1 vector and is the feed-
forward portion of the control law. Equation (10) is 
called as Riccati equation. Regarding to the intense 
inclination of the controller gains to constant values and 
considering that using differential equations instead of 
algebraic equations will complicate both the design and 
implementation in hardware and software procedures, 
one can rewrite controller equations as algebraic relations 
with the assumption of constant control gains in small 
time intervals. 

(12) 01 =−++ − KBKBRQKAKA TT  
(13) 0)( 1 =−++− − KEDQXSBKBRA d

TT  
To solve (12) and (13) we use LQ3 theory. 

Accordingly, the 2n×2n Hamiltonian matrix is defined 
such that the first n eigen values would be obtained from 
the matrix of the closed loop system of A-BR-1BTK and 
the remaining n eigen values would be obtained as λj(n+i) 
= -λji. Hence, matrix of K is calculated by solving the 
matrix of equations of the eigen vectors [13]. 

By choosing R and Q properly we can be assured that 
optimal results will be gained. One of the approaches to 
opt appropriate values for R and Q is to assume them as 
diagonal matrixes consisting of maximum values of state 
variables and control inputs as their diagonal elements, 
respectively. That is to choose the elements of these 
matrixes as ||Xi,Max||2 and ||Ui,Max||2. This method was 
introduced by Hou and Brison in 1969 [13]. Accordingly, 
by solving (12) and (13) simultaneously in terms of K 
and S and substituting them into (9), in each iteration of 
calculations the controller input would be achieved as: 
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C.  Brake Force Distribution and ABS Design 
In this section, the calculated controller yaw moment 

in the previous section will be distributed among wheels 
by exerting brake forces on them. 

The designed ABS system operates based on 
regulating the longitudinal slip of tires in the limits 
between 0.1 and 0.15. While driver brakes in this domain 
the maximum possible braking force can be achieved 
beneath the tires (Fig. 9). 

 

  
Figure 9:  Tire Lateral and longitudinal forces vs slip. 
 
The proposed ABS system operates based on the rules 

given in Table 2. In each step based on the longitudinal 
slip of each wheel, the controller regulates the oil 
pressure in order to exert new brake torques which is the 
output of the optimal controller in ordinary condition and 
when the slip is close to the border limits the controller 
output is the magnitude of the previous step. And if the 
slip is beyond the border limit brake torque would be 90 
percent of the magnitude of the previous step. 

TABLE 2 
SLIP LIMITS FOR ABS SYSTEM 

0 < λ < 0.1250.125 < λ <0.15 0.15 < λ Slip Limits 

TABS = Tb TABS = Tb-Previous 
TABS = 0.9 
× Tb-Previous Action 

With reference to Fig. (5) and the direction of the 
vehicle spin about the vertical axis, the wheel on which 
the control brake torque should be applied is determined. 
This could simple be done as: 
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The brake torque to be applied on the nominated 

wheel is derived based on the wheel dynamic equation 

which will be presented in (22) in the next section. If the 
calculated torque exceeds the boundary limits of that 
specific wheel, the VDC system will decide to take 
advantage of other wheels’ baking capacity.  

4.  ESTIMATOR DESIGN 

The basis of the estimation is founded on deriving the 
unknown parameters based on the available information 
of the system. One of the most prevalent and basic 
estimation methods is the least squares (LS) estimation 
[14]. Usually, to increase the performance of this method, 
especially when tackling time variable cases, one can 
take advantage of a coefficient that will decrease 
exponentially over time. This is to diminish the effect of 
old data. The main idea in this approach is to minimize 
the overall error function of (15) with respect to the 
estimated values, that is )(ˆ ta [15]: 
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The general mathematical model to relate the 
unknown parameters to available data can be represented 
as (16): 

(16) atWty )()( =  
Where, a is the vector of unknown parameters, y is the 

output of the system and W is the matrix of measurable 
signals. The unknown parameters are iteratively 
estimated as: 

(17) eWtPa T)(ˆ −=  
P(t) is the estimation gain matrix and is written as 

(18): 

(18) PtWtPWPtP
dt
d T )()()(][ −= λ  

It is of high importance to mention that to adjust the 
forgetting coefficient, a greater value of 0λ  will result in 
faster estimation as well as more fluctuations in the 
estimated parameters. This is because of the shortened 
time to calculate the mean value of the disturbances. 
Consequently, it is more effective to regulate the value of 
the forgetting coefficient in the way to have data 
forgetting when W is always excited permanently. One 
solution to such a selection can be presumed as (19): 
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Where, λ0 and k0 are positive constants, and indicate 
maximum forgetting rate and gain matrix upper limit, 
respectively. 

In a recursive estimation, it is vital to have the initial 
values of parameters and the gain matrix. As well, the 
initial value for P should be selected as big as possible 
considering the sensitivity to the noise. One can assume 
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||P(0)|| ≤ K0I in order to constrain the gain. In addition, 
for the sake of simplification P(0) is defined to be a 
diagonal matrix as Diag ([5000, 5000, 5000, 5000, 
50000000, 50000000, 10000000]) [15]. 

A.  Velocity Estimation and Tire Force identification 
In order to calculate the controller moment introduced 

in (14), we need to have the values of v, u, r, ax, ay, Caf, 
Car and δ and to derive the braking torque, values of Fxij 
and ωi are needed. Mentioning that measurement of exact 
velocities of a car is mainly limited due to the high cost 
of the equipments, we make use of a simplified approach 
to estimate the lateral and longitudinal velocity. 

To estimate vx and vy by using the longitudinal and 
lateral acceleration and the yaw angular velocity sensors, 
we refer to (3) and write the necessary equation as: 
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Where, axm, aym and rm are the measured longitudinal 
and lateral accelerations and the yaw angular velocity, 
respectively. xv̂ and yv̂ are the estimated longitudinal 

and lateral velocities. 
According to equation (1), the lateral forces of tires 

should be applied in order to calculate the quantities of 
Caf and Car. To estimate tire and road interaction forces, 
we use least square estimation with exponential 
forgetting factor. Accordingly, we use 7-DOE equations 
of car (Fig. 10) with freedom in longitudinal, lateral and 
yaw direction as well as four degrees of the wheels [11]. 

 
Figure 10:  Free body diagram of 7 DOF vehicle model. 
The equations govern this model are given below: 
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Equation of the wheels’ rotational dynamic is as: 
(22)  4,3,2,1,. =−−+−= iTTTRFJ Rollibiwxiiiω  

In which, TRoll is the consequence of the hysteresis 
phenomenon and is called rolling resistance: 

(23)  4,3,2,1,.. == iRFfT wizirRolli  
fr is the rolling resistance coefficient and for passenger 

cars is about 0.01 to 0.02 [10].  
Considering that the controller just needs the overall 

lateral forces for front and rear tires, to reduce the 
calculation efforts we avoid separating the right and left 
forces in front and rear axle and assume an overall lateral 
force for each of the front axles instead of four separated 
variables. The components of the elements of (17) and 
(18) are written as:  
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 5.  SIMULATION RESULTS 

As indicated before we have made use of ADAMS as 
an advance solver for simulation and virtual evaluation of 
vehicle behavior equipped with the proposed controlling 
system. On the other hand, the designed estimation 
system has been modeled in MATLAB, which is a 
powerful calculating and analyzing software. To simulate 
all these together one needs to establish a direct 
interconnection between the two software and run them 
simultaneously. 

After developing and validating full vehicle model in 
ADAMS, we need to build necessary inputs and outputs 
for the representative of the control system. The needed 
sensors for this control system are: Body yaw rate sensor, 
Body longitudinal and lateral accelerations, Steer wheel 
angle, Wheels angular velocity and Braking torques. 

We should introduce actuators in order to apply 
steering and braking commands ordered by the driver and 
the controller inputs of the model. The actuators installed 
on the model are: Torque applied to the steering wheel, 
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Braking torques applied by the driver 
After building the needed sensors and actuators, we 

should create the control input/output gates and 
ADAMS/Solver system files which contain the 
information and equations of the model. Finally, by 
exporting ADAMS plant model, system files will be 
implemented in MATLAB/Simulink and the defined 
input/output channels will form (Fig. 11). 

 

 
Figure 11:  Block diagram of simulator in Matlab/Simulink. 

 
Table 3 illustrates the magnitude of the vehicle 

parameters used in the model. 
TABLE 3 

VEHICLE PARAMETERS 
Unit Magnitude Parameter 

Kg 1050 m 

Kg/m2 1825.2 Izz 

m 1.2247 Lf 

m 1.4373 Lr 

m 1.4375 Tf 

m 1.4375 Tr 

m/s2 9.806 g 

Kg/m2 1.4 Ji 

- 0.015 fr 

m 0.283 Rw 

N 50000 λC
 

N/deg 722.8 αC
 

 
In fact, the simultaneous connection and cooperation 

of the developed controller in Matlab and the accurate 
dynamical vehicle model in ADAMS and running the 
whole in a closed loop is considered as a splendid 
engineering work. 

A.  Velocity Estimation and Tire Force Identification 
In order to evaluate the performance of the proposed 

controller, several maneuvers are performed according to 
ISO standard and prevalent references in auto-industry 
[11]. Considering the presentation limitations, here we 
just illustrate and present results of sever braking in lane 
change maneuver on a µ-split road. In this maneuver 
driver starts to brake while driving with the initial speed 
of 100 km/h on a road with different friction coefficients 

in right and left hand (right: 0.8 and left: 0.3). 
Furthermore, the driver starts to steer from the second of 
the maneuver. The steering input and car path is depicted 
in Fig. 12. All of the presented results with and without 
the controller are the outputs of full vehicle simulation in 
ADAMS. Evidently, vehicle without the controller 
(Dynamic) and the vehicle equipped with the optimal 
controller and the ABS system (with OptCn) rapidly tend 
to instability and disobey the driver inputs. On the other 
hand, the appropriate response of the vehicle equipped 
with adaptive controller with modified ABS (AdOpCn) is 
evident. Fig. 15 depicts the accurate response of the 
adaptive controller to follow the desired yaw rate. The 
performance of the modified ABS system is also 
illustrated in Fig. 18. It is crystal clear that the slip is 
maintained in the target domain. The rapid and precise 
performance of the velocity estimator and tire force 
identifier is presented in Figs. 13, 19 and 20. Brake 
torques applied by the ABS actuators on wheels are 
presented in Fig. 16 and 17. This periodic actuation from 
frequency point of view is completely applicable in 
current ABS systems [16].  

Figure 12:  Steering wheel angle and vehicle trajectory. 
 

Figure 13:  lateral and longitudinal velocities of vehicle CG. 
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Figure 14:  Lateral and longitudinal acceleration of car body.

 
Figure 15:  Body yaw rate. 

 
Figure 16:  Brake torques of front wheels applied by the
optimal controller. 

 
Figure 17:  Brake torques of rear wheels applied by the 
optimal controller. 

Figure 18:  Longitudinal tires' slip. 

Figure 19:  Estimated and simulated (from ADAMS) 
longitudinal force of tires. 
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Figure 20:  Estimated and simulated (from ADAMS) 
lateral force of tires. 

6.  CONCLUSION 
In this research, we have designed and proposed an 

adaptive optimal controller to control and stabilize the 
lateral and rotational behavior of vehicle by the aim of 
differential braking concept. Accordingly, we distributed 
the controller braking forces with a new approach via an 
ABS system. The parameters of the optimal controller are 
regulated by an identifier and the velocity of the car is 
estimated in a simple way. Results of the vehicle 
maneuvers in standard condition indicate the appropriate 
performance of the controller. 
7.  NOMENCLATURE 

Earth gravitational acceleration g 
Friction coefficient between the tire and road µ 

Vehicle longitudinal velocity vx , u 
Vehicle lateral velocity vy , v 
Vehicle longitudinal acceleration ax 

Vehicle lateral acceleration ay 

Rolling resistance coefficient fr 

Vehicle yaw rate r 
Rotating angular velocity of the wheels ωi 

Longitudinal slip of tires λi 

Lateral Slip of Tires αi 

Vehicle total mass  m 
Vehicle yaw moment of Inertia Izz 

Distance between vehicle CoG from front axle Lf 

Distance between vehicle CoG from rear axle Lr 

Front tread Tf 

Front wheels steer angle  δ  

Lateral stiffness of tires Cαi 

Longitudinal stiffness of tires Cλi 

Tire longitudinal force Fxi 

Tire lateral force Fyi 

Understeering coefficient Ku 

State vector X 
State space matrixes A,B,C,E 

Wheel moment of inertia Ji 

Controlling input U 
Disturbance D 
Desired state vectors Xd 

Desired yaw rate rd 

Effective radius of tires Rw 

Performance index J 

Gain matrix in performance index T,Q,R 

Feedback gains Ki 

Hamiltonian function H 

Wheel traction torque Ti 

Wheel braking torque Tbi 

Rolling resistance torque TRoll 

System output vector y 
Signal matrix W 
System unknown parameters estimation vector a 

System unknown parameters estimation vector â 
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