
 Amirkabir / MISC / Vol . 44 / No.2 / Fall 2012

17

Genetic and Memetic Algorithms for Sequencing a New

JIT Mixed-Model Assembly Line

R. Tavakkoli-Moghaddam
i; Y. Gholipour-Kanani

ii
 and R. Cheraghalizadeh

iii

Received 22 Nov 2010; received in revised 03 Sep 2012; accepted 23 Sep 2012

ABSTRACT

This paper presents a new mathematical programming model for the bi-criteria mixed-model assembly

line balancing problem in a just-in-time (JIT) production system. There is a set of criteria to judge sequences

of the product mix in terms of the effective utilization of the system. The primary goal of this model is to

minimize the setup cost and the stoppage assembly line cost, simultaneously. Because of its complexity to

be optimally solved in a reasonable time, we propose and develop two evolutionary meta-heuristics based on

a genetic algorithm (GA) and a memetic algorithm (MA). The proposed heuristics are evaluated by the use

of random iterations, and the related results obtained confirm their efficiency and effectiveness in order to

provide good solutions for medium and large-scale problems.

KEYWORDS

JIT mixed-model assembly line balancing, Setup cost, Stoppage cost, Genetic algorithm, Memetic

algorithm

1. INTRODUCTION

An assembly line is a set of sequential workstations

linked by a material handling system. In each workstation,

a set of tasks is performed using a pre-defined assembly

process, in which the following issues are defined: 1) task

times, i.e. the time required to perform each task, 2) a set

of precedence relationships, which determine the sequence

where the tasks can be performed, and 3) a set of zoning

constraints, which force or forbid the assignment of

different tasks to the same workstation [1].

The assembly line can be dedicated to produce for a

single product model or multiple product models. In the

second configuration, many items of a product model can

be processed at a time in batches, or all product models

are handled simultaneously on the same assembly line with

the lot sizes of one item for each product model [2]. These

configurations of an assembly line represent for classes of

line balancing problems:

 Single-model assembly line balancing problem with

deterministic/stochastic/fuzzy processing times.

 Batch-model assembly line balancing problem with

deterministic/stochastic/fuzzy processing times.

 Mixed-model assembly line balancing problem with

deterministic/stochastic/fuzzy processing times.

In these line balancing problems, the requirement is

often to distribute the tasks to workstations such that a

certain objective (e.g., number of workstations, total cost,

production rate, etc.) is optimized and the precedence

relationship is not violated. The workstation time, which is

the sum of times of all tasks assigned to that workstation,

must not exceed the given cycle time. The processing time

of tasks are also given. In general, the line balancing

problem has several variances coming from the

requirement, objective, or the form of processing time or

the structure of the lines. The requirement of the problem

is not only to allocate tasks to workstations, but also to

sequence product models to be assembled in the designing

batch/mixed-model lines or determine optimal batch sizes

for batch-model configuration [3].

Determining the sequence of introducing models to the

mixed-model assembly lines in a just-in-time (JIT)

production system is of particular importance considering

the goals crucial for efficient implementation of the JIT

system. These goals are basically: 1) leveling the load on

each process within the line; and 2) keeping a constant

speed in consuming each part on the line [4]. Toyota

Corporation developed the Goal Chasing I and II (GC-I

and GC-II) methods to handle these problems [4].

i
* Corresponding Author, R. Tavakkoli-Moghaddam is a professor in Department of Industrial Engineering, College of Engineering, University

of Tehran, Tehran, Iran (e-mail: tavakoli@ut.ac.ir)

ii Y. Gholipour-Kanani is a faculty member in Department of Management, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran

(e-mail: gholipourkanani@yahoo.com)

iii R. Cheraghalizadeh has received her M.Sc. degree from Mazandaran University of Science & Technology, Babol, Iran

(e-mail: r_cheraghalizadeh@yahoo.com)

mailto:tavakoli@ut.ac.ir

Amirkabir / MISC / Vol . 44 / No.2 / Fall 2012

18

GC-I selects a model that minimizes the one-stage

variation at each stage, and GC-II simplifies GC-I under

special assumptions regarding product structures. Here a

„„stage‟‟ represents a position in the order of a sequence.

Miltenburg [5] developed a non-linear programming

model for the second above-mentioned goal. The time

complexity function of the proposed program was

exponential. Thus, he developed and solved the problem

by applying two heuristic procedures. Miltenburg et al. [6]

solved the same problem with a dynamic programming

algorithm. Inman and Bulfin [4] solved the problem

introduced by Miltenburg [5] by converting it to a new

mathematical model. Other objectives were also

considered by a number of researchers. Yano and

Rachamdugu [8] minimized the total utility work. Bard et

al. [9] considered an objective to minimize the overall line

length. Okamura and Yamashina [10] developed a

heuristic algorithm to minimize the risk of conveyor

stoppage.

In the mathematical complexity, the line balancing

problem is NP-complete in strong sense because the NP-

complete bin-packing problem can be transformed easily

to the line balancing problem in polynomial time [11].

Therefore, several heuristic procedures have been

proposed to solve different versions of the line balancing

problem. Some comprehensive analyses and reviews of

the line balancing problems can be found in Baybars [11],

Ghosh and Gagnon [12], and Scholl [13].

According to Fokkert and de Kok [14], most of studies

on assembly line balancing problems are dated back to

before 1980s. Most of approaches focus on solving a

single-model line balancing problem with deterministic

processing times [15-17]. A few efforts have been made

for the batch-model and mixed-model line balancing

problem. Recently, attention on the batch/mixed-model

assembly line balancing is paid back due to the

requirement of mass assembly with the support of

advanced technologies, which help the assembly lines

higher flexibility and faster processing speed.

Kabir and Tabucanon [18] studied a batch-model

assembly line balancing problem using a multi-attribute

decision making (MADM) approach. They generated a set

of feasible number of workstations, which were balanced

for each product model. Then, they selected the best

configuration (i.e., number of workstations) considering

multiple criteria, such as production rate, variety,

minimum distance moved, quality, etc. The survey carried

out by Fokkert and de Kok [14] also shows that there are

two approaches in the literature transforming the mixed-

model line balancing problem into a single-model line

balancing problem. These approaches use combined

precedence diagrams and adjusted task processing times.

The experiment results also indicate that the position of

common tasks in the precedence diagram of the different

models has a significant effect on both the computation

time and the unequal distribution of the total work content

of single models among workstations. The extension to the

approaches of a single-model for the mixed-model has

been utilized by Gokcen and Erel in their different

formulations [19-21]. The binary goal programming

model of Gokcen and Erel [19] is the first multi-criteria

decision making (MCDM) approach to the mixed-model

version based on the model of Deckro and Rangachari

[22] for a single model assembly line balancing problem.

In the next version, Gokcen and Erel [20] formulate a

binary integer programming model for the mixed-model

assembly line balancing problem. The size of the model

has been reduced significantly to an applicable problem

with up to 40 tasks by using a combined precedence

relationship and some variables that limit the increase in

the number of decision variables and constraints.

Erel and Gokcen [21] also developed a shortest route

formulation for MALB. This model was also based on the

shortest-route model developed by Gutjahr and

Nemhauser [23] for SMALB. Their proposed model was

better than the shortest-route model proposed by Robert

and Villa [24] in terms of the size of the formulated

network as the number of tasks increases because they

assigned common tasks of different product models to the

same stations as well as the constraints that could be

imposed by increasing the designers‟ limit.

Tavakkoli-Moghaddam et al. [25 and 26] presented the

optimal schedule and sequence of a set of jobs for a single

machine with idle insert, in which the objective function is

to minimize the sum of maximum earliness and tardiness

(n/1/I/ETmax). Sequencing mixed-model assembly lines

have also been studied as a multi-criteria problem. Bard et

al. [24] developed a model involving two objectives as

follows: (1) minimizing the overall line length; and (2)

keeping a constant rate of part usage. They solved the

problem by using the weighted sum and they proposed a

tabu search (TS) method to solve such a problem. Hyun et

al. [28] addressed three objectives as follows: (1)

minimizing total utility work, (2) keeping a constant rate

of part usage, and (3) minimizing total setup cost. This

problem was solved by proposing a new genetic

evaluation and selection mechanism. Korkmazel and

Meral [29] developed a weighted sum approach for two

goals introduced by Monden [30].

McMullen and Fraizer [31] developed a simulated

annealing (SA) method for the model used by McMullen

[32] and they compared this SA against the TS method.

McMullen [33–35] also solved the same problem by using

genetic algorithms (GA), Kohonen self-organizing map

(SOM), and ant colony optimization, respectively. He also

compared the performance of these three methods with SA

and TS methods. Mansouri [36] also solved the same

problem with GA, in which a new selection mechanism

was introduced. A number of other metaheuristic methods

can be applied to any other combinatorial optimization

 Amirkabir / MISC / Vol . 44 / No.2 / Fall 2012

19

problem. Tavakkoli-Moghaddam et al. [37] proposed an

efficient memetic algorithm (MA) with a simulated

annealing-based local search engine in order to solve a

new model of a cell formation problem (CFP) for a multi-

period planning horizon.

Emde and boysen [38] introduced an exact solution

procedure that solves both problems simultaneously in a

polynomial runtime. In addition, management implications

regarding the trade-off between the number and capacity

of two trains and in-process inventory near the line are

investigated within a comprehensive computational study.

Furthermore, Emde and boysen [39] discussed the general

pros and cons of the supermarket concept and treats the

decision problem of determining the optimal number and

placement of supermarkets on the shop floor. A

mathematical model is proposed, an exact dynamic

programming algorithm presented, and the validity of the

proposed approach for practical purposes as well as the

trade-off resulting from fixed installation and maintenance

cost is investigated in a comprehensive computational

study.

Dong and Gui [40] solved the separation in the

traditional serial production planning and scheduling in

mixed-model assembly line, the integrated optimization

complete model of production planning and scheduling

based on multiple objectives and constraints was

constructed.

Hamzadayi and Yildiz [41] presented a priority-based

genetic algorithm (PGA) for the simultaneously tackling

of the mixed-model U-shape assembly line (MMUL)

balancing/model sequencing problems (MMUL/BS) with

parallel workstations and zoning constraints, which allows

the decision maker to control the process to create parallel

workstations and to work in different scenarios.

Zenga et al [42] investigated the operator allocation

problems (OAP) with jobs sharing and operator revisiting

for balance control of a complicated hybrid assembly line,

which appears in the apparel sewing manufacturing

system. Multiple objectives and constraints for the

problem are formulated.

Bautista et al [43] presented an extension to the mixed-

model sequencing problem with work overload

minimisation (MMSP-W) for production lines with serial

workstations and parallel homogeneous processors.

Boysena and Bock [44] proposed a new approach for a

scheduling JIT part supply from a central storage center.

Materials are usually stored in boxes allotted to the

consumptive stations of the line by a forklift. For such a

real-world problem, a new model, a complexity proof and

different exact/heuristic solution procedures are provided.

Zhenga et al [45] presented a mathematical model and

an ant colony optimization (ACO) algorithm for assembly

line balancing (ALB). The mathematical model can be

used to formally describe the problem. Akpınar and

Bayhan [46] proposed a hybrid genetic algorithm (GA) to

solve a mixed-model assembly line balancing problem of

type I (MMALBP-I). There are three objectives to be

achieved, namely minimizing the number of workstations,

maximizing the workload smoothness between

workstations, and maximizing the workload smoothness

within workstations.

Hua et al [47] first reviewed the state of the art research

in the areas of the assembly system design, planning and

operations in the presence of product varieties. Methods

for assembly representation, sequence generation and

assembly line balancing are reviewed and summarized.

The operational complexity and the role of human

operators in assembly systems are then discussed in the

context of product varieties. Challenges in disassembly

and remanufacturing in the presence of high variety are

presented.

Özcan [48] considered the problem of balancing two-

sided assembly lines with stochastic task times (STALBP).

A chance-constrained, piecewise-linear, mixed-integer

programming (CPMIP) model is proposed to formulate

and then solved by a simulated annealing (SA) algorithm.

Giard and Jeunet [49] presented an integer

programming formulation for the sequencing problem in

mixed-model assembly lines, in which the number of

temporarily hired utility workers and the number of

sequence-dependent setups are to be optimized through a

cost function simultaneously. The resultant model offers

an operational way to implement the utility work needed

to avoid line stoppages, unlike previous papers addressing

the goal of smoothing the workload.

Yang and Zhang [50] studied the parameter design and

the performance optimization of a Kanban system without

stockouts in a multi-stage, mixed-model assembly line.

Boysena et al [51] aimed at evenly smoothing the part

consumption induced by the production sequence over

time. Among these approaches, the popular product rate

variation (PRV) problem is considered to be an

appropriate approximate model, if either all products

require approximately the same number and mix of parts

or part usages of all products are almost completely

distinct. These statements are further specified by

analytical findings, which prove the equivalence of

product and material oriented level scheduling under

certain conditions.

Main difference between this work and other studies is

that we consider simultaneously two objectives; namely

the total stoppages assembly line cost and the total setup

cost. The rest of this paper is organized as follows. In

Section 2, we present the detailed description of the

mixed-model assembly line (MMAL). In Section 3, we

discuss about the complexity of the proposed model and

propose GA and MA to solve such a hard model. Section

4 provides experimental results where a number of test

problems are solved to show the efficiency of the

proposed GA and MA and we present our conclusions in

http://www.sciencedirect.com/science/article/pii/S0305054811002139#aff1
http://www.sciencedirect.com/science/article/pii/S0377221710007319#aff1
http://www.sciencedirect.com/science/article/pii/S1876610211035910#aff0005
http://www.sciencedirect.com/science/article/pii/S000785061100206X#aff0005
http://www.sciencedirect.com/science/article/pii/S0377221708005122#aff1

Amirkabir / MISC / Vol . 44 / No.2 / Fall 2012

20

this section.

2. MATHEMATICAL MODEL

A. Mixed-model assembly line sequencing problem

In this paper, the mixed-model assembly line (MMAL)

is a conveyor system moving at a constant speed (
cv).

Similar products are launched onto the conveyor at a fixed

rate. The line is partitioned into J stations. It is assumed

that the stations are all closed types. A closed station has

boundaries that cannot be crossed by workers. Such a

closed station is often found in reality where the use of

facilities is restricted within a certain boundary. The tasks

allocated to each station are properly balanced and their

operating times are deterministic. The worker moves

downstream on the conveyor while performing his/her

tasks to assemble a product. To complete the job, the

worker moves upstream to the next product. Suppose that

the worker‟s moving time is ignored.

The design of the MMAL involves several issues, such

as determining operator schedules, product mix, and

launch intervals. Two types of operator schedules (i.e.,

early start schedule and late start schedule) are found in

[52]. An early start schedule is more common in practice

and is used in this paper. Second, a minimum part set

(MPS) production, which is a strategy widely accepted in

the mixed-model assembly lines, is also used in this paper.

B. Notations and problem description

The following notation is first given:

I. Indices

M Number of station

I Number of model for

T Maximum available time in each station

II . Parameters

ma Difference coefficient of station m when line stops

ms Risk cost of line stop in station m

][kt Proceeding time of product that assign to sequence k

mirt Proceeding time in station m when model i change to

model r

mT Average proceeding time of each station

mirS Setup cost in station m when model i change to

model r in this station

id Demand of model i

III . Decision variables

1 if in sequence the model change from to ;

0 Otherwise
kir

k i r
x


 


mT Average proceeding time of each station

(
Q

xt

T

I

r

I

i

Q

k

kirmir

m


   1 1 1)

Q Total demand (i.e., 



I

i

idQ
1

)

C. Mathematical model

I. Minimizing the risk of line stoppage

To minimize the risk of line stoppage, we should

position a job with small proceeding time after a job with

big proceeding time and also take equal between

difference of these two times and average proceeding time

of that station.

mkkmkmk TttTtTt 2)()(]1[][1_][ 
 (1).

Because the line stoppage is related with all the

products, we minimize the deviations of product

proceeding times from the average proceeding time of that

station as:

 
 

 
M

m

Q

k

mkkm Ttta
1 2

]1[][2 (2).

where][kt is the proceeding time in station m for the part

positioned in sequence k; therefore, we have:

kir

I

i

I

r

mirk xtt 
 


1 1

][(3)

[] [1]

1 2

(1)

1 2 1 1 1 1

(1)

1 2 1 1

. 2

. 2

. () 2

QM

m m k k m

m k

QM I I I I

m m mir kir mir k ir m

m k i r i r

QM I I

m m mir kir k ir m

m k i r

a s t t T

a s t x t x T

a s t x x T



 



     



   

  

 

  

 

  

 

 (4)

By the above consideration, we explain the first

objective function minimizing the stoppages assembly line

cost. The model is presented below.

  
  






M

m

Q

k

I

i

mirkkir

mir

I

r

mm Txxtsa
1 2 1

)1(

1

2.min

 (5)

s.t.

 kx
I

i

I

r

kir 
 

,1
1 1

 (6)

 Amirkabir / MISC / Vol . 44 / No.2 / Fall 2012

21

 rQkxx
I

i

I

p

rpkkir  
 

 ,1,...,1,
1 1

)1((7)

rxx
I

i

I

p

rpQir  
 

,
1 1

1 (8)

rdx
Q

k

I

i

rkir 
 

,
1 1

 (9)

 mTxt kir

Q

k

I

i

I

r

mir 
  

,
1 1 1

 (10)

   rikxkir ,,,1,0  (11)

Eq. (6) is a set of position constraints indicating that

every position in a sequence is occupied by exactly one

product. Eqs. (7) and (8) ensure that the sequence of

products is maintained while repeating the cyclic

production. Eq. (9) imposes the restriction that all the

demands should be satisfied in terms of MPS. Eq. (10)

ensure that the total time not be exceeded in each station.

II. Minimizing the setup cost

In many industries, sequence-dependent setups are

considered as an important item in assembly operations.

The model considering sequence-dependent setups

developed by Hyun et al. [53] is considered in this paper.

mir

M

m

Q

k

I

i

I

r

kir sx
   1 1 1 1

min (12)

s.t.

 Eqs. (6) to (9) and (11)

where
mirS is the setup cost required when the model type

is changed from i to r at station m.
kirX is 1 if model type i

and r are assigned, respectively, at position k and k+1 in a

sequence; otherwise
kirX is 0.

III. Final objective function

The main objective function is the sum of each function

(Equations 2 and 12) when multiplied by their weighting

coefficients (i.e., 1 and 2 for the first and second

objective functions, respectively). Note that these

coefficients are in [0, 1] and the sum of them is 1.

The final objective function of this model is give

below:

 
QM I I

1 m m kir (k 1)ir m

m 1 k 2 i 1 r 1 mir

QM I I

2 kir mir

m 1 k 1 i 1 r 1

min Z a *s t x x 2T

x s



   

   

   



 



3. HEURISTIC METHODS AND PROPOSED

ALGORITHMS

A. Heuristic Methods

There are several models used in the literature when

considering different objective functions. The first type of

the model is a mathematic model combined with a

heuristic method. For examples, Hoffmann [54] combined

a branch-and-bound algorithm with a heuristic method to

approach the optimal solution, and Gokcen and Erel [19]

modified the Patterson et al. algorithm with a binary goal-

programming model to achieve the satisfactory results

when facing conflicting goals. The second type of model

is a heuristic search that is based on the existing solution.

Malakooti [55] used existing heuristic balancing

approaches to generate a set of efficient alternatives to

minimize the buffer size in the case of multiple criteria.

Sonekar et al. [56] proposed a multiple criteria

decision-making (MCDM) approach to minimize the

number of subassemblies. This system was able to

generate an entire set of efficient alternatives and used an

interactive paired comparison of alternatives to solve the

problem. The third type of model is a heuristic search that

concentrates on less processing time. For instance, Boctor

[57] proposed a heuristic that utilized a single-pass and

composite method consisting of general assignment with

priority ordering. Kabir and Tabucanon [18] used an

analytic hierarchy process (AHP) and simulation (known

as the Ignall algorithm) to determine the number of

workstations in a multi-attribute problem. As an example

reported by Enmer et al. [58], a model was introduced to

balance an industrial truck engine assembly line. The

heuristic generated all the feasible alternative sets of tasks

for a single station, selecting the one with the least slack

and then moved to the next station. Unfortunately, due to

the simplified assumptions found in most heuristic

methods and complexity of the real system, many line

balancing tasks are still performed manually. This problem

leads to another research direction, the intelligent system.

In the intelligent line balancing system approaches, the

intelligent component is implemented by using an expert

system.

Roy and Allchurch [59] proposed a Prolog expert

system to perform a mixed-model assembly line balancing.

Oh [60] presented an expert line balancing system

(ELBS). The ELBS applied a heuristic method and

computerized into expert system shell that performs as an

expert in an interactive mode. This system produced the

number of substations in each major operational station,

system cycle time, total number of stations in the system,

total number of hours required, and overall efficiency.

Kumar and Malakooti [61] reported an expert system

model, which was constructed in C programming. The

purpose of this model is to assist the practitioner in

making decisions when there are many conflicting

Amirkabir / MISC / Vol . 44 / No.2 / Fall 2012

22

objectives. Arinze and Partori [62] were the first to report

a system that was able to produce the precedence network

from a knowledge-based system to perform all the job

allocations. Sudhir and Rajagopalan [63] also presented a

frame based model, the ANGEL prototype system, to

generate the precedence network through an artificial

intelligence approach for assembly line balancing.

B. Evolutionary algorithms

In this section, we briefly describe GA and MA, and

then we discuss the manner in which they were

implemented to solve the flowshop scheduling problem

with family setups.

I. Proposed genetic algorithm

Genetic algorithm (GA), which is a population-based

algorithm, uses analogies to natural, biological, and

genetic concepts including chromosome, mutation,

crossover, and natural selection. Basically, it consists of

making a population of solutions evolve by mutation and

reproduction processes. The best fitted solutions of the

population shall survive while the worse fitted will be

replaced. After a large number of generations, it is

expected that the final population is composed of highly

adaptable individuals, or in an optimization application,

high-quality solutions of the problem at hand. The basic

steps of a canonical GA are as follows.

Step 1. Initialize the population.

Step 2. Select individuals for recombination and.

Step 3. Recombine individuals generating new ones.

Step 4. Mutate the new individuals.

Step 5. If the stopping criterion is satisfied, Stop the

algorithm; otherwise, replace old individuals with the new

ones restructure the population tree and return to Step 2.

In Step 1, the initial population is created. In our study,

this population is composed of randomly generated

solutions. Step 2 consists of selecting individuals among

the population to recombine. This selection normally takes

into account the fitness of the individuals or the quality of

the solutions (regarding the objective function which in

this case is the makespan). As our algorithm works with a

hierarchically structured population, the selection is

somewhat different. In Step 3, the selected individuals

recombine and generate new individuals. This means that

new information is being added to the population. In this

step, we use a crossover oerator. In Step 4, some

individuals are submitted to a mutation process in order to

preserve the diversity of the whole population. The

mutation should be very light or important information can

be lost. Finally, in Step 5, the search stops if previously

determined stopping criterion is satisfied. Otherwise, the

new individuals generated in Steps 3 and 4 replace some

individuals of the population. In general, the solutions to

be replaced are chosen accordingly to their quality, and

the worst fitted will give their place to the new ones [64].

II. Proposed Memetic Algorithm

In the case of a memetic algorithm (MA), after Step 4

in the above-mentioned GA, all new individuals go

through a local search procedure before Step 5. Details of

MA are described in Moscato [65] and Corne et al. [66].

The implementations of GA and MA are similar to

previous work by Mendes, Muller, Franc¸a, and Moscato

[67]. They share some main characteristics with the

versions implemented for the single and parallel machine

scheduling problems [67] although some improvements

have been introduced in this adaptation to the flowshop

problem.

Memetic algorithms can be viewed as a marriage

between a population-based global technique and a local

search made by each of the individuals. They are a special

kind of genetic algorithms with a local hill climbing. Like

genetic algorithms, memetic algorithms are a population-

based approach. They have shown that they are orders of

magnitude faster than traditional genetic algorithms for

some problem domains. In a memetic algorithm the

population is initialized at random or using a heuristic

method. Then, each individual makes local search to

improve its fitness. To form a new population for the next

generation, higher quality individuals are selected. The

selection phase used in the MA is the same as used in the

classical genetic algorithm. Once two parents are selected,

their chromosomes are combined and the classical

operators of crossover are applied to generate new

individuals. The latter are enhanced using a local search

technique. The role of local search in memetic algorithms

is to locate the local optimum more efficiently then genetic

algorithms.

The basic steps of MA used here are as follows.

Step 1. Initialize the population.

Step 2. Select individuals for recombination.

Step 3. Recombine individuals generating new ones.

Step 4. Mutate the new individuals.

Step 5. Apply the local search on the new individuals.

Step 6. If the stopping criterion is satisfied, Stop the

algoithm; otherwise, replace old individuals with

the new ones, restructure the population tree and

return to Step 2. Fig. 1 provides a general

template for the memetic algorithm.

C. Implementation of evolutionary algorithms

I. Solution representation

Each solution is represented with a matrix. This matrix

size is 1×Q that Q is the total demand of parts. A solution

can be feasible or infeasible. For example, a solution is

shown in Fig. 2 for a problem with 3 models and 6 parts,

in which the demand of each model 1, 2 and 3 is 2, 3 and

1 respectively.

II . Fitness

Each solution has a fitness function value, which is

 Amirkabir / MISC / Vol . 44 / No.2 / Fall 2012

23

related to the objective function value of the solution.

However, the population can have feasible and infeasible

solutions. An option to manage the infeasibility is to use

both cost and feasibility. This can be written as fitness cost

feasibility; where s is the solution, cost of the objective

function value, and feasibility=1 if the solution is feasible;

and 0, otherwise. Therefore, the fitness is not one value;

however, it is two (i.e, the cost and the feasibility of the

solution).

III . Initialization

The initialization can be executed with either a

randomly created population or a well-selected

population. In this study, an initial population of the

desired size is generated randomly. For example, when

there are five parts, the algorithm generates 10

chromosomes at random, depending on the problem size.

Procedure Memetic Algorithm;

Begin

initialize population;

foreach individual do local-search individual;

repeat

for individual =1 to #crossovers do

select two parent individual1, individual2 \in population

with use parent selection strategy;

individual3:=crossover(individual1, individual2);

individual3:=local-search(individual3);

add individual3 to population;

end for;

for individual=1 to #mutations do

select an individual of population randomly;

individual{m} := mutate (individual);

individual{m} := local-search (individual{m});

add individual{m} to population;

end for;

population:=select(population);

if population converged then

for each individual of best populations do individual :=local-

search(mutate(individual);

end if

until terminate=true;

Figure 1: General outline of the MA in a pseudo code.

2 1 1 2 3 2

Figure 2:. Example of a feasible solution.

IV. Parent selection

Reproduction selects good strings in a population and

forms a mating pool. That is why the reproduction

operator is sometimes called the selection operator.

Methods of selection mechanisms are as follows:

 Rank order selection method

 Roulette wheel selection method

 Tournament selection method

Following is a breif description of the roulette wheel

selection method. For crossover and mutation operators,

the strings of higher fitness values are selected. The

probability of selecting each string is calculated by:

totalF

tF
SI

)(
 (13)

where)(tF = Fitness value of the ith string,

totalF = total fitness value of all strings.

The total fitness of the population is computed by:





n

i

tFtF
1

)()((14)

To select n strings, random numbers between 0 and 1

are generated.

V. Crossover

The chromosome to be crossed and the crossing points

are to be selected randomly. Crossover is carried out with

a probability called the crossover probability (CPROB).

For the above random numbers (i.e., initial population) are

generated for each chromosome and compared with the

crossover probability values. The chromosomes with

higher values of CPROB are chosen for crossover. The

crossover probability is taken as 0.90. There are several

types of crossover operators available and some of them

are single point, two points, and uniform and arithmetic

crossover operators. In this study, we use single point

crossover as shown in Fig. 3.

 Parent 1

 Parent 2

 Offspring 1

 Offspring 2

Figure 3. Crossover operation

VI. Mutation

Mutation is the process by which a randomly chosen bit

in a chromosome is flipped. It is employed to introduce

new information into the population and also to prevent

the population from becoming saturated with similar

chromosomes (i.e., premature convergence). Large

mutation rates increase the probability that good schemata

be destroyed, but increase population diversity. A schema

is a subset of chromosomes which are identical in certain

fixed positions [68, 69].

Mutation is carried out with mutation probability of

0.05. At first with use parent selection strategy choose one

chromosome and then two random integers' r1 and r2 are

generated.

1<r1<=Q (i.e., total demand) 1<r2<=Q. The algorithms

then removes gene number r1 from the current string and

assigns it to gene r2 and also assign gene number r2 to

3 3 1 3 2 2 1

3 3 3 1 1 2 2

3 3 3 1 2 2 1

3 3 1 3 1 2 2

Cut point

Amirkabir / MISC / Vol . 44 / No.2 / Fall 2012

24

gene r1, as shown below. Take random numbers r1 =3 and

r2 =4, then we have:

VII. Reproduction

We choose a chromosome with the best fitness and then

this mechanism just copies the chosen chromosome to the

next generation. Reproduction is carried out with the

reproduction probability of 0.05.

VIII . Local search algorithms

Our local search algorithm for the multi-objective case

uses the same notion of neighborhood as in the single-

objective case. However, the acceptance criterion of the

single-objective local search algorithms needs to be

changed to take into account several objectives. While in

iterative improvement local search for the single-objective

case a solution is accepted if it is better than the current

one, for multi-objective problems an extension of this

acceptance criterion should take into account the concept

of Pareto optimality. For the sake of simplicity, a first

approach for an acceptance criterion may be to accept a

neighboring solution, if it is not worse than the current

solution. However, a solution accepted by such a criterion

may be dominated by other solutions seen previously in

the local search. To avoid this, we maintain an archive of

non-dominated solutions. The final acceptance criterion

used for the local search is as follows. Each new solution

is compared with the current one. If the new solution is not

worse in the Pareto sense, it is compared in the next step

to all solutions in the archive. Only if the new solution is

not dominated by any solution of the archive, it is finally

accepted and included into the archive. In fact, during this

process, some solutions from the archive can become

dominated by some of the recently introduced ones. Such

solutions are eliminated continuously from the archive.

The local search algorithm starts from a randomly

generated initial solution that is put into the archive. It

then works as follows: First, it picks a solution randomly

from the archive and iteratively explores the neighborhood

of this solution. If a not worse solution is found, it is

compared with the solutions in the archive and the local

search continues. If at some point all neighboring

solutions were explored and none is accepted any more,

the solution is flagged as visited, i.e., this solution is a

Pareto local optima solution and it will not be chosen

again. We terminate the local search procedure if all the

neighborhoods of all solutions in the archive were

explored, i.e. every solution in the Pareto local optimum

set is flagged as visited. In this case, a Pareto local

optimum set is found. It should be remarked that this local

search is similar to PAES [70], although we stress the

importance of neighborhood and use a simpler acceptance

criteria for comparing and accepting non-dominated

solutions.

D. GA and MA parameters

The values of a variety of parameters and policies, such

as crossover rate, mutation rate, population size, number

of generations, and the like, are to be chosen and there

should be a balance between the exploitation and the

exploration aspects of GA and MA operators.

Reproduction is responsible for the exploration of the

current population by making many duplicates of good

strings and cross over and mutation is responsible for

exploring a set of good strings for better strings. The

success of GA and MA depends on a balance between the

two. If too many copies of the good strings are allocated in

the mating pool then the diversity of the mating pool

reduces, which in turn reduces the extent of the search that

can be accomplished using crossover and mutation

operators. Therefore, we use 10 individuals which

correspond to a ternary tree with three levels. The

crossover rate should be set at high levels, since our

insertion policy works as a filter on the new individuals,

accepting only those that improve the overall fitness. In

our tests we tried crossover rates of 0.75, 0.8 and 0.9. In

other words we tested situations where we create from 7 to

26 new individuals every generation. The best number was

20 individuals which correspond to a crossover rate of 0.9.

With less individuals being created every generation,

we have heavy mutations procedures being applied too

often. That occurred because it was very difficult to have a

new individual replacing an old one after the population

had already evolved for, say, 10 or 15 iterations. With 26

individuals being created, the number of generations

executed during the 30-s time span dropped considerably,

worsening the results. The mutation rate was set at 0.05

for the MA that means 5% of MA new individuals go

through a light mutation process every generation and then

reproduction is carried out with reproduction probability

of 0.05.

4. COMPUTATIONAL RESULTS

In this section, we evaluate the quality of the GA and

MA solutions by means of a computational study. We

teste the GA and MA at random problems, and compared

GA and MA solutions with solutions obtained using a

branch-and-bound (B&B) procedure with the Lingo 8

software. The B&B returns an optimal solution if given

enough time. The heuristic was coded in Matlab 7.0 and

run on a 2.4 GHz Pentium IV computer. So, the heuristic

is tested on a set of mixed-model assembly line balancing

problems developed by the authors and whose main

characteristics are shown in Table 1.

In this paper, we consider eight small and 14 large-

scale problems generated from uniform distributions.

Considering the results of Table 1 and Fig. 4, the proposed

1 2 3 1 2 3 3

Before mutation:

1 2 1 3 2 3 3

After mutation:

 Amirkabir / MISC / Vol . 44 / No.2 / Fall 2012

25

GA and MA are able to find and report the optimal or

near-optimal solutions in a reasonable computational time.

This indicates the success of our proposed algorithms.

Fig. 5 illustrates the diagram of the CPU time related to

the solutions reported by Lingo 8.0, GA and MA in

respect to the number of problems for those instances

given in Table 1. This figure indicates that the

computational time increases quickly, when the number of

stations, the total part and the number of models increases.

Table 2 illustrates the computational results of large-

scale problems. These results reveal that the proposed GA

and MA have the ability to compete with the Lingo

software from the quality point of view. That is very

clearly true for large-scale problems, in which Lingo

cannot produce any feasible solution.

In GAs and MAs, various procreation parameters are

used. We carry out experiments with different

combinations of parameters to recognize the suitable set of

parameters and their effect on solutions. The selection

with a greater pressure on better individual (i.e., with a

higher rate of crossover) reduce the diversification;

therefore, the solutions are premature.

In the mixed-model assembly line balancing problem,

as a big partition of the population come together to

special solutions, the likelihood of solution improvement

decreases because the rate of selecting the same solution

increases. Thus, it is important to find a fitting rate for

crossover and mutation. An experiment is performed by

considering different crossover rates from 0.55 to 0.95

with an increase of 0.05, and different mutation rates from

0.40 to 0.00 with a reduction of 0.05. However, the

crossover rate plus the mutation rate should be equal to

0.95. The result of this experiment shows that our

algorithm provides the best solution when the crossover

and mutation rates are 0.80 and 0.15, respectively.

Figure 4: Objective function values.

Figure 5: Computational time obtained by Lingo and

the proposed GA and MA for small-scale problems.

TABLE 1

COMPARISON BETWEEN LINGO 8 AND THE PROPOSED GA AND MA

FOR SMALL-SCALE PROBLEMS

Objective

function

value

Run

time
Algorithm

N
o

.
o

f

m
o

d
el

s

T
o

ta
l

p
ar

t

N
o

.
o

f

S
ta

ti
o

n
s

P
ro

b
le

m

185 5 GA

3 3 2 1 185 7 MA

185 2 LINGO

458 10 GA

4 5 2 2 458 10 MA

458 3 LINGO

1220 15 GA

3 6 4 3 1220 18 MA

1220 289 LINGO

1458 61 GA

4 7 5 4 1450 63 MA

1450 2410 LINGO

1520 65 GA

4 8 5 5 1520 69 MA

1520 2556 LINGO

2320 70 GA

4 8 6 6 2320 70 MA

2320 12687 LINGO

3380 72 GA

4 8 7 7 3380 75 MA

3380 14692 LINGO

3660 61 GA

5 8 7 8 3640 63 MA

3640 17867 LINGO

Number of problems

O
F

V

Number of problem

R
u

n
 T

im
e

Amirkabir / MISC / Vol . 44 / No.2 / Fall 2012

26

TABLE 2

COMPARISON BETWEEN LINGO 8 AND THE PROPOSED GA AND MA

FOR LARGE-SCALE PROBLEMS

Objective

function

value

Run

time
Algorithm

N
o

.
o

f

m
o

d
el

s

T
o

ta
l

p
ar

t

N
o

.
o

f

S
ta

ti
o

n
s

P
ro

b
le

m

5470 75 GA

5 10 8 1 5556 79 MA

N/A 21600 LINGO

8639 145 GA

8 11 8 2 8751 143 MA

N/A 21600 LINGO

12377 210 GA

10 12 8 3 12377 215 MA

N/A 21600 LINGO

28956 405 GA

12 15 10 4 28956 400 MA

N/A 21600 LINGO

66951 856 GA

15 21 12 5 66951 880 MA

N/A 21600 LINGO

207385 2097 GA

20 25 18 6 207385 2452 MA

N/A 21600 LINGO

207385 2097 GA

20 25 19 7 207385 2452 MA

N/A 21600 LINGO

265152 2163 GA

20 25 20 8 265152 2339 MA

N/A 21600 LINGO

27320 2270 GA

21 26 20 9 27305 2520 MA

N/A 21600 LINGO

285870 2897 GA

22 28 20 10 279870 3020 MA

N/A 21600 LINGO

305829 2956 GA 24 28 22 11

298256 3185 MA

N/A 21600 LINGO

311956 3215 GA

26 30 22 12 308950 3305 MA

N/A 21600 LINGO

317562 3185 GA

28 30 22 13 312850 3365 MA

N/A 21600 LINGO

317562 3185 GA

30 30 24 14 312850 3365 MA

N/A 21600 LINGO

5. CONCLUSION

This paper has presented a new mathematical

programming model for the mixed-model assembly line

balancing problem that minimizes the total conveyor

stoppage time and setup cost. Since the conveyor

stoppages are frequently caused in many actual mixed-

model assembly lines, the objective of minimizing the

total conveyor stoppage time becomes more and more

important. An excellent sequence for mixed models to be

assembled on the conveyor can help to improve the

performance of the assembly line. The properties

characterized in this paper would be useful and powerful

in developing efficient algorithms and evaluating the

quality of solutions. In this sense, the considered problem

is more general than the conventional flow shop group

scheduling problem. In addition, we have proposed a

genetic algorithm (GA) and a memetic algorithm (MA) to

solve the foregoing problems. The Lingo software and our

proposed GA and MA have been used to solve 21

different test problems. The obtained results have

indicated that the proposed GA and MA have been able to

reduce the time as compared to the Lingo software.

6. REFERENCES

[1] P. M. Vilarinho and A.S. Simaria, “A two-stage heuristic method

for balancing mixed-model assembly lines with parallel

workstations”, International Journal of Production Research, Vol.

40, pp. 1405-1420, 2002.

[2] Y. Zhang and P.B. Luh, K.Yoneda, T. Kano and Y. Kyoya,

“Mixed-Model Assembly Line Scheduling Using the Lagrangian

Relaxation Technique”, Institute of Industrial Engineering, Vol.

32, 125-134, 2000.

[3] N. V. Hop, “A heuristic solution for fuzzy mixed-model line

balancing problem”, European Journal of Operational Research ,

Vol. 168 (3), pp. 798–810, 2006.

[4] Y. Monden, Toyota Production System, second Ed. The Institute of

Industrial Engineers, Norcross, GA, 1993.

[5] J. Miltenburg, “Level schedules for mixed-model assembly lines in

just-in-time production systems”, Management Science, Vol. 35,

pp. 192–207, 1989.

[6] J. Miltenburg, G. Steiner and S. Yeomans, “A dynamic

programming algorithm for scheduling mixed-model just-in-time

production systems”, Mathematical Computation Modeling, Vol.

13, pp. 57–66, 1990.

[7] P.R. Inman and R. L. Bulfin, “Note on sequencing JIT mixed-

model assembly lines”, Management Science, Vol. 37, pp. 904–

910, 1991.

[8] C.A. Yano, and R. Rachamadugu, “Sequencing to minimize work

overload in assembly lines with product options”, Management

Science, Vol. 37, pp. 572–586, 1991.

[9] J.F. Bard, E.M. Dar-El, and A. Shtub, “An analytic framework for

sequencing mixed model”, International Journal of Production

Research, Vol. 30, pp. 35–48, 1992.

[10] K. Okamura, and H. Yamshina, “A heuristic algorithm for the

assembly line model-mix sequencing problem to minimize the risk

of stopping the conveyor”, International Journal of Production

Research, Vol. 17, 233–247, 1979.

[11] I. Baybars, “A survey of exact algorithms for the simple assembly

line balancing problem”, Management Science, Vol. 2, pp. 909–

932, 1986.

[12] S. Ghosh, and R. J. Gagnon, “A comprehensive literature review

and analysis of the design, balancing and scheduling of assembly

systems”. International Journal of Production Research, Vol. 27,

pp. 637-670, 1989.

[13] A. Scholl, Balancing and sequencing of assembly lines, Physica,

Heidelberg, second Ed., 1999.

[14] Fokkert, J.I.V.Z.D. and de Kok, T.G., “The mixed and multimodel

line balancing problem: A comparison”, European Journal of

Operational Research, Vol. 100, pp. 399–412, 1997.

http://www.sciencedirect.com/science/journal/03772217
http://www.sciencedirect.com/science/journal/03772217/168/3

 Amirkabir / MISC / Vol . 44 / No.2 / Fall 2012

27

[15] W.B. Helgeson, and D.P. Birnie, “Assembly line balancing using

the ranked positional weight technique”, Journal of Industrial

Engineering, Vol. 12, pp. 394–398, 1961.

[16] A.L. Gutjahr and G.L. Nemhauser, “An algorithm for the line

balancing problem”, Management Science, Vol. 11, pp. 308–315,

1964.

[17] E. M. Mansoor, “Assembly Line Balancing – An Improvement on

the Ranked Positional Weight Technique”, Journal of Industrial

Engineering, Vol. 15, pp. 73-78, 1964.

[18] A. Kabir, and M. Tabucanon, “Batch-Model Assembly Line

Balancing: A Multi- Attribute Decision Making Approach”, Int. J.

of Production Economics, Vol. 41, pp. 193-201, 1995.

[19] H. Gokcen and E. Erel, “A Goal Programming Approach to

Mixed-Model Assembly Line Balancing Problem”, Int. J. of

Production Economics, Vol. 48, pp. 177-185, 1997.

[20] H. Gokcen and E. Erel, “Binary integer formulation for mixed-

model assembly line balancing problem”, Computers and

Industrial Engineering, Vol. 34, pp. 451–461, 1998.

[21] E. Erel and H. Gokcen, “Shortest-route formulation of mixed-

model assembly line balancing problem”, European Journal of

Operational Research, Vol. 116, pp. 194–204, 1999.

[22] R.F. Deckro and S. Rangachari, “A goal approach to assembly line

balancing”, Computers and Operations Research, Vol. 17, pp.

509–521, 1990.

[23] A.L. Gutjahr and G.L. Nemhauser, “An algorithm for the line

balancing problem”, Management Science, Vol. 11, 1964, pp.

308– 315, 1964.

[24] S.D. Roberts and C.D. Villa, “On a multiproduct assembly line-

balancing problem”, AIIE Transactions, Vol. 2, pp. 361–364,

1970.

[25] R. Tavakkoli-Moghaddam, G. Moslehi, M. Vasei and A. Azaron,

“Optimal scheduling for a single machine to minimize the sum of

maximum earliness and tardiness considering idle insert”, Applied

Mathematics and Computation, Vol. 167, pp. 1430–1450, 2005.

[26] R. Tavakkoli-Moghaddam, G. Moslehi, M. Vasei and A. Azaron,

“A branch-and-bound algorithm for a single machine sequencing

to minimize the sum of maximum earliness and tardiness with idle

insert”, Applied Mathematics and Computation, Vol. 17, pp. 388–

408, 2006.

[27] J.F. Bard, A. Shtub and S.B. Joshi, “Sequencing mixed-model

assembly lines to level parts usage and minimize the length”,

International Journal of Production Research, Vol. 32, pp. 2431–

2454, 1994.

[28] C.J. Hyun, Y. Kim and Y.K. Kim, “A genetic algorithm for

multiple objective sequencing problems in mixed model assembly

lines”, Computers and Operations Research, Vol. 25, pp. 675–690,

1998.

[29] T. Korkmazel and S. Meral, “Bi-criteria sequencing methods for

the mixed-model assembly line in just-in-time production

systems”, European Journal of Operational Research, Vol. 131, pp.

188–207, 2001.

[30] Y. Monden, Toyota Production System, Institute of Industrial

Engineers Press, Atlanta, 1983.

[31] P.R. McMullen and G.V. Frazier, “A simulated annealing

approach to mixed-model sequencing with multiple objectives on a

JIT line”, IIE Transactions, Vol. 3, pp. 679–686, 2000.

[32] P.R. McMullen, “JIT sequencing for mixed-model assembly lines

with setups using tabu search”, Production Planning and Control,

Vol. 9, pp. 504–510, 1998.

[33] P.R. McMullen, “An efficient frontier approach to addressing JIT

sequencing problems with setups via search heuristics”, Computers

and Industrial Engineering, Vol. 41, pp.335–353, 2001.

[34] P.R. McMullen, “A Kohonen self-organizing map approach to

addressing a multiple objective, mixed-model JIT sequencing

problem”, International Journal of Production Economics, Vol. 72,

pp. 59–71, 2001.

[35] P.R. McMullen, “An ant colony optimization approach to

addressing a JIT sequencing problem with multiple objectives”,

Artificial Intelligence in Engineering, Vol. 15, pp. 309–317, 2001.

[36] S.A. Mansouri, “A multi-objective genetic algorithm for mixed-

model sequencing on JIT assembly lines”, European Journal of

Operational Research, Vol. 167, pp. 696–716, 2005.

[37] R. Tavakkoli-Moghaddam, N. Safaei and M. Babakhani, “Solving

a dynamic cell formation problem with machine cost and

alternative process plan by memetic algorithms”, in: O.B.

Lupanov, O.M. Kasim-Zade, A.V. Chaskin, K. Steinhofel (Eds.),

Stochastic Algorithms: Foundation and Applications, Lecture

Notes in Computer Science, Springer-Verlag, Berlin, vol. 3777,

pp. 213–227, 2005.

[38] S. Emde and N. Boysen, “Optimally routing and scheduling tow

trains for JIT-supply of mixed-model assembly lines”, European

Journal of Operational Research, Vol. 217, 287–299, 2012.

[39] S. Emde and N. Boysen, “Optimally locating in-house logistics

areas to facilitate JIT-supply of mixed-model assembly lines”,

International Journal of Production Economics, Vo. 135, 393–402,

2012.

[40] Q.Y. Dong, J. Lu, and Y. Gui, “Integrated Optimization of

Production Planning and Scheduling in Mixed Model Assembly

Line”, Procedia Engineering, Vol. 29, 3340–3347, 2012.

[41] A. Hamzadayi and G. Yildiz, “A genetic algorithm based approach

for simultaneously balancing and sequencing of mixed-model U-

lines with parallel workstations and zoning constraints”,

Computers & Industrial Engineering Volume 62, 206– 215, 2012.

[42] X. Zenga, W. K. Wonga and S. Y. Leung, “An operator allocation

optimization model for balancing control of the hybrid assembly

lines using Pareto utility discrete differential evolution algorithm”,

Computers & Operations Research, Vol. 39, 1145–1159, 2012.

[43] J. Bautista, A. Cano and R. Alfaro, “Modeling and solving a

variant of the mixed-model sequencing problem with work

overload minimization and regularity constraints. An application

in Nissan‟s Barcelona Plant”, Expert Systems with Applications,

Available online 14 March 2012.

[44] N. Boysena and S. Bock, “Scheduling just-in-time part supply for

mixed-model assembly lines”, European Journal of Operational

Research, Vol. 211, 15-25, 2011.

[45] Q. Zhenga,Y. Lia and M. Li, “Assembly Line Balancing Model

Based on Ant Colony Optimization Algorithm”, Energy Procedia,

Vol. 13, 5366–5372, 2011.

[46] S. Akpınar and G. M. Bayhan, “A hybrid genetic algorithm for

mixed model assembly line balancing problem with parallel

workstations and zoning constraints”, Engineering Applications of

Artificial Intelligence, Vol. 24, 449–457, 2011.

[47] S.J. Hua, J. Kob, L. Weyandc, H.A. ElMaraghyd, T.K. Liene, Y.

Korena, H. Bleyc, G. Chryssolourisf, N. Nasrg and M. Shpitalnih,

“Assembly system design and operations for product variety”,

CIRP Annals - Manufacturing Technology, Vol. 60, 715–733,

2011.

[48] U, Özcan, “Balancing stochastic two-sided assembly lines: A

chance-constrained, piecewise-linear, mixed integer program and a

simulated annealing algorithm”, European Journal of Operational

Research, Vol. 205, 81–97, 2010.

[49] V. Giard and J. Jeunet, “Optimal sequencing of mixed models with

sequence-dependent setups and utility workers on an assembly

line”, International Journal of Production Economics, Vol. 123,

290–300, 2010.

[50] L. Yang and X. Zhang, “Design and Application of Kanban

Control System in a Multi-Stage, Mixed-Model Assembly Line”,

Systems Engineering - Theory & Practice, Vol. 29, 64-72, 2009.

[51] N. Boysena, M. Fliednerb and A. Scholl, “The product rate

variation problem and its relevance in real world mixed-model

assembly lines”, European Journal of Operational Research, Vol.

197, 818–824, 2009.

[52] J.F. Bard, E.M. Dar-El and A. Shtub, , “An analytic framework for

sequencing mixed model”, International Journal of Production

Research, Vol. 30, pp. 35–48, 1992.

[53] C.J. Hyun, Y. Kim and Y.K. Kim, “A genetic algorithm for

multiple objective sequencing problems in mixed model assembly

lines”, Computers and Operations Research, Vol. 25, pp. 675–690,

1998.

[54] T. Hoffmann, “Eureka: A hybrid system for assembly line

balancing”, Int. J. of Management Science, Vol. 38, pp. 39-47,

1992.

[55] B.B. Malakooti, “Assembly line balancing with buffers by multiple

criteria optimization”, Int. J. of Production Research, Vol. 32,

http://www.sciencedirect.com/science/journal/03772217
http://www.sciencedirect.com/science/journal/03772217
http://www.sciencedirect.com/science/journal/03772217/217/2
http://www.sciencedirect.com/science/journal/09255273
http://www.sciencedirect.com/science/journal/09255273/135/1
http://www.sciencedirect.com/science/article/pii/S1877705812005012#aff0005
http://www.sciencedirect.com/science/journal/18777058
http://www.sciencedirect.com/science/journal/18777058/29
http://www.sciencedirect.com/science/journal/03608352

