[1] D. Anderson, T. Frivold, and A. Valdes, "Next-Generation Intrusion Detection Expert System", (NIDES)-A Summary, Technical Report SRICLS-95-07, SRI, May 1995.
[2] D. Barbarra, J. Couto, S. Jajodia, L. Popyack, and N. Wu, “ADAM: Detecting Intrusion by Data Mining”, Proceedings of the 2001 IEEE, Workshop on Information Assurance and Security T1A3 1100 United States Military Academy, West Point, NY, June 2001.
[3] C. Amza, C.Leordeanu, V. Cristea, "Hybrid network Intrusion Detection ", IEEE International Conference on Intelligent Computer Communication and Processing (ICCP), 2011, Page(s): 503 – 510..
[5] O. Depren, M. Topallar, E. Anarim, and M. K. Ciliz, "An intelligent intrusion detection system (IDS) for anomaly and misuse detection in computer networks", Expert Systems with Applications Volume 29, Issue 4, Pages 713-722, , November 2005.
[6] E. Eleazar, "Anomaly Detection over Noisy Data using Learned Probability Distributions'', ICML00, Palo Alto, CA: July, 2000.
[7] Y. Freund and R. Schapire, “A decision theoretic generalization of on-line learning and an application to boosting”, Comput. Syst. Sci., vol. 57, no. 1, pp. 119–139, 1997.
[8] G. Giacinto, F. Roli, and L. Didaci, "Fusion of multiple classifiers for intrusion detection in computer networks", Pattern Recognition Letters, 24(12), pp. 1795-1803, 2003.
[9] R. Heady, G. Luger, A. Maccabe, and M. Servilla. "The architecture of a network level intrusion detection system", Technical Report CS90-20, Department of Computer Science, University of New Mexico, August 1990.
[10] W. Hu and W. Hu, "Network-based Intrusion Detection Using Adaboost Algorithm", Proceedings of the 2005 IEEE/WIC/ACM International conference on Web Intelligence(WI'05), 0-7695-2415-X/05, 2005.
[11]
K. Hwang,
M. Cai,
Y. Chen, and
M. Qin, "Hybrid Intrusion Detection with Weighted Signature Generation over Anomalous Internet Episodes", IEEE Transaction on Dependable and Secure Computing
, Vol. 4, No. 1, pp. 41-55, January-March 2007.
[13] K. Leung and C. Leckie, “Unsupervised Anomaly Detection in Network Intrusion Detection Using Clusters”, Australasian Computer Science Conference, Newcastle, NSW, Australia, 2005.
[14] P. Lichodzijewski, A.N. Zincir-Heywood, and M. I. Heywood, “Host-based intrusion detection using self-organizing maps,” Proceedings of the 2002 IEEE World Congress on Computational Intelligence, 2002.
[15] U. Lindqvist and P.A. Porras, "Detecting computer and network misuse through the production-based expert system toolset (PBEST)", Proceedings of the 1999 IEEE symposium on security and privacy, pp. 146-161, IEEE Computer Socitey, Los Alamitos, CA., 1999.
[16] N. Littlestone and M.Warmuth, “Weighted majority algorithm”, Inform. Comput. vol. 108, pp. 212–261, 1994.
[17] M. Locasto, K. Wang, A. Keromytis, and S. Stolfo. Flips: Hybrid adaptive intrusion prevention. In Proceedings of the 8th International Symposium on Recent Advances in Intrusion Detection (RAID), September 2005.
[18] Mounji, B.L. Charlier, D. Zampuniéris, and N. Habra, "Distributed audit trail analysis:, Proceedings of the ISOC’95 symposium on network and distributed system security, pp. 102-112, IEEE Computer Society, Los Alamitos, CA., 1995.
[19] S. Peddabachigaria, A. Abrahamb, I. Grosanc, and J. Thomas, "Modeling intrusion detection system using hybrid intelligent systems", Published by Elsevier Ltd, 2005.
[20] S. Peddabachigaria, A. H. Sung, and A. Abraham, "Intrusion detection using an ensemble of intelligent paradigms", Published by Elsevier Ltd, 2004.
[21] R. Polikar, L. Udpa, and V. Honavar, “Learn++: An incremental learning algorithm for supervised neural networks”, IEEE Transactions on System, Man and Cybernetics (C), Special Issue on Knowledge Management, vol. 31, no. 4, pp. 497-508, 2001.
[22] P. Porras and G. P. Neumann, "EMERALD: Event Monitoring Enabling Responses to Anomalous Live Disturbances", In Proceedings of 20th National Information Systems Security Conference, 1997.
[23] S.T. Powers and J. He, "A hybrid artificial immune system and Self Organizing Map for network intrusion detection", Information Sciences 178, pp. 3024–3042, 2008.
[24] R. Rangadurai Karthick, V.P.Hattiwale, B. Ravindran, "Adaptive network intrusion detection system using a hybrid approach", Fourth International Conference on Communication Systems and Networks (COMSNETS), 2012, Page(s): 1 – 7.
[25] Rasoulifard and A. Ghaemi Bafghi, "Incremental Intrusion Detection Using Learn++ algorithm", 3rd conference on Information and Knowledge Technology, Ferdowsi University of Mashhad, Faculty of Engineering, IKT2007, Nov. 27-29 2007.
[26] Rasoulifard, A. Ghaemi Bafghi, and M. kahani, "Incremental Hybrid Intrusion Detection Using Ensemble of Weak Classifiers", 13th Int'l CSI Computer Conference (CSICC'08), March 9-11, 2008.
[27] M. Sabhnani and G. Serpen, "Application of Machine Learning Algorithms to KDD Intrusion Detection Dataset within Misuse Detection Context", EECS Dept, University of Toledo, Toledo, Ohio 43606 USA.
[28] K. Shah, N. Dave, S. Chavan, S. Mukherjee, A. Abraham, and S. Sanyal, "Adaptive Neuro-Fuzzy Intrusion Detection System", IEEE International Conference on ITCC'04, Vol. 1, pp. 70-74, 2004.
[29] K, Selvamani; S, Anbuchelian; S, Kanimozhi; R, Elakkiya; S, Bose; A, Kannan, "A hybrid framework of intrusion detection system for resource consumption based attacks in wireless ad-hoc networks", International Conference on Systems and Informatics (ICSAI), 2012, Page(s): 8 – 12..
[30] T. Shon and J. Moon, "A hybrid machine learning approach to network anomaly detection", Information Sciences 177, pp.3799–3821, 2007.
[31] E. Tombini, H. Debar, L. Mé, and M. Ducassé, "A Serial Combination of Anomaly and Misuse IDSes Applied to HTTP Traffic", In proceedings of the Annual Computer Security Applications Conference (ACSAC). December 2004.
[32] K. Wang and S. J. Stolfo. "Anomalous Payload-based Network Intrusion Detection", In Proceedings of the 7th International Symposium on Recent Advances in Intrusion Detection (RAID), pages 203-222, September 2004.
[33] Xiang and S.M. Lim, "Design of Multiple-Level Hybrid Classifier for Intrusion Detection System", Proceeding of Machine Learning for Signal Processing, 2005 IEEE Workshop on Volume , Issue , 28-28 ,PP 117 – 122, Sept. 2005.
[34] L. Xu, A. Krzyzak, and Y.Ching, "Methods of Combining Multiple Classifier and Their Application to Handwriting Recognition", IEEE TRANSACTION ON SYSTEMS, MAN AND CYBERNETICS, VOL. 22, NO. 3, MAY/JUNE 1992.
[35] W. Yang, X.C. Yun, and L.J. Zhang, "Using Incremental Learning Method For Adaptive Network Intrusion Detection", Proceedings of the Fourth International Conference on Machine Learning and Cybernetics, Guangzhou, 18-21 August 2005.
[36] Z. Yu and J.P. Tsai, "A Multi-Class SLIPPER System for Intrusion Detection," compsac, pp. 212-217, 28th Annual International Computer Software and Applications Conference (COMPSAC'04), 2004.
[37] Z. Yu and J.P. Tsai, "An efficient intrusion detection system using a boosting-based learning algorithm," International Journal of Computer Applications in Technology, Vol. 27, No.4 pp. 223 – 231, 2006.
[38] J. Zhang and M. Zulkernine, “Anomaly based network intrusion detection with unsupervised outlier detection”, The 2006 IEEE International Conference on Communications, Istanbul, Turkey, June 2006.
[39] J. Zhang and M. Zulkernine, “A Hybrid Network Intrusion Detection Technique Using Random Forests”, Proc. of the International Conference on Availability, Reliability and Security (AReS), IEEE CS Press, pp. 262-269, Vienna, Austria, April 2006.
[40] S. Zhong, T. Khoshgoftaar, and N. Seliya, "Clustering-Based Network Intrusion Detection", International Journal of Reliability, Quality and Safety Engineering.