[1] P. M. Vilarinho and A.S. Simaria, “A two-stage heuristic method for balancing mixed-model assembly lines with parallel workstations”, International Journal of Production Research, Vol. 40, pp. 1405-1420, 2002.
[2] Y. Zhang and P.B. Luh, K.Yoneda, T. Kano and Y. Kyoya, “Mixed-Model Assembly Line Scheduling Using the Lagrangian Relaxation Technique”, Institute of Industrial Engineering, Vol. 32, 125-134, 2000.
[4] Y. Monden, Toyota Production System, second Ed. The Institute of Industrial Engineers, Norcross, GA, 1993.
[5] J. Miltenburg, “Level schedules for mixed-model assembly lines in just-in-time production systems”, Management Science, Vol. 35, pp. 192–207, 1989.
[6] J. Miltenburg, G. Steiner and S. Yeomans, “A dynamic programming algorithm for scheduling mixed-model just-in-time production systems”, Mathematical Computation Modeling, Vol. 13, pp. 57–66, 1990.
[7] P.R. Inman and R. L. Bulfin, “Note on sequencing JIT mixed-model assembly lines”, Management Science, Vol. 37, pp. 904–910, 1991.
[8] C.A. Yano, and R. Rachamadugu, “Sequencing to minimize work overload in assembly lines with product options”, Management Science, Vol. 37, pp. 572–586, 1991.
[9] J.F. Bard, E.M. Dar-El, and A. Shtub, “An analytic framework for sequencing mixed model”, International Journal of Production Research, Vol. 30, pp. 35–48, 1992.
[10] K. Okamura, and H. Yamshina, “A heuristic algorithm for the assembly line model-mix sequencing problem to minimize the risk of stopping the conveyor”, International Journal of Production Research, Vol. 17, 233–247, 1979.
[11] I. Baybars, “A survey of exact algorithms for the simple assembly line balancing problem”, Management Science, Vol. 2, pp. 909–932, 1986.
[12] S. Ghosh, and R. J. Gagnon, “A comprehensive literature review and analysis of the design, balancing and scheduling of assembly systems”. International Journal of Production Research, Vol. 27, pp. 637-670, 1989.
[13] A. Scholl, Balancing and sequencing of assembly lines, Physica, Heidelberg, second Ed., 1999.
[14] Fokkert, J.I.V.Z.D. and de Kok, T.G., “The mixed and multimodel line balancing problem: A comparison”, European Journal of Operational Research, Vol. 100, pp. 399–412, 1997.
[15] W.B. Helgeson, and D.P. Birnie, “Assembly line balancing using the ranked positional weight technique”, Journal of Industrial Engineering, Vol. 12, pp. 394–398, 1961.
[16] A.L. Gutjahr and G.L. Nemhauser, “An algorithm for the line balancing problem”, Management Science, Vol. 11, pp. 308–315, 1964.
[17] E. M. Mansoor, “Assembly Line Balancing – An Improvement on the Ranked Positional Weight Technique”, Journal of Industrial Engineering, Vol. 15, pp. 73-78, 1964.
[18] A. Kabir, and M. Tabucanon, “Batch-Model Assembly Line Balancing: A Multi- Attribute Decision Making Approach”, Int. J. of Production Economics, Vol. 41, pp. 193-201, 1995.
[19] H. Gokcen and E. Erel, “A Goal Programming Approach to Mixed-Model Assembly Line Balancing Problem”, Int. J. of Production Economics, Vol. 48, pp. 177-185, 1997.
[20] H. Gokcen and E. Erel, “Binary integer formulation for mixed-model assembly line balancing problem”, Computers and Industrial Engineering, Vol. 34, pp. 451–461, 1998.
[21] E. Erel and H. Gokcen, “Shortest-route formulation of mixed-model assembly line balancing problem”, European Journal of Operational Research, Vol. 116, pp. 194–204, 1999.
[22] R.F. Deckro and S. Rangachari, “A goal approach to assembly line balancing”, Computers and Operations Research, Vol. 17, pp. 509–521, 1990.
[23] A.L. Gutjahr and G.L. Nemhauser, “An algorithm for the line balancing problem”, Management Science, Vol. 11, 1964, pp. 308– 315, 1964.
[24] S.D. Roberts and C.D. Villa, “On a multiproduct assembly line-balancing problem”, AIIE Transactions, Vol. 2, pp. 361–364, 1970.
[25] R. Tavakkoli-Moghaddam, G. Moslehi, M. Vasei and A. Azaron, “Optimal scheduling for a single machine to minimize the sum of maximum earliness and tardiness considering idle insert”, Applied Mathematics and Computation, Vol. 167, pp. 1430–1450, 2005.
[26] R. Tavakkoli-Moghaddam, G. Moslehi, M. Vasei and A. Azaron, “A branch-and-bound algorithm for a single machine sequencing to minimize the sum of maximum earliness and tardiness with idle insert”, Applied Mathematics and Computation, Vol. 17, pp. 388–408, 2006.
[27] J.F. Bard, A. Shtub and S.B. Joshi, “Sequencing mixed-model assembly lines to level parts usage and minimize the length”, International Journal of Production Research, Vol. 32, pp. 2431–2454, 1994.
[28] C.J. Hyun, Y. Kim and Y.K. Kim, “A genetic algorithm for multiple objective sequencing problems in mixed model assembly lines”, Computers and Operations Research, Vol. 25, pp. 675–690, 1998.
[29] T. Korkmazel and S. Meral, “Bi-criteria sequencing methods for the mixed-model assembly line in just-in-time production systems”, European Journal of Operational Research, Vol. 131, pp. 188–207, 2001.
[30] Y. Monden, Toyota Production System, Institute of Industrial Engineers Press, Atlanta, 1983.
[31] P.R. McMullen and G.V. Frazier, “A simulated annealing approach to mixed-model sequencing with multiple objectives on a JIT line”, IIE Transactions, Vol. 3, pp. 679–686, 2000.
[32] P.R. McMullen, “JIT sequencing for mixed-model assembly lines with setups using tabu search”, Production Planning and Control, Vol. 9, pp. 504–510, 1998.
[33] P.R. McMullen, “An efficient frontier approach to addressing JIT sequencing problems with setups via search heuristics”, Computers and Industrial Engineering, Vol. 41, pp.335–353, 2001.
[34] P.R. McMullen, “A Kohonen self-organizing map approach to addressing a multiple objective, mixed-model JIT sequencing problem”, International Journal of Production Economics, Vol. 72, pp. 59–71, 2001.
[35] P.R. McMullen, “An ant colony optimization approach to addressing a JIT sequencing problem with multiple objectives”, Artificial Intelligence in Engineering, Vol. 15, pp. 309–317, 2001.
[36] S.A. Mansouri, “A multi-objective genetic algorithm for mixed-model sequencing on JIT assembly lines”, European Journal of Operational Research, Vol. 167, pp. 696–716, 2005.
[37] R. Tavakkoli-Moghaddam, N. Safaei and M. Babakhani, “Solving a dynamic cell formation problem with machine cost and alternative process plan by memetic algorithms”, in: O.B. Lupanov, O.M. Kasim-Zade, A.V. Chaskin, K. Steinhofel (Eds.), Stochastic Algorithms: Foundation and Applications, Lecture Notes in Computer Science, Springer-Verlag, Berlin, vol. 3777,
pp. 213–227, 2005.
[40] Q.Y. Dong, J. Lu
, and Y. Gui, “Integrated Optimization of Production Planning and Scheduling in Mixed Model Assembly Line”,
Procedia Engineering,
Vol. 29, 3340–3347, 2012.
[41] A. Hamzadayi and G. Yildiz, “A genetic algorithm based approach for simultaneously balancing and sequencing of mixed-model U-lines with parallel workstations and zoning constraints”,
Computers & Industrial Engineering Volume 62, 206– 215, 2012.
[42] X. Zeng
a, W. K. Wong
a and S. Y. Leung, “An operator allocation optimization model for balancing control of the hybrid assembly lines using Pareto utility discrete differential evolution algorithm”,
Computers & Operations Research,
Vol. 39, 1145–1159, 2012.
[43] J. Bautista, A. Cano and R. Alfaro, “Modeling and solving a variant of the mixed-model sequencing problem with work overload minimization and regularity constraints. An application in Nissan’s Barcelona Plant”,
Expert Systems with Applications, Available online 14 March 2012.
[45] Q. Zheng
a,Y. Li
a and M. Li, “Assembly Line Balancing Model Based on Ant Colony Optimization Algorithm”,
Energy Procedia,
Vol. 13, 5366–5372, 2011.
[47] S.J. Hu
a, J. Ko
b, L. Weyand
c, H.A. ElMaraghy
d, T.K. Lien
e, Y. Koren
a, H. Bley
c, G. Chryssolouris
f, N. Nasr
g and M. Shpitalni
h, “Assembly system design and operations for product variety”,
CIRP Annals - Manufacturing Technology,
Vol. 60, 715–733, 2011.
[52] J.F. Bard, E.M. Dar-El and A. Shtub, , “An analytic framework for sequencing mixed model”, International Journal of Production Research, Vol. 30, pp. 35–48, 1992.
[53] C.J. Hyun, Y. Kim and Y.K. Kim, “A genetic algorithm for multiple objective sequencing problems in mixed model assembly lines”, Computers and Operations Research, Vol. 25, pp. 675–690, 1998.
[54] T. Hoffmann, “Eureka: A hybrid system for assembly line balancing”, Int. J. of Management Science, Vol. 38, pp. 39-47, 1992.
[55] B.B. Malakooti, “Assembly line balancing with buffers by multiple criteria optimization”, Int. J. of Production Research, Vol. 32,
pp. 2159-2178, 1994.
[56] P.P Sonekar, S.M. Sindhi, J.V.L. Venkatesh, B.M. Dabade and S.P. Kallurkar, “A multiple criterion heuristic software for the practical assembly line balancing problem”, Stochastic Models Optimization Techniques and Computer Applications, pp. 303-313, 1994.
[57] F. Boctor, “A multiple-rule heuristic for assembly line balancing”, Int. J. of Operational Research Society, Vol. 46, pp. 62-69, 1995.
[58] A. Enmer, J. Favrel and J. Gauthie, “Balancing an assembly line for industrial truck engines”, Proceedings for IFAC Intelligent Manufacturing System, Bucharest, Romania, pp. 163-165, 1995.
[59] R. Roy and M.J. Allchurch, “Development of a knowledge-based system for balancing complex mixed model assembly lines”, International Journal of Computer Integrated Manufacturing, Vol. 9, pp. 205-216, 1996.
[60] K. Oh, “Expert line balancing system (ELBS)”, Computer & Industry Engineering, Vol. 33, pp. 303-306, 1997.
[61] A. Kumar and B. Malakooti, “A knowledge-based system for solving multi-objective assembly line balancing problems”, International Journal of Production Research, Vol. 34, pp. 2533-2552, 1996.
[62] B. Azinze and F. Partovi, “A knowledge based method for designing precedence networks and performing job allocation in line balancing”, Compute Industry Engineering, Vol. 18, pp. 351-364, 1990.
[63] K. Sudhir and K. Rajagopalan, “An artificial approach to precedence network generation for assembly line balancing”, Computers in Industry, Vol. 18, pp. 177-191, 1992.
[64] R. Tavakkoli-Moghaddam, Y. Gholipour-Kanani, and R. Cheraghalizadeh, “A genetic algorithm and memetic algorithm to sequencing and scheduling of cellular manufacturing systems”, International Journal of Management Science and Engineering Management, Vol. 3, pp. 119-130, 2008.
[65] P. Moscato, On evolution, search, optimization, genetic algorithms and martial arts: Towards memetic algorithms, Technical Report C3P 826. Caltech Concurrent Computation Program, California Institute of Technology, Pasadena: CA, 1989.
[66] P. Moscato, “Memetic algorithms: A short introduction, In: D. Corne, M. Dorigo, F. Glover (Eds.), “New ideas in optimization”, McGraw-Hill, London, pp. 219-213, 1999.
[67] A. S. Mendes, F. M. Muller, a.P.M. Franc and P. Moscato, Comparing meta-heuristic approaches for parallel machine scheduling problems with sequence-dependent setup times, Proceedings of the 15th Int. Conf. on CAD/CAM Robotics and Factories of the Future, A ` guas de Lindo` ia, SP, Brazil, 1999.
[68] D.E. Goldberg, Genetic algorithms in search, optimization and machines learning, Addison-Wesley, Reading, MA, 1989.
[69] J. Holland, Adaptation in Natural and Artificial Systems, The University of Michigan Press, Ann Arbor, 1975.
[70] J. Knowles and D. Corne, “The pareto archived evolution strategy: A new baseline algorithm for pareto multi-objective optimization”, The Proc. of CEC’99, 98–105, 1999.