
 Amirkabir / MISC / Vol . 44 / No.2 / Fall 2012

1

The IUFP Algorithm for Generating Simulation Heart

Elham Shadkami and Abdollah Aghaie
ii

Received 04 Dec 2011; received in revised 08 May 2012; accepted 09 Dec 2012

ABSTRACT

In all systems simulation, random variates are considered as a main factor and based of simulation heart.

Actually, randomization is inducted by random variates in the simulation. Due to the importance of such a

problem, a new method for generation of random variates from continuous distributions is presented in this

paper. The proposed algorithm, called uniform fractional part (UFP) is simpler and more efficient compared

with other methods of random variates generation. Despite useful consequences, this algorithm has several

shortcomings such as 1) being approximate, 2) not accessibility of the inverse of cumulative density

function (CDF) for all distributions in order to determine the cut-off points and 3) truncating the tails of

infinite distributions, which all of the aforementioned shortcomings reduce the precision and speed of the

algorithm. The main goal of this research is proposing the improved version of this algorithm (IUFP)

through recognizing its deficiencies.

KEYWORDS

Random Variates generation, Simulation, Uniform Fractional Part (UFP)

i * Corresponding Author, E. Shadkam, PhD student, Department of Industrial Engineering, Isfahan University of Technology, Isfahan, Iran

(e.shadkam@in.iut.ac.ir)

ii A. Aghaie, Professor, Department of Industrial Engineering, K.N. Toosi University of Technology, Tehran, Iran (aaghaie@kntu.ac.ir)

1. INTRODUCTION

Random variates are considered as the main factors in

all systems simulation in as much as they are known as

simulation heart. Most of computer languages have

functions or sub-programs to generate random variates and

similarly, simulation languages also employ the algorithms

of random variates generation to derive time events and

other random variables. By developing simulation and

computer utilization, more attention is paid to various

methods of random variates generation [1]. All of the

books associated with discrete event simulation or Mont

Carlo’s methods have at least one chapter concerning this

field which shows the importance of this problem.

Generation of random variates is one of the common

research areas in statistics, operations research and

computer science [2]. The random variates generation was

paid attention as a research area when the feasibility of

Mont Carlo’s tests was studied in the Second World War

[3]. These are different Application of this area. As an

instance, in Mont Carlo’s methods, to solve the various

problems such as random optimization, Mont Carlo’s

integration, solution of the linear equations and etc is

applicable.

Random variates play a key role in the implementations

of simulation techniques. During the past few years, there

has been an increasing interest in developing new

techniques based on random variates [4].

The generation of non-uniform random deviates has

come a long way, from methods dating back to a time

prior to the era of the computer to the latest novel

methods, such as the Ziggurat and vertical strip. While

some methods are general in nature, some others are

intended for a particular distribution. Among the

algorithms developed so far, some are widely used and/or

are more efficient than others. The main classifications for

these algorithms are:

1. The Inverse Transform methods

2. The Composition methods

3.The Acceptance Rejection methods

Among the presented algorithms, some of them are

more useful and efficient than the others. The best one is

presented by Izady and Mahlooji in 2005. This algorithm

is simple, precise, efficient and quick. One may refer to

[5] to see its superiority.

UFP method is applicable to the distributions of all

continuous random variables. Although this algorithm

belongs to the approximate category, its simplicity, speed,

robustness and coverage make it a powerful competitor

against the exact methods, while its accuracy can be

almost enhanced to any desired level. This method, which

may be considered as an approximate version of the

Inverse Transform algorithm, takes two random numbers

to generate a random deviate, while maintaining all the

other advantages of the Inverse Transform method, such

as the possibility of generating ordered as well as

mailto:ie-shadkam@sina.kntu.ac.ir
mailto:aaghaie@kntu.ac.ir

Amirkabir / MISC / Vol . 44 / No.2 / Fall 2012

2

correlated deviates and being applicable to all density

functions, regardless of their parameter values.

In spite of useful consequences, this algorithm has

some shortcomings. In this paper, an improved version of

this algorithm is proposed by corrective approaches

through recognizing its deficiencies. By implementation of

the proposed approaches, the outcomes of the improved

algorithm are then compared with the original algorithm.

As will be demonstrated in the next sections, our

algorithm outperforms the original one. Since universal

algorithms are applicable to all continuous distributions

and the proposed algorithm has such a property, it will be

applied on the normal and exponential distributions [6].

The main requirement component of all methods of

random variates generation is existence of a random

numbers generator, which is assumed such a generator is

available. By random numbers, the author means

generated uniform random variates on [0, 1] [7].

The rest of the paper is organized as follows. In Section

2, the UFP algorithm will be explained. Section 3 states

the shortcomings of the original UFP algorithm in which

the corrective approaches for 1) approximate form of the

algorithm, 2) determining of cut-off points and 3)

generating random variates from tails of unlimited

distributions are fully presented. In Section 4 the improved

UFP called IUFP is developed and Section 5 described

how to implement the IUFP algorithm on various

distributions, such as normal and exponential ones.

Finally, Section 6 provides of conclusions and future

work.

2. DESCRIPTION OF THE UNIFORM FRACTIONAL PART

(UFP) ALGORITHM

This algorithm is one of the latest presented methods

proposed by Izady and Mahlooji. It is an approximate

algorithm which is mainly used for continuous

distributions and is appropriate for simulation of models

which no change is made on distribution parameters

during the simulation process, due to its short marginal

time and large setup time.

Of other advantages of this algorithm is the need of

only one random number for generating a random variate

in the optimized status. The required calculations for

random variate generation are linear. The volume of

programming is little and the body of the algorithm is the

same for all distributions. The only dissimilar step for the

various distributions is the setup stage of the algorithm in

which the cut-off points are determined based on the

inverse of the desired cumulative distribution function

(CDF). The algorithm is based on a theorem given in [8],

page 72 and restated below.
Theorem 1: [8] Fractional part of sum of two

independent random variables with uniform distribution

on [0, 1], itself has uniform distribution on [0, 1].

In other words, if x and R1 are two independent random

variates on U[0, 1] and R2 is defined as

 xRxRR  112 , then the variable R2 has a uniform

distribution. The   denotes the biggest integer number

less than or equal to  ‌. By generalizing this theorem, one

can say that if x has any desired continuous distribution,

random variable R2 has uniform distribution on [0,1].

Consequently, continuous random variable x can be

generated using the above equation (namely by means of

two random numbers such as R1 and R2). According to

[9], the above equation then can be rewritten as:

(1)  xRRRx  112

In fact, the UFP algorithm is summarized as:

1) Generate R1 ‌and R2 as two independent uniform

random numbers.

2) Generate a value for  x

If 12 RR  then  xRRx  12 ; otherwise,

  121  xRRx

Figure 1: Probabilities concerning  x [5].

Initially, an integer value in range of x is randomly

selected (one of the separated columns in Fig. 1) and a

value of R2−R1 is then added to such a random selected

integer to make a random variate, where R1 and R2 are two

independent uniform random variables on [0,1].

Some applications of the UFP algorithm are:

1. Generation of continuous random variates from the

desired continuous distributions such as gamma, beta,

normal and etc.

2. Generation of the correlated random variates [5].

3. Generation of the random variates associated with

ordering statistics [10].

4. Generation of random numbers [11].

There are various versions of UFP algorithms

(evolution of UFP) in which all of them generate random

variates via continuous distribution functions considering

different policies, i.e., 1) integer cut-off points, 2)

 Amirkabir / MISC / Vol . 44 / No.2 / Fall 2012

3

arbitrary cut-off points, 3) equal area approach, 4)

different approaches to determine the tails of the

distribution, 5) reduction approach for the number of used
random numbers, when d = 1, 6) reduction approach for

the number of used random numbers with arbitrary values

of d, 7) recycling uniform random number approach when

d = 1, 8) recycling uniform random number approach with

arbitrary values of d and finally 9) speeding up to generate

Int (x). By Int (x), the author means the integer number of

x.

It is noticeable that the main method (in this paper) is

the latest aforementioned algorithm (Algorithm 9 in

above) and our focus in this paper is on this algorithm.

First of all, we survey the deficiencies of this algorithm

and improvement approaches are then adapted to this

algorithm. So, of presented algorithms in the UFP

evolution, only the associated steps with algorithm 9 are

presented here as follows (called algorithm A in this

paper):

1) Set uniform probability p and then generate the

cut-off points a1, a2,..., an as well as di = ai+1− ai for i= 1,

2, ..., n−1.

2) Generate a random number u.

3) Determine the index i by calculating the value of









1

p

u
and then identify a value for ai, i.e., Int(x) based

on the value of i.

4) Generate a random number u
’
 .

5) Find x as x = ai+ u
’
di

3. SHORTCOMINGS OF THE ORIGINAL UFP ALGORITHM

Despite a large number of advantages, the UFP

algorithm has several shortcomings listed in Table 1.

TABLE 1

SHORTCOMINGS OF UFP ORIGINAL ALGORITHM

Expected results than

algorithm A

Algorithm

name

Corrective approach Shortcoming of the algorithm No.

Higher precision B Using uniform hat and squeeze

functions

Approximate form of the algorithm 1

Simplicity of the algorithm C&D Using hat or squeeze function and

estimate the area approximately

Not accessibility to inverse CDF for

all distributions in order to determine

the cut-off points

2

Higher precision E Using hybrid approach Truncating the tails of infinite

distributions

3

A. Corrective approach for approximate form of the

algorithm

Since the main method (Algorithm 9 called A method)

is an approximate algorithm, it can be transformed to a

near exact method by defining a hat function h(x) and

using the acceptance-rejection logic [12],[13].

If for a random pair (x, y), in which x are generated

from any method and y from a hat function, respectively,

the inequality y ≤ f(x) is satisfied, the generated points are

then scattered uniformly under the density function f(x)

and consequently the points have f(x) distribution, since y

values are uniformly under the density function f(x). This

is the main purpose of using the hat function. Since the

evaluation of the acceptance condition, i.e, y ≤ f(x) is a

time consuming step for most of distributions, we can

accelerate the algorithm by manipulating the squeeze

function (S(x)). For example the lower bound of S(x) can

be found in such a way that the inequality s(x) ≤ f(x) is

satisfied. In this case, if (x, vh(x)) pair values (in which v

is a random number and h(x) is the hat function) are under

S(x), the random variate x could be accepted with no

evaluation of the density function [14]. In fact, in

algorithm B, local or piecewise hat and squeeze functions

are employed. It is noticeable that the determination of hat

and squeeze functions depends on the form of the

function. If the given function is descending (such as Fig.

2), hat and squeeze functions are considered uniformly on

[0, f(ai)] and [0, f(ai+1)] for each interval, respectively, but

if the foresaid function is ascending, (Fig. 3), hat and

squeeze functions are defined uniformly on [0, f(ai+1)] and

[0, f(ai)] intervals, respectively [15].

Figure 2: Hat and squeeze functions for descending

given functions.

f(x) h(x)= f(ai)

s(x)= f(ai+1)

ai an ai+1

Amirkabir / MISC / Vol . 44 / No.2 / Fall 2012

4

Figure 3: Hat and squeeze functions for ascending

functions.

In this approach, the hat function defined for x is

located in the interval (ai, ai+1) which is uniformly defined

on [0,f(ai)] and also squeeze function uniformly on

[0,f(ai+1)].

Steps of algorithm B (UFP algorithm with hat and

squeeze functions) are as follows:

1) Generate x with algorithm A.

2) Generate a random number v.

3) Calculate the value of y = v f (ai).

4) If ‌ y ≤ s(x) = f (ai+1), then, go to step (6) (the

evaluation step for the squeeze function), otherwise; go to

step (5)

5) If y ≤ f(x), then, go to step (6) (the evaluation step

for f(x) function), otherwise; go to step (1).

6) return x.

If the given distribution function has a more

complicated form, define hi and si as:

(2)  1:)(sup  iii axaxfh

(3)‌ 1:)(inf  iii axaxfs

Inf and sup stand for infimum and supremum

respectively. They are typically used on sets of real

numbers. The infimum or the greatest lower bound of a set

S is the lowest number of set S, Similarly, the supremum is

the least upper bound of the set, or the largest number.

Therefore, hat and squeeze functions are generated

uniformly on [0, hi] and [0, si], respectively. Since we

ignore many conditions by determining si and hi, the

performance of the proposed method will be increased,

which is notable as opposed to the large setup time.

A.1. Validation of the corrective approach for the

approximate form of the algorithm

In order to validate the proposed approaches, the

improved algorithms obtained from these approaches

(algorithm B) are compared to the original one. The

exponential distribution has been used to do so. Of course,

the algorithm B is applicable for all other continuous

distributions. As pointed out earlier, the proposed

algorithm is a universal one and has no limitation of usage

for any special distribution.

In order to validate, two criteria, i.e., speed and

precision are employed in this research [16].

The main factors in the study of algorithms are:

simplicity, speed, robustness and coverage, the number of

used random numbers, and memory requirements. The

most important parameters in the study of algorithms are

speed and accuracy.

In this way, one million data have been generated to

evaluate the speed criterion. The generation speed of a

random variate has been calculated in micro seconds (µs).

Also, the P-value parameter in Anderson-Darling test in

95% confidence level is used for the precision criterion.

The Anderson–Darling test is a statistical test of

whether a given sample of data is drawn from a given

probability distribution. The Anderson-Darling statistic

Measures how well the data follow a particular

distribution. The better the distribution fits the data, the

smaller is this statistic. This given below:

))]1(1ln()([ln
1

)12(
12




 inxFixF
n

i
i

n
nA

The hypotheses for the Anderson-Darling test are:

H0: The data follow a specified distribution

H1: The data does not follow a specified distribution

It is worth mentioning that the algorithms have been

performed with Borland compiler of C
++

5.02 under 32-Bit
platform and evaluation parameters have been calculated

using Minitab 14.0 software. Generating time can greatly

reduce via more professional coding. An example of

generation time of random variates for beta distribution

with other methods is presented in Table 2 with a more

advanced coding program. Since our objective is

comparison between the original and improved version of

the UFP method, the coding has been simplified in this

paper.

TABLE 2

 COMPARISON BETWEEN UFP AND THE OTHER ONE FOR SPEED

CRITERION (IZADY, 2005)

Speed (µs)‌ Algorithm

0.25 UFP

1.3 TDR

2.3 BPRB

1.85 BPRS

2.1 B4PE

2.7 Sakasegawa

3.3 Cheng

1.5 Strip

1.4 NI
6.62 Johnk

Table 3 shows the comparison results of various

criteria for algorithms on exponential distribution with

different parameters. In the following table, AD means the

value of the Anderson-Darling statistics test and R is the

average number of rejected values of 1000 generated

ai ai+1

f(x) h(x)= f(ai+1)

s(x)= f(ai)

http://en.wikipedia.org/wiki/Hypothesis_testing
http://en.wikipedia.org/wiki/Probability_distribution

 Amirkabir / MISC / Vol . 44 / No.2 / Fall 2012

5

random values. Finally, f means the number of times the

density function is evaluated for generation of 1000

random variates. Number of cut-off points in Table 3 is

equal to 128 sections, which are considered as power of

two. We employ power of two owing to the capability of

the programming in such a policy.

As could be seen in Table 3, a foresaid methods are

robust and stable with respect to changes of distribution

parameters, i.e., different β. Algorithm B yields higher P-

values and lower Anderson-Darling coefficient than

algorithm A, therefore, algorithm B is more precise than

A.

The dissimilarities between the numbers of Tables 2

and 3 for the speed of the UFP algorithm are due to the

different coding and run environment.

The results demonstrate that by increasing the number

of cut-off points, the values of f and R decrease and

consequently, the precision of the algorithm will increase.

Therefore, whatever the value of these two parameters,

i.e., f and R become low, the quality of outputs will

increase. Increase in the number of divisions results in

decreasing the value of p and consequently increasing the

algorithm precision. Hens, if p goes to zero, the precision

of algorithm B approaches to the other exact methods

precision, such as inverse transformation method.

TABLE 3

COMPARISON OF ALGORITHMS FOR APPROXIMATE FORM

Β Algorithm p=1/128

n=128

Spee

d (μs)

P-

value

AD R F

2 A 28 0 1.494 0.182 27

B 28 15 0.373 >0.25 25

1 A 28 0 1.494 0.182 27

B 28 15 0.373 >0.25 25

0.5 A 28 0 1.494 0.182 27

B 28 15 0.373 >0.25 25

0.25 A 28 0 1.494 0.182 27

B 28 15 0.373 >0.25 25

0.1 A 28 0 1.494 0.182 27

B 28 15 0.373 >0.25 25

B. Corrective approach for determining the cut-off points

The most important step in implementing the UFP

algorithm is concerned with the determination of cut-off

points of a1, a2,..., an which is defined arbitrary on the x

range. One of the main shortcomings of the original

method is how to calculate pi which is used in

determination of the cut-off points. The method in the

UFP algorithm used for the calculation of pi decreases the

speed of the algorithm and requires the inverse of CDF for

each sub-interval. This matter is often difficult and

unfeasible for some distribution such as normal

distribution. The method used for the UFP algorithm

(considering the equal area approach) acts as:

)(),)((,)()(1
10

1
101 pFapaFFapaFaF  

)2())((,)()(1
1

1
212 pFpaFFapaFaF  



 (4)‌
)(1 npFan



As could be seen, in this approach CDF of the desired

distribution is not only required, but also the inverse of

CDF is needed whiles these calculations are very difficult

for some distributions such as normal, gamma and etc. To

solve such difficulty, the proposed approach is to use the

approximate area of hat or squeeze functions instead of the

precise area through the inverse of CDF. Calculations of

this approach are as follows:

)0(

,))((,)()(101001
f

p
apaaafpaFaF 

1
1

221121
)(

,)
)0(

)((,))((a
af

p
ap

f

p
aafpaaaf 



 (5)‌1
1)(




 n
n

n a
af

p
a

In this approach, as could be seen, distributions CDF

are not needed and the cut-off points can be determined

only using the probability density function. In fact, the cut-

off points can be determined through the hat or squeeze

functions, instead of calculating 




1

)(

n

n

a

a

n dxxfp using a

simple linear equation instead of an integration equation.

In algorithm C, the cut-off points are determined by

means of the hat function as follows in which except the

following step (first step), the rest of the algorithm is

similar to the algorithm B.

1) Determine the cut-off points via equation

1
1

1

)(




  i
i

i
i a

af

p
a , (a1 = 0)

Also, algorithm D uses the squeeze function to

determine the cut-off points like the algorithm C, except

the following step (first step), the rest of the algorithm is

similar to algorithm B.

1) Determine the cut-off points by means of equation

)(1

1
1




 

i

i
ii

af

p
aa

Indeed, as pointed out earlier, the cut-off points in

algorithm C are determined from the hat function but

starting from the beginning of the range, unlike algorithm

D, in which cut-off points are determined from the

squeeze function starting from the end of the range. Figs. 4

to 6 show cut-off points and the specified areas of pi in

algorithm A, C and D respectively. Although the proposed

approaches cause errors in the calculation of the values

but the amount of error can be reduced to zero by

increasing the number of divisions.

Amirkabir / MISC / Vol . 44 / No.2 / Fall 2012

6

Figure 4: Method of determination of areas in

algorithm A.

Figure 5: Method of determination of areas in

algorithm C.

Figure 6: Method of determination of areas in

algorithm D.

To determine the cut-off points, other approaches can

be employed such as equal intervals using

i
n

aa
aa n

i

)(0
0


 . Equal intervals approach as

algorithm J will be evaluated below.

B. 1. Validation of corrective approach for determining

the cut-off points

Tables 4 and 5 show the obtained results of the equal

area and the equal distance approaches. . The exponential

distribution has been used to do so. The approximate

equal area approach (algorithm C & D) yields undesired

results with lower number of divisions, whiles by

increasing this divisions, the results will be improved, so

that in n=128, the results of approximate area are much

better than the exact area algorithm. Although the

consequences of using equal distance approach (algorithm

J) is to some extent desired, though equal area approach is

preferred to use, since the calculation of  x is eliminated

in this approach. Moreover, no explorer algorithms are

needed to detect the interval which x is generated from.

According to the aforementioned explanations, the

approximate equal area obtained from hat function with a

large number of divisions is the best approach (algorithm

C & D).

TABLE 4

 COMPARISON OF EQUAL AREA APPROACHES TO DETERMINE THE CUT-OFF POINTS

1/64 1/128 0.0025 0.005 0.01 0.02 p=0.05
Algorithm Approach Parameter

64 128 400 200 100 50 n=20

0.067 >0.25 >0.25 >0.25 >0.25 >0.25 <0.001 C&D
Equal areas P-value

>0.25 >0.25 >0.25 >0.25 >0.25 >0.25 0.048 B

2.306 0.080 0.301 0.461 1.226 3.532 11.04 C&D
Equal areas AD

0.728 0.373 0.318 0.396 0.508 0.895 2.547 B

26 12 6 7 16 31 55 C&D
Equal areas R

29 15 8 10 18 35 66 B

36 26 9 18 30 46 111 C&D
Equal areas F

42 28 10 20 31 53 136 B

TABLE 5

 COMPARISON OF EQUAL DISTANCE APPROACHES TO DETERMINE THE CUT-OFF POINTS

300 400 200 100 50 n≈20

Algorithm Approach Parameter

0.005 0.00375 0.0075 0.015 0.03 d=0.075

>0.25 >0.25 >0.25 0.039 <0.001 <0.001 J Equal distances P-value

0.616 0.362 0.898 2.736 8.837 40.236 J Equal distances AD

10 8 15 30 63 150 J Equal distances R

11 10 11 36 53 112 J Equal distances F

pi

pi

pi

 Amirkabir / MISC / Vol . 44 / No.2 / Fall 2012

7

C. Corrective approach to generate random variates from

unlimited tails distributions

Another main problem of the UFP algorithm is

truncating the tails of distribution which extremely

decreases algorithm precision. Hybrid algorithms can be

applied to solve such a difficulty. To do so, initially the

UFP algorithm is employed for body of distribution and an

acceptance-rejection method with an exponential hat

function will be then applied for the tails of distribution.

Such an algorithm can be stated in terms of the following

algorithm, i.e., algorithm E which is a hybrid approach for

the tails of distribution as follows:

1) Select an interval randomly (i),

2) If i ≠ n, follow the UFP algorithm, otherwise

follow the below algorithm:

2-1) Generate random numbers u and v

2-2) Calculate the value of)ln(
1

ux


 (inverse

transformation method is used to generate the random

variates from the exponential hat function),

2-3) Compute the value of
xevy   .

2-4) If)(xfy  then go to step (3), otherwise; go to

step (1).

3) Return x.

The above algorithm is a general one which can be

used for tails of all distributions, however if a higher

precision is aimed, more specialized algorithms for tails of

various distributions should be employed [17]. The CDF

of truncated hat function can be calculated as follows:













 ,

.0
)()(

)()(

)(

wo

bxifau
aFbF

aFxF

xF

)(xF
ee

ee
ba

xa













Therefore, the value of x is calculated based on Eq.6 .

))1(ln(
1

1 uex na
 


 (6)

C.1. Validation of corrective the approach for the

distribution tails

As could be seen, the results of the algorithm E have

been considerably improved as compared to the algorithm

B without decreasing the algorithm speed. For this, the

exponential distribution has been used. It is worth

mentioning that the last row of Table 6 shows the number

of generated values of distribution tails which are

neglected in the UFP algorithm.

TABLE 6

 COMPARISON OF ALGORITHMS FOR TAILS OF DISTRIBUTIONS
1/64 1/128 0.0025 0.005 0.01 0.02 p=0.05 Algorithm Parameter

64 128 400 200 100 50 n=20

>0.25 >0.25 >0.25 >0.25 >0.25 >0.25 0.048 B P-value

0.12 >0.25 >0.25 >0.25 >0.25 >0.25 0.115 E

0.728 0.373 0.318 0.396 0.508 0.895 2.547 B AD

1.801 0.318 0.261 0.379 0.221 1.084 1.834 E

29 15 8 10 18 35 66 B R

38 20 8 13 26 43 59 E

42 28 10 20 31 53 136 B f

41 21 10 14 16 48 67 E

25 25 28 28 28 28 28 B Speed (μs)

25 25 28 28 28 28 28 E

0 0 0 0 0 0 0 B Tail

15 8 5 8 12 22 69 E

4. THE IMPROVED UFP (IUFP)

All the proposed approaches are employed together in

the final algorithm. In the improved version of UFP,

called IUFP, the squeeze and the hat functions are

employed, the determination method of cut-off points is

changed and hybrid approach is applied for the tails of

unlimited distributions. The IUFP algorithm is

implemented on normal and exponential distributions in

this paper although it is applicable for all continuous

distributions.

The general definition of squeeze and hat functions

(Eqs. 7 and 8) are used for the IUFP algorithm.

(7)‌   )(),(min:)(inf 11   iiiii afafaxaafs

(8)    )(),(max:)(sup 11   iiiii afafaxaafh

Amirkabir / MISC / Vol . 44 / No.2 / Fall 2012

8

1) Determine the cut-off points based on the

approximate equal area approach (algorithm C & D) using

1

1

1

)(




  i
i

i
i a

af

p
a

2) Specify the squeeze and the hat functions from

Eqs. 7 and 8

3) Select one of random the interval based on the

equal area approach using 







 1

p

u
i

4) If i ≠ n:

4-1) Return ai-1 from the selected interval as Int(x)

4-2) Generate random numbers u and v

4-3) Calculate ii udax  1

4-4) Compute the value of y base on vh(i)

4-5) If)(isy  , go to step (4-7), otherwise; go to (4-

6)

4-6) If)(xfy  , go to step (4-7), otherwise; go to

step (3)

4-7) Return x

5) If i = n:

5-1) Generate random numbers u and v

5-2) Calculate the value of)ln(
1

ux




5-4) Calculate the value of y based on

)exp(xv  

5-5) If)(xfy  then return x, otherwise; go to

step (3)

This algorithm is applicable for all continuous

distributions, although we can use the limited definition

for hat and squeeze functions (Eqs. 9 and 10). In the latter

case, the algorithm is only applicable for the distributions

of normal, exponential, gamma (α≤1), weibull (α≤1) and

beta (α≤1), as well as all descending distributions.

(9)‌ )(:)(inf 11   iiii afaxaafs

(10)  )(:)(sup 1 iiii afaxaafh  

5. IMPLEMENTATION OF IUFP ON VARIOUS

DISTRIBUTIONS

The results of applying the IUFP algorithm on normal

and exponential distributions are summarized as follows:

by means of random variates generation via the algorithm,

the outputs will be tested by the Anderson-Darling test for

fitness evaluation to the desired distribution. The

corresponding plots are also presented in the following

sub-section.

A. Normal distribution

Due to the key role of normal distribution in statistical

applications, it is necessary to develop efficient and

reliable methods for the random variate generation of this

distribution. To generate the random variates of normal

distribution with parameters (μ,σ), firstly, standard normal

variates should be generated and then replace the obtained

values in xσ+μ. In this distribution, an extra random

number is used to determine the sign of the random

variate.

TABLE 7

THE IMPLEMENTATION RESULTS OF THE IUFP ON NORMAL

DISTRIBUTION

p=1/256

n=256

f R AD P-value Algorithm

8 6 0.24

7

>0.25 IUFP

43210-1-2-3-4

99.99

99

95

80

50

20

5

1

0.01

Random Variate

P
er

ce
n

t

Normal - 95% CI

Probability Plot

Figure 7: Probability plot for normal distribution.

One thousand normal random variates are generated

using the IUFP algorithm. The following parameters are

averagely obtained considering the number of evaluations

of objective function and the number of algorithm

iterations:

006.1)(,0008.0)(#  IEfE  .
According to the obtained parameters, it could be seen

that applying this algorithm on normal distribution is very

practical, since generation of a random variate needs

1.006 iterations of algorithm and 0.008 times to evaluate

the density function, which is very desired.

B. Exponential distribution

Similar to the normal distribution, all the

aforementioned steps are applied to the exponential

distribution. The results of implementation of the IUFP

algorithm on exponential distribution are shown in the

Table 8.

TABLE 8

 THE IMPLEMENTATION RESULTS OF THE IUFP ON EXPONENTIAL

DISTRIBUTION

p=1/128

n=128

F R AD P-value Β Algorithm

21 20 0.237 >0.25 0.25 IUFP

 Amirkabir / MISC / Vol . 44 / No.2 / Fall 2012

9

Figure 8: Probability plot for exponential distribution.

Similar to the previous section, 1000 random variates

are generated and the following parameters are averagely

obtained using the evaluation number of objective

function as well as the numbers of algorithm iterations:

02.1)(,021.0)(#  IEfE 

As could be seen, we need only one iteration of

algorithm as well as a few number of density function

evaluations to generate a random variate. According to the

obtained results, the IUFP algorithm is very practical for

exponential distribution.

6. CONCLUSIONS AND FUTURE WORK

In this study, we presented the universal UFP algorithm

to use for various distributions which are more efficient

than the other algorithms in this context. Although the

UFP algorithm has useful results, it has several

shortcomings. In this paper, we tried to eliminate such

shortcomings using the improved version of this algorithm

(IUFP) through recognizing its deficiencies. The IUFP

algorithm showed better results in comparison with the

UFP algorithm. According to the results, IUFP algorithm

almost covers all characteristics of an ideal random

variate generation algorithm.

As a direction for future research, it would be

interesting to study two various areas. The one is

associated with further improvement of the algorithm,

such as determining the cut-off points via other

approaches or using the specialized algorithm for non-

truncating tails of unlimited distributions, and the second

one could be finding new applications for such an

algorithm, such as random variate generation from

discrete distributions.

7. REFERENCES

[1] Banks, J.; Handbook of simulation principle, methodology,

advances, applications and practice, 3nd Edition, New York: John

Wiley & Sons, 1998.

[2] Hung, Y. C.; Balakrishnan, N.; Cheng C. W.; “Evaluation of

algorithms for generating Dirichlet random vectors”, Journal of

Statistical Computation and Simulation, 2010.

[3] Banks, J.; Carson, J.S.; Nelson, B.L.; Nicol, D.M.; Discrete-event

system simulation, 1nd Edition, Upper Saddle River: Pear-son

Prentice Hall, 2005.

[4] Ormann, W.; Erflinger, G.; “The transformed rejection method for

generating random variables, an alternative to the ratio of uniforms

method” Communications in Statistics - Simulation and

Computation, vol. 23, 3, p.p. 847 – 860, 1994.

[5] Mahlooji, H.; Jahromi, A.E.; Mehrizi, H.A.; Izady,N.; “Uniform

Fractional Part: A simple fast method for generating continuous

random variates”, Scientia Iranica, vol. 15,5, p.p. 613-622, 2008.

[6] Jones, M. C A.; Lunn, D.; “Transformations and random variate

generation: generalised ratio-of-uniforms methods”, Journal of

Statistical Computation and Simulation, vol. 55, 1, p.p. 49-55,

1996.

[7] Cheng, R. C. H.; Feast, G. M.; “Some simple gamma variate

generators”, appl statist, vol. 28,3, p.p. 290-295, 1979.

[8] Morgan, B.J.T.; Elements of simulation, 1ed Edition, London:

Chapman and Hall, 1984.

[9] Mahlooji, H.; Izady, N.; “Developing a Wide Easy-to-Generate

Class of Bivariate Copulas”, Communications in Statistics -

Theory and Methods, vol. 37, p.p. 1919–1929, 2008.

[10] Mahlooji, H.; Mehrizi, H.A.; Farzan, A.; “A fast method for

generating continuous order statics based on uniform fractional

part”, Proc. 35th International Conference on Computers and

Industrial Engineering, p.p. 1355-1360, 2004.

[11] Mahlooji, H.; Mehrizi, H.; Sedghi, N.; “An efficient, fast and

portable random number generator”, Proc.35th International

Conference on Computers and Industrial Engineering, p.p. 1361-

1366, 2004.

[12] Devroye, L.; “A note on approximations in random variate

generation”, Journal of Statistical Computation and Simulation,

vol. 14, 2, p.p. 149-158, 1982.

[13] Devroye, L.; “Random variate generation for the digamma and

trigamma distributions”, Journal of Statistical Computation and

Simulation, vol. 43, 3, p.p. 197-216, 1992.

[14] Ahrens, J.H.; Dieter, U.; “Generating gamma variates by a

modified rejection technique”, Communications of the ACM, vol.

25, p.p. 47-54, 1982.

[15] Hormann, W.; Leydold, J.; Derflinger,G.; Automatic nonuniform

random variate generation, 1nd Edition, New York: Speringer-

Verlag, 2004.

[16] Franklin, M. A.; Sen, A.; “Comparison of exact and approximate

variate generation methods for the erlang distribution”, Journal of

Statistical Computation and Simulation, vol. 4, 1, p.p. 1-18, 1975.

[17] Laud, P.W.; Damien, P.; Shively, T. S.; “Sampling Some

Truncated Distributions Via Rejection Algorithms”,

Communications in Statistics - Simulation and Computation, vol.

39, 6, p.p. 1111-1121, 2010.

10.000001.000000.100000.010000.001000.000100.00001

99.99

95
80

50

20

5

2

1

0.01

Random Variate

P
e
rc

e
n

t

Exponential - 95% CI

Probability Plot

http://www.informaworld.com/smpp/content~db=all~content=a922728814~frm=titlelink?words=random|variate&hash=1840584683
http://www.informaworld.com/smpp/content~db=all~content=a922728814~frm=titlelink?words=random|variate&hash=1840584683
http://www.informaworld.com/smpp/title~db=all~content=t713650378
http://www.informaworld.com/smpp/title~db=all~content=t713650378
http://www.informaworld.com/smpp/content~db=all~content=a780079045~frm=titlelink?words=random|variate&hash=3112252751
http://www.informaworld.com/smpp/content~db=all~content=a780079045~frm=titlelink?words=random|variate&hash=3112252751
http://www.informaworld.com/smpp/content~db=all~content=a780079045~frm=titlelink?words=random|variate&hash=3112252751
http://www.informaworld.com/smpp/title~db=all~content=t713597237
http://www.informaworld.com/smpp/title~db=all~content=t713597237
http://www.informaworld.com/smpp/title~db=all~content=t713597237~tab=issueslist~branches=23#v23
http://www.informaworld.com/smpp/gotoissue~db=all~content=a780079045
http://www.informaworld.com/smpp/content~db=all~content=a772443106~frm=titlelink?words=random|variate&hash=1717965500
http://www.informaworld.com/smpp/content~db=all~content=a772443106~frm=titlelink?words=random|variate&hash=1717965500
http://www.informaworld.com/smpp/title~db=all~content=t713650378
http://www.informaworld.com/smpp/title~db=all~content=t713650378
http://www.informaworld.com/smpp/title~db=all~content=t713650378~tab=issueslist~branches=55#v55
http://www.informaworld.com/smpp/gotoissue~db=all~content=a772443106
http://www.informaworld.com/smpp/content~db=all~content=a772461922~frm=titlelink?words=random|variate&hash=1717965500
http://www.informaworld.com/smpp/content~db=all~content=a772461922~frm=titlelink?words=random|variate&hash=1717965500
http://www.informaworld.com/smpp/title~db=all~content=t713650378
http://www.informaworld.com/smpp/title~db=all~content=t713650378~tab=issueslist~branches=14#v14
http://www.informaworld.com/smpp/gotoissue~db=all~content=a772461922
http://www.informaworld.com/smpp/content~db=all~content=a772448041~frm=titlelink?words=random|variate&hash=1717965500
http://www.informaworld.com/smpp/content~db=all~content=a772448041~frm=titlelink?words=random|variate&hash=1717965500
http://www.informaworld.com/smpp/title~db=all~content=t713650378
http://www.informaworld.com/smpp/title~db=all~content=t713650378
http://www.informaworld.com/smpp/title~db=all~content=t713650378~tab=issueslist~branches=43#v43
http://www.informaworld.com/smpp/gotoissue~db=all~content=a772448041
http://www.informaworld.com/smpp/content~db=all~content=a772449360~frm=titlelink?words=random|variate&hash=2982807847
http://www.informaworld.com/smpp/content~db=all~content=a772449360~frm=titlelink?words=random|variate&hash=2982807847
http://www.informaworld.com/smpp/content~db=all~content=a772449360~frm=titlelink?words=random|variate&hash=2982807847
http://www.informaworld.com/smpp/title~db=all~content=t713650378~tab=issueslist~branches=4#v4
http://www.informaworld.com/smpp/gotoissue~db=all~content=a772449360
http://www.informaworld.com/smpp/content~db=all~content=a923008591~frm=titlelink?words=random|variate&hash=1677077798
http://www.informaworld.com/smpp/content~db=all~content=a923008591~frm=titlelink?words=random|variate&hash=1677077798
http://www.informaworld.com/smpp/title~db=all~content=t713597237
http://www.informaworld.com/smpp/title~db=all~content=t713597237~tab=issueslist~branches=39#v39
http://www.informaworld.com/smpp/gotoissue~db=all~content=a923008591

Amirkabir / MISC / Vol . 43 / No.2 / Fall 2011

10

