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ABSTRACT 

In all systems simulation, random variates are considered as a main factor and based of simulation heart. 

Actually, randomization is inducted by random variates in the simulation. Due to the importance of such a 

problem, a new method for generation of random variates from continuous distributions is presented in this 

paper. The proposed algorithm, called uniform fractional part (UFP) is simpler and more efficient compared 

with other methods of random variates generation. Despite useful consequences, this algorithm has several 

shortcomings such as 1) being approximate, 2) not accessibility of the inverse of cumulative density 

function (CDF) for all distributions in order to determine the cut-off points and 3) truncating the tails of 

infinite distributions, which all of the aforementioned shortcomings reduce the precision and speed of the 

algorithm. The main goal of this research is proposing the improved version of this algorithm (IUFP) 

through recognizing its deficiencies.  
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1.  INTRODUCTION 

Random variates are considered as the main factors in 

all systems simulation in as much as they are known as 

simulation heart. Most of computer languages have 

functions or sub-programs to generate random variates and 

similarly, simulation languages also employ the algorithms 

of random variates generation to derive time events and 

other random variables. By developing simulation and 

computer utilization, more attention is paid to various 

methods of random variates generation [1]. All of the 

books associated with discrete event simulation or Mont 

Carlo’s methods have at least one chapter concerning this 

field which shows the importance of this problem. 

Generation of random variates is one of the common 

research areas in statistics, operations research and 

computer science [2]. The random variates generation was 

paid attention as a research area when the feasibility of 

Mont Carlo’s tests was studied in the Second World War 

[3]. These are different Application of this area. As an 

instance, in Mont Carlo’s methods, to solve the various 

problems such as random optimization, Mont Carlo’s 

integration, solution of the linear equations and etc is 

applicable.  

Random variates play a key role in the implementations 

of simulation techniques. During the past few years, there 

has been an increasing interest in developing new 

techniques based on random variates [4]. 

The generation of non-uniform random deviates has 

come a long way, from methods dating back to a time 

prior to the era of the computer to the latest novel 

methods, such as the Ziggurat and vertical strip. While 

some methods are general in nature, some others are 

intended for a particular distribution. Among the 

algorithms developed so far, some are widely used and/or 

are more efficient than others. The main classifications for 

these algorithms are: 

1. The Inverse Transform methods 

2. The Composition methods 

3.The Acceptance Rejection methods 

Among the presented algorithms, some of them are 

more useful and efficient than the others. The best one is 

presented by Izady and Mahlooji in 2005. This algorithm 

is simple, precise, efficient and quick. One may refer to 

[5] to see its superiority. 

UFP method is applicable to the distributions of all 

continuous random variables. Although this algorithm 

belongs to the approximate category, its simplicity, speed, 

robustness and coverage make it a powerful competitor 

against the exact methods, while its accuracy can be 

almost enhanced to any desired level. This method, which 

may be considered as an approximate version of the 

Inverse Transform algorithm, takes two random numbers 

to generate a random deviate, while maintaining all the 

other advantages of the Inverse Transform method, such 

as the possibility of generating ordered as well as 
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correlated deviates and being applicable to all density 

functions, regardless of their parameter values. 

In spite of useful consequences, this algorithm has 

some shortcomings. In this paper, an improved version of 

this algorithm is proposed by corrective approaches 

through recognizing its deficiencies. By implementation of 

the proposed approaches, the outcomes of the improved 

algorithm are then compared with the original algorithm. 

As will be demonstrated in the next sections, our 

algorithm outperforms the original one. Since universal 

algorithms are applicable to all continuous distributions 

and the proposed algorithm has such a property, it will be 

applied on the normal and exponential distributions [6].  

The main requirement component of all methods of 

random variates generation is existence of a random 

numbers generator, which is assumed such a generator is 

available. By random numbers, the author means 

generated uniform random variates on [0, 1] [7]. 

The rest of the paper is organized as follows. In Section 

2, the UFP algorithm will be explained. Section 3 states 

the shortcomings of the original UFP algorithm in which 

the corrective approaches for 1) approximate form of the 

algorithm, 2) determining of cut-off points and 3) 

generating random variates from tails of unlimited 

distributions are fully presented. In Section 4 the improved 

UFP called IUFP is developed and Section 5 described 

how to implement the IUFP algorithm on various 

distributions, such as normal and exponential ones. 

Finally, Section 6 provides of conclusions and future 

work.  

2.  DESCRIPTION OF THE UNIFORM FRACTIONAL PART 

(UFP) ALGORITHM  

This algorithm is one of the latest presented methods 

proposed by Izady and Mahlooji. It is an approximate 

algorithm which is mainly used for continuous 

distributions and is appropriate for simulation of models 

which no change is made on distribution parameters 

during the simulation process, due to its short marginal 

time and large setup time. 

Of other advantages of this algorithm is the need of 

only one random number for generating a random variate 

in the optimized status. The required calculations for 

random variate generation are linear. The volume of 

programming is little and the body of the algorithm is the 

same for all distributions. The only dissimilar step for the 

various distributions is the setup stage of the algorithm in 

which the cut-off points are determined based on the 

inverse of the desired cumulative distribution function 

(CDF). The algorithm is based on a theorem given in [8], 

page 72 and restated below.   
Theorem 1: [8] Fractional part of sum of two 

independent random variables with uniform distribution 

on [0, 1], itself has uniform distribution on [0, 1]. 

 

In other words, if x and R1 are two independent random 

variates on U[0, 1] and R2 is defined as 

 xRxRR  112 , then the variable R2 has a uniform 

distribution. The   denotes the biggest integer number 

less than or equal to  ‌. By generalizing this theorem, one 

can say that if x has any desired continuous distribution, 

random variable R2 has uniform distribution on [0,1]. 

Consequently, continuous random variable x can be 

generated using the above equation (namely by means of 

two random numbers such as R1 and R2). According to 

[9], the above equation then can be rewritten as: 

(1)  xRRRx  112  

In fact, the UFP algorithm is summarized as: 

1) Generate R1 ‌and R2 as two independent uniform 

random numbers. 

2) Generate a value for  x  

If 12 RR  then  xRRx  12 ; otherwise, 

  121  xRRx  

 

Figure 1: Probabilities concerning  x [5]. 

 

Initially, an integer value in range of x is randomly 

selected (one of the separated columns in Fig. 1) and a 

value of R2−R1 is then added to such a random selected 

integer to make a random variate, where R1 and R2 are two 

independent uniform random variables on [0,1].  

Some applications of the UFP algorithm are: 

1. Generation of continuous random variates from the 

desired continuous distributions such as gamma, beta, 

normal and etc. 

2. Generation of the correlated random variates [5]. 

3. Generation of the random variates associated with 

ordering statistics [10].  

4. Generation of random numbers [11].  

There are various versions of UFP algorithms 

(evolution of UFP) in which all of them generate random 

variates via continuous distribution functions considering 

different policies, i.e., 1) integer cut-off points, 2) 
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arbitrary cut-off points, 3) equal area approach, 4) 

different approaches to determine the tails of the 

distribution, 5) reduction approach for the number of used 
random numbers, when d = 1, 6) reduction approach for 

the number of used random numbers with arbitrary values 

of d, 7) recycling uniform random number approach when 

d = 1, 8) recycling uniform random number approach with 

arbitrary values of d and finally 9) speeding up to generate 

Int (x). By Int (x), the author means the integer number of 

x. 

It is noticeable that the main method (in this paper) is 

the latest aforementioned algorithm (Algorithm 9 in 

above) and our focus in this paper is on this algorithm. 

First of all, we survey the deficiencies of this algorithm 

and improvement approaches are then adapted to this 

algorithm. So, of presented algorithms in the UFP 

evolution, only the associated steps with algorithm 9 are 

presented here as follows (called algorithm A in this 

paper): 

1) Set uniform probability p and then generate the 

cut-off points a1, a2,..., an as well as di = ai+1− ai for i= 1, 

2, ..., n−1. 

2) Generate a random number u. 

3) Determine the index i by calculating the value of 









1

p

u
and then identify a value for ai, i.e., Int(x) based 

on the value of i. 

4) Generate a random number u
’
 . 

5) Find x as x = ai+ u
’ 
di 

3.   SHORTCOMINGS OF THE ORIGINAL UFP ALGORITHM  

Despite a large number of advantages, the UFP 

algorithm has several shortcomings listed in Table 1.  

 

TABLE 1 

SHORTCOMINGS OF UFP ORIGINAL ALGORITHM 

Expected results than 

algorithm A 

Algorithm 

name 

Corrective approach Shortcoming of the algorithm No. 

Higher precision B Using uniform hat and squeeze 

functions 

Approximate form of the algorithm 1 

Simplicity of the algorithm C&D Using hat or squeeze function and 

estimate the area approximately 

Not accessibility to inverse CDF for 

all distributions in order to determine 

the cut-off points 

2 

Higher precision E Using hybrid approach Truncating the tails of infinite 

distributions 

3 

 

A. Corrective approach for approximate form of the 

algorithm  

Since the main method (Algorithm 9 called A method) 

is an approximate algorithm, it can be transformed to a 

near exact method by defining a hat function h(x) and 

using the acceptance-rejection logic [12],[13].  

If for a random pair (x, y), in which x are generated 

from any method and y from a hat function, respectively, 

the inequality y ≤ f(x) is satisfied, the generated points are 

then scattered uniformly under the density function f(x) 

and consequently the points have f(x) distribution, since y 

values are uniformly under the density function f(x). This 

is the main purpose of using the hat function. Since the 

evaluation of the acceptance condition, i.e, y ≤ f(x) is a 

time consuming step for most of distributions, we can 

accelerate the algorithm by manipulating the squeeze 

function (S(x)). For example the lower bound of S(x) can 

be found in such a way that the inequality s(x) ≤ f(x) is 

satisfied. In this case, if (x, vh(x)) pair values (in which v 

is a random number and h(x) is the hat function) are under 

S(x), the random variate x could be accepted with no 

evaluation of the density function [14]. In fact, in 

algorithm B, local or piecewise hat and squeeze functions 

are employed. It is noticeable that the determination of hat  

 

and squeeze functions depends on the form of the 

function. If the given function is descending (such as Fig. 

2), hat and squeeze functions are considered uniformly on 

[0, f(ai)] and [0, f(ai+1)] for each interval, respectively, but 

if the foresaid function is ascending, (Fig. 3), hat and 

squeeze functions are defined uniformly on [0, f(ai+1)] and 

[0, f(ai)] intervals, respectively [15]. 

 

 

Figure 2: Hat and squeeze functions for descending 

given functions. 

f(x) h(x)= f(ai) 

 

s(x)= f(ai+1) 

 

ai an ai+1 
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Figure 3: Hat and squeeze functions for ascending 

functions. 

In this approach, the hat function defined for x is 

located in the interval (ai, ai+1) which is uniformly defined 

on [0,f(ai)] and also squeeze function uniformly on 

[0,f(ai+1)]. 

Steps of algorithm B (UFP algorithm with hat and 

squeeze functions) are as follows: 

1) Generate  x with algorithm A. 

2) Generate a random number v. 

3) Calculate the value of  y = v f (ai ).  

4) If ‌ y ≤ s(x) = f (ai+1), then, go to step (6) (the 

evaluation step for the squeeze function), otherwise; go to 

step (5) 

5) If y ≤ f(x), then, go to step (6) (the evaluation step 

for f(x) function), otherwise; go to step (1). 

6) return x. 

If the given distribution function has a more 

complicated form, define hi and si as:  

(2)  1:)(sup  iii axaxfh  

(3)‌ 1:)(inf  iii axaxfs  

 

Inf and sup stand for infimum and supremum 

respectively. They are typically used on sets of real 

numbers. The infimum or the greatest lower bound of a set 

S is the lowest number of set S, Similarly, the supremum is 

the least upper bound of the set, or the largest number. 

Therefore, hat and squeeze functions are generated 

uniformly on [0, hi] and [0, si], respectively. Since we 

ignore many conditions by determining si and hi, the 

performance of the proposed method will be increased, 

which is notable as opposed to the large setup time.  

A.1. Validation of the corrective approach for the 

approximate form of the algorithm 

In order to validate the proposed approaches, the 

improved algorithms obtained from these approaches 

(algorithm B) are compared to the original one. The 

exponential distribution has been used to do so. Of course, 

the algorithm B is applicable for all other continuous 

distributions. As pointed out earlier, the proposed 

algorithm is a universal one and has no limitation of usage 

for any special distribution.  

In order to validate, two criteria, i.e., speed and 

precision are employed in this research [16].  

The main factors in the study of algorithms are: 

simplicity, speed, robustness and coverage, the number of 

used random numbers, and memory requirements. The 

most important parameters in the study of algorithms are 

speed and accuracy.  

In this way, one million data have been generated to 

evaluate the speed criterion. The generation speed of a 

random variate has been calculated in micro seconds (µs). 

Also, the P-value parameter in Anderson-Darling test in 

95% confidence level is used for the precision criterion.  

The Anderson–Darling test is a statistical test of 

whether a given sample of data is drawn from a given 

probability distribution. The Anderson-Darling statistic 

Measures how well the data follow a particular 

distribution. The better the distribution fits the data, the 

smaller is this statistic. This given below: 

))]1(1ln()([ln
1

)12(
12




 inxFixF
n

i
i

n
nA  

The hypotheses for the Anderson-Darling test are: 

H0: The data follow a specified distribution 

H1: The data does not follow a specified distribution 

It is worth mentioning that the algorithms have been 

performed with Borland compiler of C
++ 

5.02 under 32-Bit 
platform and evaluation parameters have been calculated 

using Minitab 14.0 software. Generating time can greatly 

reduce via more professional coding. An example of 

generation time of random variates for beta distribution 

with other methods is presented in Table 2 with a more 

advanced coding program. Since our objective is 

comparison between the original and improved version of 

the UFP method, the coding has been simplified in this 

paper.   

TABLE 2 

 COMPARISON BETWEEN UFP AND THE OTHER ONE FOR SPEED 

CRITERION (IZADY, 2005) 

Speed (µs)‌ Algorithm 

0.25 UFP 

1.3 TDR 

2.3 BPRB 

1.85 BPRS 

2.1 B4PE 

2.7 Sakasegawa 

3.3 Cheng 

1.5 Strip 

1.4 NI 
6.62 Johnk 

 
Table 3 shows the comparison results of various 

criteria for algorithms on exponential distribution with 

different parameters. In the following table, AD means the 

value of the Anderson-Darling statistics test and R is the 

average number of rejected values of 1000 generated 

ai ai+1 

f(x) h(x)= f(ai+1) 

 

s(x)= f(ai) 

 

http://en.wikipedia.org/wiki/Hypothesis_testing
http://en.wikipedia.org/wiki/Probability_distribution
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random values. Finally, f means the number of times the 

density function is evaluated for generation of 1000 

random variates. Number of cut-off points in Table 3 is 

equal to 128 sections, which are considered as power of 

two. We employ power of two owing to the capability of 

the programming in such a policy.  

As could be seen in Table 3, a foresaid methods are 

robust and stable with respect to changes of distribution 

parameters, i.e., different β. Algorithm B yields higher P-

values and lower Anderson-Darling coefficient than 

algorithm A, therefore, algorithm B is more precise than 

A. 

The dissimilarities between the numbers of Tables 2 

and 3 for the speed of the UFP algorithm are due to the 

different coding and run environment. 

The results demonstrate that by increasing the number 

of cut-off points, the values of f and R decrease and 

consequently, the precision of the algorithm will increase. 

Therefore, whatever the value of these two parameters, 

i.e., f and R become low, the quality of outputs will 

increase. Increase in the number of divisions results in 

decreasing the value of p and consequently increasing the 

algorithm precision. Hens, if p goes to zero, the precision 

of algorithm B approaches to the other exact methods 

precision, such as inverse transformation method. 

TABLE 3 

COMPARISON OF ALGORITHMS FOR APPROXIMATE FORM 

Β Algorithm p=1/128 

n=128 

Spee

d (μs) 

P-

value 

AD R F 

2 A 28 0 1.494 0.182 27 

B 28 15 0.373 >0.25 25 

1 A 28 0 1.494 0.182 27 

B 28 15 0.373 >0.25 25 

0.5 A 28 0 1.494 0.182 27 

B 28 15 0.373 >0.25 25 

0.25 A 28 0 1.494 0.182 27 

B 28 15 0.373 >0.25 25 

0.1 A 28 0 1.494 0.182 27 

B 28 15 0.373 >0.25 25 

B. Corrective approach for determining the cut-off points 

The most important step in implementing the UFP 

algorithm is concerned with the determination of cut-off 

points of a1, a2,..., an which is defined arbitrary on the x 

range. One of the main shortcomings of the original 

method is how to calculate pi which is used in 

determination of the cut-off points. The method in the 

UFP algorithm used for the calculation of pi decreases the 

speed of the algorithm and requires the inverse of CDF for 

each sub-interval. This matter is often difficult and 

unfeasible for some distribution such as normal 

distribution. The method used for the UFP algorithm 

(considering the equal area approach) acts as: 

 

 

)(),)((,)()( 1
10

1
101 pFapaFFapaFaF    

 )2())((,)()( 1
1

1
212 pFpaFFapaFaF    

  

 (4)‌
)(1 npFan

  

 

As could be seen, in this approach CDF of the desired 

distribution is not only required, but also the inverse of 

CDF is needed whiles these calculations are very difficult 

for some distributions such as normal, gamma and etc. To 

solve such difficulty, the proposed approach is to use the 

approximate area of hat or squeeze functions instead of the 

precise area through the inverse of CDF. Calculations of 

this approach are as follows: 

 
)0(

,))((,)()( 101001
f

p
apaaafpaFaF   

1
1

221121
)(

,)
)0(

)((,))(( a
af

p
ap

f

p
aafpaaaf   

  

 (5)‌1
1)(




 n
n

n a
af

p
a  

In this approach, as could be seen, distributions CDF 

are not needed and the cut-off points can be determined 

only using the probability density function. In fact, the cut-

off points can be determined through the hat or squeeze 

functions, instead of calculating 




1

)(

n

n

a

a

n dxxfp  using a 

simple linear equation instead of an integration equation.  

In algorithm C, the cut-off points are determined by 

means of the hat function as follows in which except the 

following step (first step), the rest of the algorithm is 

similar to the algorithm B. 

1) Determine the cut-off points via equation 

1
1

1

)(




  i
i

i
i a

af

p
a , (a1 = 0) 

Also, algorithm D uses the squeeze function to 

determine the cut-off points like the algorithm C, except 

the following step (first step), the rest of the algorithm is 

similar to algorithm B. 

1) Determine the cut-off points by means of equation 

)( 1

1
1




 

i

i
ii

af

p
aa   

Indeed, as pointed out earlier, the cut-off points in 

algorithm C are determined from the hat function but 

starting from the beginning of the range, unlike algorithm 

D, in which cut-off points are determined from the 

squeeze function starting from the end of the range. Figs. 4 

to 6 show cut-off points and the specified areas of pi in 

algorithm A, C and D respectively. Although the proposed 

approaches cause errors in the calculation of the values 

but the amount of error can be reduced to zero by 

increasing the number of divisions. 
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Figure 4: Method of determination of areas in 

algorithm A. 

 
Figure 5: Method of determination of areas in 

algorithm C. 

 
Figure 6: Method of determination of areas in 

algorithm D. 

To determine the cut-off points, other approaches can 

be employed such as equal intervals using 

i
n

aa
aa n

i

)( 0
0


 . Equal intervals approach as 

algorithm J will be evaluated below. 

 

B. 1. Validation of corrective approach for determining 

the cut-off points 

Tables 4 and 5 show the obtained results of the equal 

area and the equal distance approaches. . The exponential 

distribution has been used to do so. The approximate 

equal area approach (algorithm C & D) yields undesired 

results with lower number of divisions, whiles by 

increasing this divisions, the results will be improved, so 

that in n=128, the results of approximate area are much 

better than the exact area algorithm. Although the 

consequences of using equal distance approach (algorithm 

J) is to some extent desired, though equal area approach is 

preferred to use, since the calculation of  x  is eliminated 

in this approach. Moreover, no explorer algorithms are 

needed to detect the interval which x is generated from.  

According to the aforementioned explanations, the 

approximate equal area obtained from hat function with a 

large number of divisions is the best approach (algorithm 

C & D). 

TABLE 4 

 COMPARISON OF EQUAL AREA APPROACHES TO DETERMINE THE CUT-OFF POINTS 

1/64 1/128 0.0025 0.005 0.01 0.02 p=0.05 
Algorithm Approach Parameter 

64 128 400 200 100 50 n=20 

0.067 >0.25 >0.25 >0.25 >0.25 >0.25 <0.001 C&D 
Equal areas P-value 

>0.25 >0.25 >0.25 >0.25 >0.25 >0.25 0.048 B 

2.306 0.080 0.301 0.461 1.226 3.532 11.04 C&D 
Equal areas AD 

0.728 0.373 0.318 0.396 0.508 0.895 2.547 B 

26 12 6 7 16 31 55 C&D 
Equal areas R 

29 15 8 10 18 35 66 B 

36 26 9 18 30 46 111 C&D 
Equal areas F 

42 28 10 20 31 53 136 B 

 

TABLE 5 

 COMPARISON OF EQUAL DISTANCE APPROACHES TO DETERMINE THE CUT-OFF POINTS 

300 400 200 100 50 n≈20 

Algorithm Approach Parameter 

0.005 0.00375 0.0075 0.015 0.03 d=0.075 

>0.25 >0.25 >0.25 0.039 <0.001 <0.001 J Equal distances P-value 

0.616 0.362 0.898 2.736 8.837 40.236 J Equal distances AD 

10 8 15 30 63 150 J Equal distances R 

11 10 11 36 53 112 J Equal distances F 

pi 

pi 

pi 
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C. Corrective approach to generate random variates from 

unlimited tails distributions 

Another main problem of the UFP algorithm is 

truncating the tails of distribution which extremely 

decreases algorithm precision. Hybrid algorithms can be 

applied to solve such a difficulty. To do so, initially the 

UFP algorithm is employed for body of distribution and an 

acceptance-rejection method with an exponential hat 

function will be then applied for the tails of distribution. 

Such an algorithm can be stated in terms of the following 

algorithm, i.e., algorithm E which is a hybrid approach for 

the tails of distribution as follows: 

1) Select an interval randomly (i), 

2) If i ≠ n, follow the UFP algorithm, otherwise 

follow the below algorithm: 

2-1) Generate random numbers u and v  

2-2) Calculate the value of )ln(
1

ux


 (inverse 

transformation method is used to generate the random 

variates from the exponential hat function), 

2-3) Compute the value of 
xevy   .  

2-4) If )(xfy   then go to step (3), otherwise; go to 

step (1).  

3) Return x.  

The above algorithm is a general one which can be 

used for tails of all distributions, however if a higher 

precision is aimed, more specialized algorithms for tails of 

various distributions should be employed [17]. The CDF 

of truncated hat function can be calculated as follows: 













 ,

.0
)()(

)()(

)(

wo

bxifau
aFbF

aFxF

xF           

)(xF
ee

ee
ba

xa













 

Therefore, the value of x is calculated based on Eq.6 . 

))1(ln(
1

1 uex na
 


 (6) 

C.1. Validation of corrective the approach for the 

distribution tails 

As could be seen, the results of the algorithm E have 

been considerably improved as compared to the algorithm 

B without decreasing the algorithm speed. For this, the 

exponential distribution has been used. It is worth 

mentioning that the last row of Table 6 shows the number 

of generated values of distribution tails which are 

neglected in the UFP algorithm. 

TABLE 6 

 COMPARISON OF ALGORITHMS FOR TAILS OF DISTRIBUTIONS 
1/64 1/128 0.0025 0.005 0.01 0.02 p=0.05 Algorithm Parameter 

64 128 400 200 100 50 n=20 

>0.25 >0.25 >0.25 >0.25 >0.25 >0.25 0.048 B P-value 

0.12 >0.25 >0.25 >0.25 >0.25 >0.25 0.115 E 

0.728 0.373 0.318 0.396 0.508 0.895 2.547 B AD 

1.801 0.318 0.261 0.379 0.221 1.084 1.834 E 

29 15 8 10 18 35 66 B R 

38 20 8 13 26 43 59 E 

42 28 10 20 31 53 136 B f 

41 21 10 14 16 48 67 E 

25 25 28 28 28 28 28 B Speed (μs) 

25 25 28 28 28 28 28 E 

0 0 0 0 0 0 0 B Tail 

15 8 5 8 12 22 69 E 

 

4.  THE IMPROVED UFP (IUFP) 

All the proposed approaches are employed together in 

the final algorithm. In the improved version of UFP, 

called IUFP, the squeeze and the hat functions are 

employed, the determination method of cut-off points is 

changed and hybrid approach is applied for the tails of 

unlimited distributions. The IUFP algorithm is 

implemented on normal and exponential distributions in 

this paper although it is applicable for all continuous 

distributions. 

The general definition of squeeze and hat functions 

(Eqs. 7 and 8) are used for the IUFP algorithm. 

 
(7)‌   )(),(min:)(inf 11   iiiii afafaxaafs  

(8)    )(),(max:)(sup 11   iiiii afafaxaafh  
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1) Determine the cut-off points based on the 

approximate equal area approach (algorithm C & D) using 

1

1

1

)(




  i
i

i
i a

af

p
a  

2) Specify the squeeze and the hat functions from 

Eqs. 7 and 8 

3) Select one of random the interval based on the 

equal area approach using 







 1

p

u
i  

4) If i ≠ n: 

4-1) Return ai-1 from the selected interval as Int(x) 

4-2) Generate random numbers u and v 

4-3) Calculate ii udax  1  

4-4) Compute the value of y base on vh(i) 

4-5) If )(isy  , go to step (4-7), otherwise; go to (4-

6) 

4-6) If )(xfy  , go to step (4-7), otherwise; go to 

step (3) 

4-7) Return x 

5) If i = n: 

5-1)     Generate random numbers u and v 

5-2)    Calculate the value of )ln(
1

ux


  

5-4)    Calculate the value of y based on 

)exp( xv    

5-5)    If  )(xfy   then return x, otherwise; go to 

step (3) 

 

This algorithm is applicable for all continuous 

distributions, although we can use the limited definition 

for hat and squeeze functions (Eqs. 9 and 10). In the latter 

case, the algorithm is only applicable for the distributions 

of normal, exponential, gamma (α≤1), weibull (α≤1) and 

beta (α≤1), as well as all descending distributions. 

 

(9)‌  )(:)(inf 11   iiii afaxaafs  

(10)   )(:)(sup 1 iiii afaxaafh    

5.  IMPLEMENTATION OF IUFP ON VARIOUS 

DISTRIBUTIONS 

The results of applying the IUFP algorithm on normal 

and exponential distributions are summarized as follows: 

by means of random variates generation via the algorithm, 

the outputs will be tested by the Anderson-Darling test for 

fitness evaluation to the desired distribution. The 

corresponding plots are also presented in the following 

sub-section.    

A. Normal distribution 

Due to the key role of normal distribution in statistical 

applications, it is necessary to develop efficient and 

reliable methods for the random variate generation of this 

distribution. To generate the random variates of normal 

distribution with parameters (μ,σ), firstly, standard normal 

variates should be generated and then replace the obtained 

values in xσ+μ. In this distribution, an extra random 

number is used to determine the sign of the random 

variate. 

TABLE 7 

THE IMPLEMENTATION RESULTS OF THE IUFP ON NORMAL 

DISTRIBUTION 

p=1/256 

n=256 

f R AD P-value Algorithm 

8 6 0.24

7 

>0.25 IUFP  
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Figure 7: Probability plot for normal distribution. 

 
One thousand normal random variates are generated 

using the IUFP algorithm. The following parameters are 

averagely obtained considering the number of evaluations 

of objective function and the number of algorithm 

iterations:  

006.1)(,0008.0)(#  IEfE  . 
According to the obtained parameters, it could be seen 

that applying this algorithm on normal distribution is very 

practical, since generation of a random variate needs 

1.006 iterations of algorithm and 0.008 times to evaluate 

the density function, which is very desired. 

B. Exponential distribution 

Similar to the normal distribution, all the 

aforementioned steps are applied to the exponential 

distribution. The results of implementation of the IUFP 

algorithm on exponential distribution are shown in the 

Table 8. 

TABLE 8 

 THE IMPLEMENTATION RESULTS OF THE IUFP ON EXPONENTIAL  

DISTRIBUTION 

p=1/128 

n=128 

F R AD P-value Β Algorithm 

21 20 0.237 >0.25 0.25 IUFP 
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Figure 8: Probability plot for exponential distribution. 

Similar to the previous section, 1000 random variates 

are generated and the following parameters are averagely 

obtained using the evaluation number of objective 

function as well as the numbers of algorithm iterations: 

02.1)(,021.0)(#  IEfE    

As could be seen, we need only one iteration of 

algorithm as well as a few number of density function 

evaluations to generate a random variate. According to the 

obtained results, the IUFP algorithm is very practical for 

exponential distribution. 

6.  CONCLUSIONS AND FUTURE WORK 

In this study, we presented the universal UFP algorithm 

to use for various distributions which are more efficient 

than the other algorithms in this context. Although the 

UFP algorithm has useful results, it has several 

shortcomings. In this paper, we tried to eliminate such 

shortcomings using the improved version of this algorithm 

(IUFP) through recognizing its deficiencies. The IUFP 

algorithm showed better results in comparison with the 

UFP algorithm. According to the results, IUFP algorithm 

almost covers all characteristics of an ideal random 

variate generation algorithm. 

As a direction for future research, it would be 

interesting to study two various areas. The one is 

associated with further improvement of the algorithm, 

such as determining the cut-off points via other 

approaches or using the specialized algorithm for non-

truncating tails of unlimited distributions, and the second 

one could be finding new applications for such an 

algorithm, such as random variate generation from 

discrete distributions.  
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