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ABSTRACT: In dealing with model predictive controllers (MPC), controller tuning is a key designing 
step. Various tuning methods are proposed in the literature which can be categorized as heuristic, 
numerical and analytical methods. Among the available tuning methods, analytical approaches are more 
interesting and useful. This paper is based on a proposed analytical MPC tuning approach for plants 
which can be approximated by first-order plus dead-time models. The performance of such methods 
fails to deal with unknown or time-varying parameter plants. To overcome this problem, adaptive MPC 
tuning strategies are practical alternatives. The adaptive MPC tuning approach proposed in this paper 
is based on on-line identification and analytical tuning formulas. Simulation results are used to show 
the effectiveness of the proposed methodology. Also, a comparison of the proposed adaptive tuning 
method with a well-known online tuning method is presented briefly which shows the superiority of the 
proposed adaptive tuning method.
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1- Introduction
Model Predictive Control (MPC) is a well-established 
control technique used in advanced process control systems. 
Successful applications of MPC have been  reported in many 
papers [1, 2]. MPC has several tuning parameters that must be 
appropriately tuned for acceptable closed-loop performances. 
Conventional tuning parameters of MPC are the prediction 
and control horizons and the weighted matrices. These 
parameters can significantly influence both the closed-loop 
performance and stability characteristics and therefore have 
been extensively studied in many research papers [3]. For 
example, Dynamic Matrix Control (DMC) tuning equations 
are developed in [4, 5] based on the analysis of variance. 
There is a tendency for closed-form tuning equations based 
on analytical methods, since  they can be easily implemented 
and are also useful in the closed-loop analysis. In [6], an 
analytical MPC tuning approach is presented. Considering 
First Order Plus Dead Time (FOPDT) model of the real 
system, the closed-loop transfer function is derived, and it 
is shown that the maximum achievable performance can be 
obtained by the control horizon of one and two. Also, this 
approach is extended to unstable plants with the fractional 
delay [7] and multivariable plants [8]. However, these 
methods are  inappropriate for unknown or time-varying 
plants. Adaptive tuning algorithms are suitable for these cases. 
In [9], an intuitive on-line MPC tuning strategy is presented, 
where a linear approximation between the output predictions 
and the MPC tuning parameters is utilized. In this set-up, the 
predicted outputs and the weights on the predicted outputs 
error and control action are related by sensitivity expressions 
which have been employed for automatic online adjustments 
of the parameters. In [9], a fuzzy logic-based auto-tuning 
strategy is provided for model predictive controllers, and in 

[15] a similar strategy is suggested  for non-linear MPC. In 
[16], a numerical auto-tuning algorithm is developed for DMC 
without constraint considerations. In this approach, Genetic 
Algorithm (GA) and Multi-Objective Fuzzy Decision-
Making (MOFDM) strategies are combined to determine the 
optimal tuning parameters, where an objective function is 
calculated for each tuning parameter set. Then, based on the 
MOFDM algorithm, the best two sets of tuning parameters 
enter the next GA iteration while the worst set is eliminated. 
At the end of the GA cycle, the optimal tuning parameters 
are selected. In [17], it was proposed to auto-tune the GPC 
based on the characteristics of a second-order process such 
as rise time, settling time and overshoot. In this scheme, the 
auto-tuned GPC was used in a programmable logic controller. 
Finally, [14] proposed an MPC auto-tuning method to achieve 
the minimum variance output. This requirement is performed 
by forcing the MPC system to track its optimal closed-loop 
bandwidth. In this paper, an adaptive tuning algorithm for 
MPC based on the results of [6] is developed. It is shown 
that the proposed method can be used for all “unknown”, 
“time-varying”, “stable” systems with arbitrary order which 
can be approximated by an FOPDT model in an acceptable 
approximation. Note that many industrial processes can be 
sufficiently described by FOPDT models [18]. Also note that 
it is supposed that the variation of the systems is  such that the 
robust control rules are not efficient.
The present paper is organized as follows. The MPC 
formulation and the tuning strategy given by [6] are  briefly 
introduced in section II. A short study of the Recursive Least 
Square (RLS) method is provided in section III. Then, the 
proposed adaptive MPC tuning algorithm is developed and 
tested via simulation examples. Then, a comparison of the 
proposed adaptive tuning method with a well-known online 
tuning method is presented briefly. Finally, the conclusion of 
the paper is given.Corresponding author, E-mail: 9205044@ee.kntu.ac.ir
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2-  Analytically MPC tuning approach [6]
In [6], a standard structure in state-space form has been 
presented  to formulate MPC tuning problem for FOPDT 
model of a real plant. In this section, this approach is briefly 
studied. Consider the following stable FOPDT model of a 
plant,
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where sTa e τ−=  and the dead time is considered to be an 
integer multiple of the sampling time, i.e. d sd Tθ= . 
The typical finite optimal control problem for MPC is
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and 1 21,  ;N d N d P= + = +   P  is the prediction horizon, M 
is the control horizon. ( )w n  is the desired reference signal; 
ˆ ( | )⋅Py n  is the predicted value of the plant output at the 

instance n  and 
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is the control effort at time n . Also Q  
and R are the weight matrices of the cost function (3), 11 =q  
and diag{} is a diagonal matrix. It is known in the MPC 
tuning problem that the weight matrices are more dominant 
on system performance than other tuning parameters [19]. 
Thus, the weights on the cost function (3), namely, 2q , 3q ,..., 

Pq  and 1r , 2r ,..., Mr  are chosen as the tuning parameters. 
In [6], using the state-space representation of the augmented 
model with an integrator, the future values of the model output 
are as follows (Note that the integrator must be considered in 
order to guarantee the elimination of the step disturbance and 
steady-state error for step input).
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where ˆ ( | )⋅y n  is the predicted value of the model output 
calculated at the instance n  and [1 1  1]T=1  . In the case 
of no active constraints, the optimal control effort solution is
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where ˆ ( )py n d+  is the real output prediction. We have
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and
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where ( )b n  can be considered as the disturbance or 
uncertainty term. In [6], two gains have been defined as
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Finally, the control signal at the time n  is computed by 
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Note that according to the predictive control rules, since 
the control effort at time n is sent to the process while the 
next control efforts calculated are rejected, in (11) the first 
components of the feasible gains xK  and yK  are only used.
Then, by introducing the feasible gain concept, tuning 
formulas can be derived for stable systems. Furthermore, the 
area of feasible gains is characterized with related theorems 
in [6], and it is shown that the closed-loop plant with control 
horizon of one or two can achieve any feasible performance 
that can be delivered by MPC for a FOPDT model. 
For the control horizon of one, by selecting r  and Pq  in (4) 
as tuning parameters, desired feasible gains 1K xd′  and 1K yd′  satisfy the following inequalities [6],
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It is clearly observed that the proposed MPC tuning method 
[6] is effective when the plant model is known. However, in 
the case of unknown or time-varying plants, tuning formulas 
given by [6] might not guarantee the desired performance or 
stability of the closed-loop plant. A solution for this problem 
is an online estimation of the model parameters and using the 
estimated parameters in the tuning equations  in each sample 
time.
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3- Adaptive MPC Tuning Algorithm
Online identification of dynamic systems provides the model 
of system at each sampling time. This estimated model  can 
then be used in the MPC tuning rules.  

3- 1- RLS Formulation
Consider the following model of the system
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Then, RLS algorithm can be stated briefly as follows
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As for an unknown time-varying plant the polynomials 
1( )−A z  and 1( )−B z  and, thus, the parameters vector θ are 

unknown and just the vector of inputs and outputs φ(n) and 
the output ( )y n  are known, by selecting the proper initial 
conditions (initial θ and the covariance matrix P ), the 
unknown parameters vector θ can be obtained through the 
relations (16), (17) and (18).
Note that in this paper, the time delay is estimated via the 
proposed method in [16].

3- 2- Application of RLS in Tuning formulas Proposed in [6]
Consider the following arbitrary order time-varying real 
plant:
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To obtain the desired closed-loop response, the predictive 
control signal (11) can be used, which can be rewritten as
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1

1
ˆ ˆ(1 )K

( ) ( ),
d

y
p

cl

z k a
y n w n

− − −
=

∆
(25)

where
1

1 1

2
1

ˆ ˆˆ ˆ ˆ1 ( 1 (1 )K (1 )K )
ˆˆ ˆ( (1 )K ) .

cl x y

x

a k a k a z

a k a z

−

−

∆ = + − − + − + −

+ − −
(26)

Now, consider the following desired model 
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where ζd  and nw  are the damping ratio and the natural 
frequency of the desired system, respectively. 
Please note that since in this method the plant is approximated 
by an FOPDT model and due to the structure of the predictive 
control signal (21), the closed-loop system is a second-order 
model similar to (27). Also, due to the relation of the desired 
conditions, such as settling time, rise time and overshoot, and 
the coefficients of transfer function (27), it can be concluded 
that for each desired output, the desired model (27) can be 
exactly specified.  Also, note that usually, desired conditions 
of output can be approximated through a second-order time-
delay model. But if in a case, a second-order time-delay 
model is not an accurate approximation, the proposed method 
in this paper is not usable. The corresponding discrete time 
model of (27) is
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Hence, the desired output is

φ
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Now, according to (24) and (30), the closed-loop system and 
the desired model have the same responses if
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Thus, according to (32) to (34), the following relations for 
1K x  and 1K y  are derived

1 2 0̂ˆK ( ) /   , = −x da a b 1 0̂K / .y db b= (35)
Now since the model reference parameters 2da  and db  are 
known and the system parameters are estimated in each 
sampling time through RLS algorithm, the feasible gains 

1K x  and 1K y  are obtained from (35) in each sampling time.
Note that  after identifying the time-varying system 
parameters, if the obtained gains from (35) were not 
feasible, i.e. they did not  satisfy (12), we can change the 
model reference parameters 2da  and db  within the desired 
performance characteristics. It can be obtained in a way that 
to reach feasible gains 1K x  and 1K y  we solve multiple LMIs 
[15]. These LMIs can be stated from (12) as it follows.
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where a, 1X , 2X  and 2Y  vary in each sampling time and x  
is the vector of unknown feasible gains 1K x′  and 1K y′ . In 
other words, for each sampling time, the above linear matrix 
inequalities are solved through the LMI toolbox in MATLAB. 
Then, the tuning parameters in (14) can be obtained from the 
resulted gains. The steps involved in the proposed adaptive 
tuning method of MPC can be summarized as the following 
algorithm,

1. Obtain the parameters of the approximated FOPDT 

discrete model using RLS.

•	 Estimate the dead time of the process using the 
method proposed in [16].

•	 Apply the obtained delay to the unknown plant 
(19) and identify the approximated FOPDT model 
parameters using RLS (equations (16), (17) and (18)).

2. Calculate the gains in (35) for the estimated parameters 
of step 1.

•	 If the calculated gains of (35) are feasible, go to the 
next step; otherwise, obtain the desired gains by 
solving the LMIs (36).

•	 If the obtained gains from solving (36) do not generate 
the model reference parameters  2da  and db  within 
the desired performance characteristics according 
to (35), the obtained gains are not feasible and the 
desired response is not reachable.

3. Obtain the control signal and apply it to the system.

4. Repeat the above steps for each sampling time.

The general structure of the proposed adaptive MPC tuning 
strategy is shown in Fig. 1.

4- Simulation Results
In this section, three examples are used to verify the proposed 
adaptive tuning method. In the first example, a FOPDT plant 
is used with varying parameters. In the second example, the 
nonlinear pH process is considered and, finally, in the third 

example, a second-order plant whose  parameters vary is 
considered.
4- 1- Example 1
Consider the following FOPDT process [6]
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Fig. 1. Block diagram of the proposed method for adaptive 
tuning of MPC.
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overshoot of 10% and a settling time of 14 sec up to 24 sec. 
A transfer function that satisfies these requirements can be

( )
5

1
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z

G
z

−
−

− −+
=

−
which is selected as the desired reference model. It is 
assumed that the plant parameters are unknown. Assume a 
30% change in the parameter k  at the time  300 sec and also a 
50% change for parameter a  at the time  800 sec occur.  First, 
we apply the non-adaptive MPC tuning [6]. Fig 2 shows the 
results. We can see that although for the 30% variation of the 
parameter k  in  300 sec, tracking is accetable (and only we 
have a small overshoot for a short time) but for 50% variation 
of parameter a  in  800 sec, the non-adaptive MPC cannot 
track the reference signal. 
Now, we apply the proposed adaptive MPC tuning strategy, 
and the results are shown in Figs 3, 4 and 5. In Fig. 3 it is 
shown that, the parameters of the system have converged to 
their real values after few seconds. Also, it can be seen that 
in Figs. 3a and 3b, the sudden variation of each parameter 
k  and a  temporarily affects the other one. In this example, 
forgetting factor is selected as 0.96. In Fig. 4 the controller 
parameters are shown and we can see that they have positive 
values and  are therefore acceptable. Since parameters r  and 

Pq  according to (14) only include the system parameter a
, they have not been affected by the change of parameter 
k , and only their estimations were affected within the 
transient time. Note that in this example, because the model 
of the plant is known (while in real applications the model 
is unknown with unknown variation), we can obtain the 
accurate controller parameters. Thus,  in Fig 4, it has been 
shown that through the proposed adaptive MPC tuning 
method, the accurate controller parameters can be followed 
by any variation in the plant model parameters. Fig. 5 
shows the closed-loop responses for the proposed adaptive 
MPC tuning method. The efficiency of the proposed method 
is shown in this figure and it can be seen that the sudden 
variation in 300 and 800 sec have been handled with very 
small overshoots.
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Fig. 2. The closed-loop responses in example 1 (tuning method 
of [6]), a:Closed-loop Output, b: Control Signal.
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Fig. 4. The estimated MPC tuning parameters, a: predictive 
controller parameter r, b: predictive controller parameter qp.
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a: time delay d,     b: time constant a,     c: gain k.
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4- 2- Example 2 (The Nonlinear pH Process)
Now, the proposed method is tested via the nonlinear pH 
process [17]. This process is a good benchmark to evaluate 
controllers. The dynamic and static equations of pH process 
can be found in [17]. Assume the following FOPDT model 
for the pH process in an operating point
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Let 1K xd′  and 1K yd′  be selected as 0.7 and 0.148, respectively, 
using the results of [6]. Fig. 6 shows the system output and 
the control signal in the case of non-adaptive tuning based 
on [6] and it can be seen that for the above constant FOPDT 
model, the non-adaptive MPC proposed in [6] is unable to 
control the neutralization pH process for the pH values 8 and 
8.5. Now consider the proposed tuning method. It should be 
noted that the indirect RLS method for adapting this process 
is sensitive to the system parameters initial values. Fig. 7 
shows the closed-loop responses of the adaptive proposed 
tuning method. It is shown that tracking performance is good. 
The effectiveness of the proposed tuning strategy is evident 
after comparing Figs. 6 and 7, and the control problem at pH 
values 8 and 8.5 in the non-adaptive MPC is resolved.

4- 3- Example 3 (Higher Order System)
In this example, a high-order plant is considered [19],
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where the corresponding discrete-time transfer function is
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Fig. 5. The closed-loop responses in example 1 (Adaptive tuning 

method), a: Closed-loop output, b: Control Signal.
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Fig. 6. Closed-loop responses for the pH process (tuning method 
[6]), a: Closed-loop output, b: Control Signal.
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A proper approximated FOPDT model for this plant is 
given in [6] which shows that this high-order plant can be 
approximated by a FOPDT model with an acceptable error. 
Hence, in the proposed adaptive MPC method an estimated 
FOPDT model is derived. It is assumed that all parameters 
varies as: 1a multiplies in 0.9 at  800 sec., 2a  multiplies 
in 1.05 at  1200 sec., 1b  multiplies in 5 at  1600 sec., 2b  
multiplies in 10 at  2100 sec., and 3b  multiplies in 0.05 at  
2600 sec.
Fig. 8 shows the system output and the control signal for 
the non-adaptive tuning method of [6] and Fig. 9 shows the 
same plots for the proposed adaptive MPC tuning method in 
this paper. It is seen that for the variation of the denominator 
parameter 1a  at  800 sec., the response of the non-adaptive 
method is slow compared to the same response of the 
adaptive method. Also, at  2100 sec., with the variation of the 
parameter 2b , the response of the non-adaptive method is 
unstable while the same response for the adaptive method is 
stable and yields a good tracking after some seconds. Thus, 
the effectiveness of the proposed method can be concluded 
for this high order time-varying plant. 
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Fig. 8. Closed-loop responses for the second-order plant in 
example 3 (tuning method [6]), a: Closed-loop Output, b: 

Control Signal.

4- 4- Comparison of the proposed adaptive tuning method 
with a well-known online MPC tuning method
In this section, in order to investigate the advantages of the 
proposed tuning method, a comparison between the proposed 
method and an online tuning method [9] is presented. For  
example, consider that a 30% decrement in the parameter a  
and a 50% decrement in the parameter k  occur at  800 sec. and 
also a 5% increment in the parameter a  and a 20% increment 
in the parameter k  occur at  1800 sec. Fig. 10 shows the 
result of the comparison between the online tuning method in 
[9] with the proposed adaptive tuning method in this paper. 
It shows that the reaction of the online tuning method to the 
system dynamic changes is more than the proposed method in 
this paper and the obtained response from the method of [9] 
is not desirable. Also, note that in the proposed online tuning 
method in [9], the initial plant model must be available and 
the online method of [9] can be affected just by unpredicted 
disturbances and unknown model parameters variations, 
while the proposed method in this paper does not need the 
initial plant model.
Note that the proposed method in this paper can be used 
either in the case that the plant model is unknown and time-
varying or in the case that an unknown disturbance is applied 
to input or output. In these two cases, the new parameters of 
the FOPDT model are identified in each sampling time and 
for the desired closed-loop output, the tuning parameters of 
the predictive controller are obtained.

0 500 1000 1500 2000 2500 3000 3500
-3

-2

-1

0

1

2

3

time (sec)

O
ut

pu
t

 

 
Output
Desired Output
Reference

a

0 500 1000 1500 2000 2500 3000 3500
-5

0

5

time (sec)

C
on

tr
ol

 S
ig

na
l

b
Fig. 9. Closed-loop responses for the second-order plant in 
example 3 (proposed adaptive MPC tuning method in this 

paper), a: Closed-loop Output, b: Control Signal.
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5- Conclusion
In this paper, an adaptive MPC tuning method was proposed 
based on the results of an available analytical MPC tuning 
method. Using RLS algorithm, we tried to update the tuning 
and controller parameters. Furthermore, an idea of the 
LMI was implemented when the obtained gains from the 
RLS algorithm were not feasible. Thus, in an algorithm, 
the proposed adaptive MPC tuning method was provided. 
Simulation results evaluated the effectiveness of the proposed 
method. Finally a comparison of the proposed
adaptive tuning method with a well-established online tuning 
method was briefly done.
In this paper, it was shown that the proposed adaptive tuning 
method can be used for all unknown time-varying arbitrary 
order systems which can be approximated by a FOPDT 
model. However, the proposed method is  inefficient when 
the feasible gains cannot be reached for a special desired 
output. Also, since in the proposed method, the parameters of 
a FOPDT model must be estimated in each sampling time and 
the mentioned multiple LMIs must be solved, the calculation 
time for this method shall be reduced in a direct adaptive 
tuning case which will be considered in future studies by the 
authors.
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