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ABSTRACT: The credit derivative market has experienced a remarkable growth over the past decade. 
As such, there is a growing interest in tools for pricing of the most prominent credit derivative, the 
credit default swap (CDS). In this paper, we propose a heuristic algorithm for pricing of basket default 
swaps (BDS). For this purpose, genetic network programming (GNP), which is one of the most recent 
evolutionary methods with graph structure as a subgroup of machine learning methods, is applied to 
assess basket default swap spreads. Here GNP is an alternative way to  model  the default correlation 
structure among different reference entities in a basket default swap. In order to improve the efficiency of 
the proposed algorithm, GNP with the vigorous connection (GNP-VC) is developed and used for the first 
time in this paper. To implement our model, we consider a basket consisting of 25 entities of the CDX.
NA.IG.5Y index. We compare the heuristic results with the Monte Carlo ones and discuss the efficiency 
of the proposed algorithm.The impact of vigorous connection on the performance of GNP is also reported.
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1- Introduction
Credit derivatives have become increasingly important 
financial instruments during the last decade. Their market has 
grown significantly since their inception in the mid-1990s. 
Credit derivatives are flexible and efficient instruments which 
allow users to isolate credit risk from other quantitative and 
qualitative factors associated with owning  an exposure. 
Hence, they can be used to transfer and hedge credit risk 
in an efficient and flexible manner, customized to a client’s 
requirements. Credit risk includes not just default or 
insolvency risk but also changes in credit spreads and thereby 
market values, changes in credit ratings and generic changes 
in credit quality. Credit derivatives are swaps, forward and 
option contracts, particularly credit default swaps (CDS); 
which can be used to hedge against all these types of credit 
risks, see Bomfim [3]. 
Credit default swaps (CDS) have been proven to be one of 
the most successful financial innovations of the 1990s. It is 
an instrument that provides insurance against the default of 
a particular company (or sovereign entity) on its debt. The 
company is known as the reference entity, and the default is 
known as a credit event. The buyer of protection pays periodic 
payments to the seller of protection at a predetermined fixed 
rate per year. The payments continue until the maturity of the 
contract or until the occurrence of a credit event, whichever 
is earlier. If a default event occurs, the buyer of protection has 
the right to deliver to the seller of protection a bond issued by 
the reference entity in exchange for its face value. Figure 1 
shows a simple example of CDS.
A common question when considering the use of credit 
derivatives, as an investment or a risk management tool, is 

how they should be priced. In general, the pricing of a credit 
default swap will depend on the credit quality of the reference 
entity and the length of the swap contract. When it comes to 
pricing of basket default swaps, modeling of the dependence 
structure of credit risks is a crucial problem. This problem 
arises from the effect of one entity default on other correlated 
entities. Therefore, the default correlations must be considered 
in the process of pricing which increases the complexity of 
the problem. There are different methods in the modeling of 
default correlation in the literature which could be categorized 
into three approaches: copula, conditional independence, and 
contagion. Most of these models use simplifying assumptions 
which decrease the comprehensiveness of the approach, see 
Takada, Sumita [36] and SchröTer, Heider [34]. As a case 
in point, copula assumes a specific distribution function for 
default times of individual assets, or the Markov process in 
contagion models considers a particular distribution function 
for states which could not be dominated for all assets, see 
Choe, Jang [4] and Wu [38].
In this paper, we propose a machine learning algorithm for the 
basket default swaps pricing which uses financial parameters as 
inputs and does not apply statistical simplifying assumptions, 
such as specific distribution function for default times. 
Machine learning algorithms are data-driven approaches to 
problem solving which can learn from and make predictions 
on data. Such algorithms operate by building a model from 
example inputs in order to make data-driven predictions 
or decisions rather than following strictly static program 
instructions. In the case of credit portfolio modeling, machine 
learning helps to find and learn default correlation structure 
through the learning phase. For this purpose, we use a recent 
graph structured heuristic method, named genetic network 
programming (GNP). In order to improve the efficiency of 
the proposed algorithm, GNP with a vigorous connection 
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(GNP-VC) is developed and used for the first time in this 
paper. Briefly speaking, the main contribution of this paper 
is to apply GNP as a machine learning method for the first 
time in BDS pricing which does not consider any statistical 
simplifying assumptions in the pricing process. Furthermore, 
we develop genetic network programming with the vigorous 
connection (GNP-VC) as an improved version of GNP and 
apply it in BDS pricing.
The rest of this paper is organized as follows: section 2 reviews 
the literature in the areas of BDS pricing. Section 3 describes 
the basic structure of genetic network programming, genetic 
network programming with the vigorous connection, and 
the pricing algorithm. Section 4 examines the experimental 
tests conducted to evaluate the performance of the proposed 
heuristic model. The last section focuses on the conclusion.

2- Literature Review
There are three main approaches for default correlation 
modeling in the literature: copula, conditional independence, 
and contagion. In the copula model, the joint distribution of 
default times is constructed through combining the marginal 
distributions of default times of individual assets with a 
copula which determines the correlation structure. The 
normal copula is a popular copula  used to model the default 
correlation of CreditMetrics, see Li [27]. Wu [38] uses the 
one-factor Gaussian copula model to investigate a rational 
coupon rate for basket credit linked notes (BCLN) with issuer 
default risk. Other copulas, such as Archimedean copulas are 
often used in the extreme value theory and stress testing. As a 
case in point, Choe and Jang [4], propose a sampling method 
for pricing of basket default swaps using exchangeable 
Archimedean copulas and nested Gumbel copulas. SchröTer 
and  Heider [34] present a numerical approach based on an 
importance sampling and demonstrate that the choice of the 
underlying copula model influences the risk structure of the 
basket and should be tailored advisedly.
The most prevalent model in the modeling of default 
correlation is the conditional independence. Based on 
this model, some systematic factors influence the default 
intensities of all assets in the portfolio, so that default times 
and default intensities of assets are independent of  each other. 
The joint distribution of default times can be represented 
analytically in the limiting case for homogeneous portfolios, 
see Gregory [17] and Schönbucher [33]. It is often difficult 
to assess the joint distribution of default times for large 
heterogeneous portfolios due to the heavy computational 
burden. In order to reduce the computational burden, some 
efficient approximation techniques have been proposed, such 
as the tail approximation method [15] and the hybrid normal 
approximation method [41]. Das et al. [6] demonstrate that 
the conditional independence model has a deficiency, thus  
that it cannot deal with the direct interaction of obligors and 

it may underestimate the portfolio risk and economic capital. 
Koopman et al. [22] propose a novel non-Gaussian panel data 
time series model with regression effects to  analyze  and 
forecast  the  corporate default rates. Lee and Poon [25] present 
a dynamic portfolio credit model using macroeconomic and 
latent risk factors to predict the aggregate loan portfolio loss 
in banking systems. Bo and Capponi [2] model simultaneous 
defaults using a three-dimensional subordinator consisting of 
specific and systematic risk factors.
The contagion model considers the direct interaction of 
assets in which the default probability of one asset influences 
the defaults of other correlated assets in the portfolio, and 
vice versa, and “infectious defaults” occur; see Davis and  
Lo [7]. The “looping” dependence of default times makes 
the characterizing of the joint distribution of default times 
difficult. Jarrow and  Yu [20] propose the primary secondary 
framework for the interaction of default intensities, which 
excludes cyclical default dependence, and derives the joint 
distribution. Frey and Backhaus [12] use the Markov process 
technique and the Kolmogorov equations to analyze a model 
in which the interaction between firms is the mean-field type 
and use the Monte Carlo method to  price  the portfolio of 
credit products. Leung and Kwok [26] use the CGH formula 
[5] to get the joint density function of three assets in the 
contagion model and use it to price single-name CDSs.Yu [39] 
applies the total hazard construction method [35] to derive 
the joint density function of three assets and uses it to price 
single-name CDSs and bonds. Yu (2007) also proposes the 
Monte Carlo method for the pricing of BDS. Herbertsson et 
al. [18] also apply the Markov chain technique and the matrix 
exponentials to give the analytic pricing formula for BDS 
rates. Takada and Sumita [36] propose a credit risk model 
using a two-layer Markov chain process for collateralized 
debt obligation (CDO) pricing. Dong and Wang [8] suggest  a 
contagion model, where defaults of CDS parties are all driven 
by a common continuous-time Markov chain describing the 
macroeconomic conditions. Gouriéroux et al. [16] claim 
that standard credit-risk models typically price the default 
intensities, but not the default event surprises. Hence, they 
developed an approach to get closed-form expressions for the 
prices of credit derivatives written on multiple names without 
neglecting default-event surprises. Frontczak and  Rostek 
[14] derived a closed-form formula for the loss given default 
quotas using an exponential Ornstein–Uhlenbeck diffusion as 
the stochastic process of the collateral.
Recently, machine learning has been widely used  in 
different areas of financial and economic sciences; see 
Mousavi et al. [30], Esfahanipour et al. [10],Thenmozhi, 
Sarath Chand [37], and Mousavi et al. [29]. There are a few 
studies which use machine learning in default correlation 
modeling. For example, Schlottmann and Seese [32] propose 
a hybrid heuristic approach combining the multi-objective 

Fig. 1. Credit default swap
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evolutionary algorithm and problem-specific local search 
methods to analyze the risk-return of credit portfolios. 
Zangeneh and  Bentley [40] suggest  a heuristic algorithm 
using Cartesian genetic programming as a discovery tool for 
finding the relationship between credit default swap spreads 
and debts and studying the arbitrage channel. Lee [24] 
proposes a method based on genetic algorithms to solve the 
optimal default point of the KMV model. Oreski et al. [31] 
propose a hybrid feature selection technique using the genetic 
algorithm and neural network for finding an optimum feature 
subset of bank clients’ credit data. Lu et al. [28] use Particle 
Swarm Optimization to solve the credit portfolio management 
problem. Table 1 summarizes previous works which model 
default correlation as a crucial issue in the pricing of BDS.
As mentioned before, most of these models use simplifying 
assumptions which decrease the comprehensiveness of the 
approach. For example, copula assumes a specific distribution 
function for default times of individual assets which could 
not be dominated by all cases. Therefore, in this paper, we 
propose a heuristic algorithm using a recent graph structured 
heuristic method, named genetic network programming 
which does not use simplifying assumptions in the pricing of 
basket default swaps (BDS).

3- The proposed model for pricing of basket default 
swaps (BDS)
This section starts by  explaining the applied approach for 
developing our proposed model. Recently, Machine Learning 
(ML) has been widely adopted in financial and economic 
modeling. ML is a data-driven approach to problem solving, 
in which the hidden patterns and trends present within the data 
are first detected and then leveraged to help better decision 
making. A key feature of ML is that it relaxes the constraints 
of real problems through the learning phase. Indeed, the 
constraints which increase the complexity of problems are 
relaxed by learning the patterns and trends of data. In other 
words, ML is a field of study that gives computers the ability 
to learn without being explicitly programmed. In the case 
of credit portfolio modeling, ML helps to find and learn 

the default correlation structure through the learning phase 
using historical prices of CDSs. There are different types of 
ML algorithms which have specific applications. Genetic 
Network Programming is one of the ML algorithms which 
has significant characteristics due to its graph structure.
In order to describe our proposed model, we need to initially 
explain the basic structure of genetic network programming. 
Then, genetic network programming with vigorous 
connections  developed and introduced for the first time in 
this paper would be described. Finally, our proposed basket 
default swaps (BDS) pricing model would be explained.

3- 1- Genetic Network Programming
In this section, Genetic Network Programming (GNP) 
is explained. Basically, GNP is an extension of Genetic 
Programming (GP) in terms of gene structures. GP is an 
evolutionary algorithm-based methodology inspired by 
biological evolution to find computer programs that perform 
a user defined task. Indeed, it is an attempt to deal with 
one of the central questions in computer science: How can 
computers learn to solve problems without being explicitly 
programmed? GP is an extension of the conventional genetic 
algorithm (GA) in which each individual in the population is 
a computer program. These programs are expressed as parse 
trees in GP, rather than as lines of code in GA [23]. There 
are many applications of GP in finance; as an example, we 
can refer toMousavi et al. [30] in stock trading and portfolio 
optimization. The most important problem for GP is the so-
called bloat of the tree which means increasing depth of the 
trees. This problem causes an exponential enlargement of the 
search space, the occupation of large amounts of memory, 
and an increase in calculation time. In order to deal with this 
problem, GNP was introduced by Hirasawa et al. [19].
The graph structure of GNP has some intrinsic features, such 
as implicit memory function and compact structures which 
contribute to creating effective action rules. In comparison 
to GP, GNP has a fixed number of nodes structure which 
results in  finding the optimal result without bloating. In 
addition, GNP has built-in memory functions, which keeps 

Authors (year) Copula Conditional 
Independence Contagion Machine 

Learning Method Case Study

Li [27]  Normal Copula Hypothetical Credit 
Portfolio 

Wu [38]  Gaussian Copula Hypothetical BCLN

Das et al. [6] 
Time Rescaling Model 
for Poisson Defaults S&P500

Lee, Poon [25] 
Dynamic Multi-Factor 

State Space Model
U.S. commercial 
banking system

Frey, Backhaus 
[13] 

Markov Process & 
Kolmogorov Equations

CDO-tranche of DJ 
iTraxx Europe

Dong, Wang [8] 
Continuous-time 
Markov Process

Hypothetical Credit 
Portfolio

Zangeneh, 
Bentley [40] 

Cartesian Genetic 
Programming Centrica Plc company

This Study 
Genetic Network 

Programming CDX.NA.IG.5Y

Table 1. Comparison of this study with the related studies in terms of modeling default correlation
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the agent’s actions as a chain of events. It is noteworthy that 
unlike the genetic algorithm, GP and GNP do not work with 
the solution space but optimize a procedure which leads to an 
optimum solution. Indeed, the output of GP and GNP is a set 
of operators which obtains an optimum solution.

A. Basic Structure of GNP
The basic structure of GNP is shown in Fig. 2. As shown 
in this figure, an individual of GNP has a directed graph 
structure, including three kinds of nodes: “Initial node”, 
“Judgment nodes” and “Processing nodes”. In Fig. 2, the 
initial node, the processing nodes and the judgment nodes are 
represented by square, circle and hexagon, respectively. The 
initial node is executed only when GNP starts which is an 
origin for node transitions and has no functionality. Judgment 
nodes have if-then type branch decision functions, which 
return judgment results for assigned inputs and specify the 
next node. The processing node takes the action of decreasing 
and increasing the spread of the basket. Each judgment node 
has several judgment results, which corresponds to the 
number of its outgoing branches. Each processing node has 
only one outgoing branch. Judgment nodes and processing 
nodes have their “Function label” in a library  predetermined 
by the system designer.

B. Chromosome Representation
As shown in Figure 2, GNP can be illustrated by its individual 
and chromosome. The individual has a directed graph 
structure which is a candidate solution as credit spread of 
BDS. The chromosome provides a set of properties for a GNP 
individual which is a set of nodes and connections. Individuals 
as candidate BDS spreads are initially generated randomly 
and are then evolved through GNP generations. In Figure 
2, NIDi shows the gene of node i in which all variables are 
integers. The Node Gene part describes the characteristics of 
each node and the Connection Gene part shows the connected 
nodes to each node. 
NTi indicates the node type. For initial, judgment, and 
processing node, NTi is equal to 0, 1, and 2, respectively. IDi 
describes the function label which is (1, 2, …, J) for judgment 
nodes and is (1, 2, ..., P) for processing nodes. Cik denotes the 
number of connected nodes to node i.  di indicates the elapsed 
time for processing and judgment at node i and dij indicates 
the elapsed time for moving from node i to node j. When 
the accumulated elapsed time exceeds the “Threshold elapsed 
time” which is a predetermined parameter, GNP stops.

C. Genetic Operators of GNP
Selection, mutation, and crossover are applied as genetic 

Fig. 2. The basic Structure of GNP

operators in GNP which are described next.
1) Selection. Selection is an operation to  select  an individual 
based on the degree of fitness which serves as parents of 
the next generation. The fitness shows the quality of the 
individual which adapts itself to the environment. 
2) Mutation. Mutation operation executes on only one 
individual and new offspring are generated as follows:

• An individual is selected using the selection method.
• Some branches or nodes are selected randomly for 
mutation with a predetermined related probability.
• The selected nodes or branches are changed randomly 
and a new offspring is generated.

An example of a mutation in GNP is shown in Figure 3.As 
displayed in this figure, connected nodes to nodes 2 and 7 
are replaced by  node 3 to node 5 and  node 4 to node 8, 
respectively.

3) Crossover. Crossover operation is executed between two 
individuals called parents and two offspring are generated as 
follows:

• Two individuals are selected as parents using the 
selection method.
• Corresponding nodes with the same node number 
are selected as crossover nodes with a predetermined 
appropriate probability.
• Two parents exchange the selected corresponding nodes, 
including their branches and then the two new offspring 
are generated.

Figure 4 shows an example of crossover in GNP. As displayed 
in this figure, the connection gene of nodes 4 and 9 in parents 
1 and 2 are replaced with each other.

3- 2- Genetic Network Programming withVigorous Connections
In this section, Genetic Network Programming with Vigorous 
Connections (GNP-VC) is described. GNP-VC is an 
extension of basic GNP  developed for the first time in this 
paper. Based on this structure, the connections terminated to 
process nodes have different strengths, which influence the 

Fig. 3.Mutation of nodes and connections
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intensity of the processing operation. Hence, the flexibility 
of the network is improved and the optimal result is obtained 
with fewer numbers of the used nodes in a shorter time than 
the basic structure of GNP. As a case in point for different 
results of judgment nodes, we do not need different process 
nodes. Furthermore, we refer to fewer process nodes which 
decrease the elapsed time of the network. Also, the operators 
of mutation and crossover execute on connections which 
improve the efficiency of the algorithm. Figure 5shows a basic 
structure of GNP-VC. As shown in this figure, the connection 
terminated to nodes 3 and 9 have different strengths which 
influence the intensity of processes 3 and 9. This strength 
depends on the result of the previous judgment nodes, i.e., 
nodes 4 and 6 in this example.

3- 3- Pricing of Basket Default Swaps (BDS) Using GNP-VC
In order to simplify the description of the proposed algorithm, 
we explain it through 6 steps as shown in Figure 6. First, we 
need to determine the number of individuals (n), a number of 

generations (N), the probability of mutation and probability 
of crossover (Pm and Pc), and elapsed time in each node and 
connection. We also use historical prices and 7quantitative 
features of CDSs as the inputs of our algorithm. Quantitative 
features are introduced in the computational result section.
Step1. Generating initial population randomly
The initial population is an assortment of individuals who  
are a candidate solution for BDS spread and include a set of 
initial, judgment, and processing nodes and their connections. 
In the first step, these nodes and the connections between 
them are generated randomly.
Step2. Choosing each reference entity randomly and putting 
it in the network
In this step, reference entities are chosen randomly and are 
put in the network to train the individuals. The well-trained 
individuals can compute the spread of BDS appropriately.
Step3. Determining basket spread change interval for each entity
In order to increase the efficiency of the algorithm, we 
consider a spread change interval which limits the solution 
space. Therefore, the algorithm converges into optimal results 
faster. To determine the basket spread change interval, we use 
Fabozzi et al. [11], and Abid and Naifar [1] studies in which the 
effective factors on CDS pricing are investigated. Therefore, 
we assess the spread change interval as below in which λi is the 
center of the interval and δi is the deviation from λi:

Where RL is the rate of factor L, ΔFiL is the change of factor 
L for the ith entity, sis the price of the basket in the time of 

Fig. 4. Crossover of nodes and connections
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learning, s’ is the price of the basket one period earlier, ρij is the 
correlation between the ith and jth entity, and B is an algorithm 
parameter. It is obvious that decreasing the amount of B 
increases the accuracy of the model and increases the elapsed 
time to optimal results.
In order to assess the entities default correlation (ρij), we 
initially construct the probability of default time series for each 
entity and then calculate the correlation between the obtained 
time series. Therefore, we adopt the simplified framework of 
Duffie [9].
To rule out arbitrage opportunities, the present value of CDS 
premium payments (left-hand side of eq. 2) has to equal the 
present value of protection payments (right-hand side of eq. 2):

Where rt stands for the risk-free interest rate, RR is the 
recovery rate, s denotes the CDS spread, qt denotes the risk-
neutral default intensity and             dsis the risk-neutral 
survival probability until time t. Therefore, the default rate 

can be calculated as below:

Where                                                         .

Step 4. Pricing of basket default swap (BDS) using GNP-VC
By starting the network, the selective factors are used as 
judgment nodes and their  results are  sent to the next nodes 
as a pulse. If the next node is a process node, the pulse has a 
strength which influences the intensity of its operation. In the 
proposed algorithm, the operation of the process nodes is a 
change in the spread of the basket. 
If the amount of spread change stands on the interval 
determined in step 3, the network stops and then the algorithm 
goes to step 2.
If a default occurs, the pulse terminated to the process node has 
the strength of (1-recovery rate) and then the network stops.
The elapsed times in judgment nodes, process nodes, and 
connections are assessed for each network. Time elapsed in 
each judgment node, process node, and the connection are  
considered as 2, 5, and 1 unit, respectively.
Step 5. Generating a new generation using genetic operators
Step 6. If the number of generation grows to the predetermined 
amount, the algorithm stops; otherwise, the algorithm goes to step 2. 

4- Computational results
In this section, we present computational results for the 
proposed basket default swaps (BDS) pricing model.

4- 1- Data sets and computational considerations 
In order to confirm the effectiveness of the proposed model, 
we carried out simulations using historical prices of 25 
entities of the CDX.NA.IG.5Y index which contains the 
North American and Emerging Market companies and are 
administered by CDS Index Company and marketed by 
Markit Group Limited. The simulation period is divided into 

two periods: one is used for training and the other  for testing.
• Training period: January 2003 – December 2004.
• Testing period: January 2005 — December 2005.

 As mentioned before, we use Fabozzi et al. [11] and Abid 
and Naifar [1] studies to determine the effective factors on 
CDS spread and applied them as the judgment functions in 
our GNP model. These factors are credit rating, leverage, 
risk-free rate, and time to maturity. To complete our effective 
factors, we add stock returns, quick (or acid-test) ratio, and 
time interest earned from the considered judgment factors. 
Quick ratio and time interest earned are the two financial 
ratios which are highly related to corporate defaults. The 
stock return also demonstrates the attitude of investors to 
reference entity which influences the CDS spread. 
All of the computational results presented below are coded 
in MATLAB and run on a computer with 2.26 GHz core 
(TM) 2 Dou processor and 4GB RAM. In order to achieve 
better results, we tuned up the algorithm parameters using 
the Taguchi method. Taguchi is a technique for designing and 
performing experiments to investigate processes where the 
output depends on many factors without having to tediously 
and uneconomically run the process using all possible 
combinations of values of those parameters [21]. As a case in 
point, for the proposed algorithm, the number of experiments 
is  8 instead of 37 which is all a possible combination of 
parameters with 3 levels. Tuned- up parameters are depicted 
in Table 2.
Other computational considerations are as follows:

(1) Heuristics runs with the same set of parameters which 
were replicated 50 times and the best solution was taken.
(2) The number of entities in each basket is 25. 
(3) The initial connections between nodes are determined 
randomly at the first generation.

4- 2- Algorithm Results
In order to test the performance of the proposed algorithm, we 
consider a basket consisting of 25 entities and assess basket 
default swap prices using the GNP-VC and Monte Carlo 
method. Monte Carlo simulation is widely used to measure the 
credit risk in portfolios of loans, corporate bonds, and other 
instruments subject to possible default. As in other application 
areas, it has the advantage of being very general and the 
disadvantage of being rather slow. This motivates research on 
methods to accelerate simulation through variance reduction, 
see Zheng [41],Frey and Backhaus [13], and Zheng and Jiang 
[42].For this purpose, we divide the simulation period into 
two parts: The first one, in-sample period, is used to  train  the 
algorithm and the second one, out-of-sample, is used to  test  
the performance of the proposed algorithm. 
Table 3 displays the difference between spreads of basket 
calculated by the Monte Carlo method and GNP-VC as 
tracking error. As shown in Table 3, the proposed heuristic 
method tracks the Monte Carlo method by reasonable errors. 
Furthermore, the heuristic method spends about 30 seconds to 
compute swap rates, whereas the Monte Carlo method takes 
more than 7 minutes to complete 50,000 simulation runs 
and indicates that the proposed heuristics has an appropriate 

t t
T Tr t r t

t t0 0
s e dt (1 RR) e q dt− −Γ = −∫ ∫ (2)

(3)

T

t s
0

1 qΓ = − ∫

asq
a(1 RR) bs

=
− +

T T( rt ) ( rt )

0 0
a e dt and b te dt− −= =∫ ∫
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accuracy and solves the problem in a reasonable time.
Figure 7 displays tracking errors for a different amount of 
default (K) in the BDS. As shown in this figure, by increasing 
the amount of K, the difference between the two approaches 
decreases. This is reasonable because by increasing the 
amount of default (K), the complexity of the pricing problem 
decreases and algorithms can assess the prices more precisely.

4- 3- Impact of vigorous connections on GNP 
Recalling the previous discussion in section 3.2, the genetic 
network programming with the vigorous connection is 
developed for the first time in this paper. Based on this 
algorithm, the connections terminated to the process nodes 
have different strengths which influence the intensity of the 
process operation and improve the efficiency of the algorithm. 
In this section, we examine the impact of vigorous connection 
on the efficiency of the genetic network programming model. 
Figure 8 displays the rate of convergence to optimal results 
for both GNP and GNP-VC. As shown in this figure, the rate 
of convergence to the optimal result for GNP-VC is greater 
than the basic GNP which depicts that vigorous connections 
improve the efficiency of the proposed algorithm.

Step 1. Generating Initial 
Population

Step 2. Determining 
Spread Interval of Portfolio 

For Each Entity

Step 3. Choosing 
Randomly Entities And 
Send Them To Network

Step 4. Learning the 
Network Until Achieving to 

Predetermined Interval

Calculating Elapsed Time 
of Network

Step 5. Applying Genetic 
Operators

All Entities 
Considered

?

Step 6. 
Number of 

Generations 
Finished?

Yes

Yes

No

No

Finishing Training Phase 
And Starting Testing Phase

Fig. 6.  The proposed basket default swaps (BDS) pricing 
algorithm using GNP-VC

Parameter Symbol Tuned up 
amount

Number of individuals N 400
Number of judgment nodes Nj 25
Number of process nodes NP 10
Probability of mutation Pm 0.03
Probability of crossover Pc 0.1
Parameter of algorithm B 0.4

Table 2.  Tuned up parameters for our proposed algorithm

Fig. 7. Tracking Error

Fig. 8. Rate of convergence for GNP and GNP-VC
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5- Conclusion
In this paper, we proposed a heuristic algorithm for pricing of 
basket default swaps (BDS).We use a recent graph structured 
heuristic method, named genetic network programming 
(GNP). GNP, as an extension of Genetic Algorithms and 
Genetic Programming, is an evolutionary optimization 
technique, which uses directed graph structures as genes 
instead of strings and trees. This feature contributes to creating 
quite compact programs and implicitly memorizing the past 
action sequences as a learning method. In order to improve 
the efficiency of GNP, the genetic network programming 
with the vigorous connection (GNP-VC) is developed and 
used for the first time in this paper.
In order to confirm the effectiveness of the proposed model, 
we carried out simulations using historical prices of 25 entities 
of the CDX.NA.IG.5Y index and compared the results with 
that of  Monte Carlo method. Computational results showed 
that the proposed algorithm is an efficient method in BDS 
pricing. A remarkable feature of the algorithm is that there is 
no simplifying assumption in the process of pricing. However, 
most similar studies used some simplifying assumptions which 
decrease the comprehensiveness of the algorithm. As a case 
in point, copula assumes a specific distribution function for 
default times of individual assets and the Markov process in 
contagion models considers a particular distribution function 
for states. Furthermore, the obtained results illustrate that the 
vigorous connection, which is developed for the first time in 
this paper, improves the efficiency of GNP and increases the 
rate of convergence of the algorithm.
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