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Usually, in monitoring schemes, the nominal value of the process parameter is assumed to be known. 
However, this assumption is violated owing to costly sampling and the lack of data, particularly in 
healthcare systems. On the other hand, applying a fixed control limit for the risk-adjusted Bernoulli chart 
gives rise to a variable in-control average run length performance for patient populations with dissimilar 
risk score distributions in monitoring clinical and surgical performance. To solve these problems, a self-
starting scheme is proposed based on a parametric bootstrap method and dynamic probability control 
limits for the risk-adjusted Bernoulli cumulative sum control charts. The main contribution of the pro-
posed control charts relates to the use of probability control limits when any assumption does not need 
about the patients’ risk distributions and process parameter. Simulation studies show that both proposed 
schemes have a good performance under various shifts.
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1- INTRODUCTION
Due to the increasing desire for healthcare systems 

improvement, control charts as one of the most 
important tools in statistical process control (SPC) are 
applied. Chou [1] provided a comprehensive guide to 
adopting control charts as the main tools in SPC with 
practical issues related to healthcare systems. Once 
the control charts are activated, detecting assignable 
causes is one of the most important issues as soon as 
possible once an adverse event occurs. Using a proper 
monitoring scheme, fast assignable causes, and 
frequent false alarms can be balanced. For detailed 
information, refer to the comprehensive review papers 
on health care area presented by Tennant et al. [2] and 
Woodall et al. [3]. By current published evidence, 
the case for applying statistical process control in 
monitoring clinical performance is very strong [4].

Generally, the proposed control charts depend 
on the kind of the assumed underlying probability 
distribution used for modeling. In this regard, Coory et 
al. [5] used control charts quality of hospital care with 
administrative data for specific conditions. Regarding 
to Bernoulli models, data consist of information 
on successive items classified as conforming or 
nonconforming. Hence, these models are considerably 
applied to health-related research that the incidence 
rate of a medicinal issue, for example, a congenital 
malformation is of interest. For example, Joner et al. 
[6] detected a rate increase using a Bernoulli scan 
statistic. Some early applications of control charts 
in medicine, such as De Leval et al. [7] and Steiner 
et al. [8], considered the monitoring cardiac surgery 
outcomes without considering risk adjustment. Also, 
Shu et al. [9] compared weighted cumulative sum 
(WCUSUM) and conventional CUSUM procedures 
based on a Poisson model in the presence of monotone 
changes in population size. Recently, Sun et al. [10] 
have proposed a WCUSUM to monitor medical 
outcomes with dependent censoring. Also, Lim et al. 
[11] extended CUSUM charts to evaluate doctors’ 
performance. However, in most medical applications, 
owing to the heterogeneity of patients, risk adjustment 
is necessary. Risk-adjusted monitoring scheme is 
an important topic in the healthcare system and 
has received much attention. The risk-adjustment 
can occur with a risk probability being assigned 
to each patient. As one of the first works, Steiner 
et al. [12] applied Bernoulli outcomes in the risk-
adjusted CUSUM charts. Jones and Steiner [13] 
showed that estimation error can affect risk-adjusted 

CUSUM chart performance. More recently, Rossi 
et al. [14] developed a new risk-adjusted Bernoulli 
CUSUM chart to monitor binary health data. Taseli 
and Benneyan [15] developed similar types of 
risk-adjusted sequential probability ratio tests. A 
considerable number of studies have been  devoted to 
developing risk-adjustment monitoring scheme over 
the past few decades. For example, Gombay et al. 
[16] conducted a comparative study to monitor binary 
outcomes using risk-adjusted charts. In this context, 
Zeng [17] reviewed the existing studies on a risk 
adjusted monitoring, including the risk adjustment 
models and known scheme for change detection 
based on these models. Tang et al. [18] have recently 
proposed a risk-adjusted CUSUM chart based on 
multi responses for Binary data.

Detecting performance of the risk-adjusted 
exponentially weighted moving average (EWMA) 
charts are similar to CUSUM charts. Also, the effect 
of previous observations is gradually omitted in the 
statistic by adjusting the statistic weights applied 
by healthcare practitioners [19]. Relating to the 
monitoring of time-between-events, a generalized 
group runs control chart is provided by Fang et al. 
[20]. After that, Pan and Jarret [21] constructed a 
Multivariate EWMA (MEWMA) control chart in the 
biosurveillance area.

On the other hand, the patient mixes for 
different hospitals and surgeons are very common in 
applications. Thus, applying fixed control limits leads 
to a variable in-control average run length (ARL) 
performance in risk-adjusted Bernoulli CUSUM 
charts. To alleviate this problem, the dynamic 
probability control limits (DPCLs) to the risk-adjusted 
Bernoulli CUSUM chart are proposed by Zhang and 
Woodall [22] to monitor the surgical performance. 
In addition, Shen et al. [23] designed the DPCLs in 
EWMA chart to monitor Poisson count data with 
time-varying population sizes. In this approach, the 
conditional probability of a false alarm is considered 
to be fixed to maintain that there is no false alarm for 
previous observations. As a result, an in-control run 
length distribution is partly a geometric distribution 
with a given in-control ARL for any group of patients. 
It should be noted that although conditional false 
alarm rate is monitored to be fixed, this approach can 
be used to design the chart with any given sequence 
of the conditional false alarm rates.

Paynabar and Jin [24] extended Phase I risk 
adjusted control chart to monitor surgical performance 
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by considering categorical covariates. In Phase I, 
Asadayyoobi and Niaki [25] proposed an accelerated 
failure time-based risk-adjusted control chart to 
monitor continuous surgical outcomes. In addition, at 
the same Phase, Mohammadian et al. [26] provided 
a risk adjusted Geometric control charts. Most of the 
studies have primarily concentrated on the Phase II 
monitoring by considering in-control parameter is 
known or estimated based on a sufficient number of 
historical data set; however, in many applications, 
this assumption may be violated. In these situations, 
self-starting approaches are utilized such as Hawkins 
[27] and Hawkins and Tchao [28] that update the 
parameter estimates and simultaneously alarm out-
of-control condition. On this subject, Shen et al. [29] 
proposed a self-starting EWMA control scheme based 
on a parametric bootstrap for Poisson count data with 
varying population sizes. They determined probability 
control limits at each time point after observing 
the sample size without any prior knowledge of in-
control parameter.

As aforementioned, binary outcomes as one of the 
most practical cases related to healthcare field would 
be adjusted. On the other hand, there is a common 
situation in applications where in-control process 
parameter is  unavailable. It is worth mentioning 
that determining the proper control limits depends 
noticeably on the unknown process parameter. 
In other words, the estimation of the parameter 
resulting unsuitable in control run average length 
performance. Hence, in this paper, the risk adjusted 
CUSUM control charts are proposed based on the 
DPCLs using a self-starting method in monitoring 
the Bernoulli process. The remainder of this paper 
is presented as follows: in the next section, the self-
starting chart in the statistical model is discussed. The 
risk adjusted CUSUM control charts is given with 
probability control limits in section 3. In section 4, the 
performance study on the proposed control charts are 
investigated and compared. Finally, several remarks 
draw the paper to its conclusion in section 5.

2- UNDERLYING MODEL AND SELF-
STARTING MONITORING SCHEME

In many SPC applications in healthcare, the 
outcome of interest is defined for each individual 
patient. For example, whether or not each surgical 
patient has a special type of infection. Therefore, each 
case distribution follows the Bernoulli distribution. 
Regarding this issue, [30] reviewed the charts survey 

for monitoring Bernoulli processes and said that the 
incidence rate of a rare disease or medical problem 
is covered with this distribution. As aforesaid, there 
is major variability in risks of patient populations. 
Hence, the standard Bernoulli chart cannot be applied 
to monitor surgical performance. In this section, a self-
starting method is given to monitor process parameter. 
To this end, let yt be values independently follow the 
Bernoulli distribution with the mean πt during the 
constant time interval. In these situations where in-
control process parameter is being monitored, the 
main interest is detecting its increases. Note that 
the surgical failure rate for each patient is computed 
by the pre-operative patient risk using the logistic 
regression model based on Parsonnet scores [31]. A 
sudden shift happens in the primary process parameter 
to another unknown value at some unknown time τ. 
It is assumed that m0 denote historical observation 
collected over time as an independent reference. The 
goal is detecting time point that an out-of-control 
condition is occurred considering the patient risk and 
lack of the sufficient data.

3- PROPOSED CONTROL CHARTS
Note that the false alarm rate was adjusted to 

avoid unnecessary interventions. Therefore, the 
control limits need to be designed for each surgeon 
based on assumptions about the patient population. 
To overcome this issue, the DPCLs are used to the 
risk-adjusted Bernoulli CUSUM chart. In this regard, 
keeping the conditional probability in a specified 
false alarm means there is no false alarm for previous 
data at a fixed value.

Now, we provide a risk-adjusted Bernoulli 
CUSUM control charts for the self-starting 
monitoring. The CUSUM control chart is designed 
to show the shift in Bernoulli process parameter. In 
healthcare application, Steiner et al. [12] suggested 
a risk adjusted CUSUM chart considering patient’s 
pre-operative risk of surgical failure using a 
likelihood based scored procedure. By applying the 
DPCLs to the risk-adjusted Bernoulli CUSUM chart, 
distribution of the in-control run length does not need 
any assumptions about patients’ risk distributions. The 
establishing approach DPCLs was extended EWMA 
chart by Shen et al. [22] in monitoring Poisson count 
data considering time-varying sample sizes. In this 
approach, the probability of achieving a specified 
false alarm is maintained to be fixed. Hence, for a 
one-sided risk-adjusted Bernoulli CUSUM chart, the 



A Risk-Adjusted Self-Starting Bernoulli CUSUM Control Chart with Dynamic Probability Control Limits

106 AIJ - Modeling, Identification, Simulation and Control, Vol. 48, No. 2, Fall 2016

DPCLs h(α)=(h1(α), h2(α),...,hk(α),...) satisfy Eq. (1) 
according to Shen et al. [23] in which ht(α) relates to 
the upper control limit and α is the given conditional 
false alarm rate. β is an updated parameter estimate 
along with 25 new observations in self-starting 
monitoring. It should be noted that the number of 
new observations for updating beta is tuned by trial 
and error method in the range of 5-50 to obtain an 
appropriate estimation of this parameter.

(1)

Now, statistic is obtained equal to 
Ct

+=max(0,Ct-1
+ +Wt) for each patient where Wt is 

calculated using following equation according to 
Shen et al. [23]:

(2)

where pt and yt are observed values and process 
parameter, respectively. Also, the risk-adjusted 
CUSUM chart is designed to monitor for an odds 
ratio change from R0 to Ra in which R denote the 
failure odds ratio.

As aforementioned, it is not easy to determine 
ht(α) depending on the in control distributions of Ct 
on the parameter pt. For this purpose, a parametric 
bootstrap iteratively is applied at each sample. 
To describe the proposed self-starting monitoring 
scheme, let the monitoring be at t=1 and randomly 
generate pseudo-observations yi,t according to the 

( ) ( )1 1
ˆ ˆˆ 1 exp / expt t tp − −

 = + â x â x  model for i=1,2,...,N, 
where N is considered as a sufficiently large integer. 
Consider x as a vector of the explanatory variable in 
logistic regression model. Afterwards, a sample of 
charting statistics C(1)={C1(1),C2(1),...,CN(1)} can 
be achieved and then elements in C(1) be ranked 
in ascending order to redesign the vector C(1) as 
C[1] (1),...,C[N] (1). After that, h1(α) is calculated using 
C[H] (1), in which H=[N(1−α)] and [] symbol refer 
to the rounding symbol. When C1>h1, control chart 
shows an out of control condition. Otherwise, the 
monitoring to the next time point t=2 is continued. 
In this regard, βt̂’s is updated based on new data. At 
time t=2, to obtain the control limit h2, we  should 

first restrict the values of Ci(1) such that satisfy Eq. 
(1). Then, a part of C(1),C[1](1),...,C[H](1) is kept, as 
the space of feasible values of C[i](1) and randomly 
bootstrap N variables of Ci(1) from this space are 
generated to construct an updated N−dimensional 
vector C(1). Similarly, the control limit h2 can be 
achieved by repeating the process of random number 
generation of Bernoulli random variables with 
mean equal to p̂t. The proposed approach based on 
a parametric bootstrap method is succinctly given as 
follows:

1) If Ct−1≤ht−1, estimate βt̂-1 based on the past 
response variables {(x1,y1),(x2,y2),...,(xt-1,yt-1)}.

2) Now, generate randomly yi,t from Bernoulli 
distribution with p̂t for i=1,...,N and then compute 
C(t)={C1(t),...,CN(t)} and sort the elements of C(t) in 
ascending order. In addition, the control limit can be 
obtained equal to the value of C[H](t).

3) Decide on  control chart condition by comparing 
the statistic Ct with ht and. When continuing to the 
next time point, update the C(t) by randomly selecting 
Ci(t)’s from C[1](t−1),...,C[H](t−1) and return to step 1.

Clearly, control limits are obtained on-line along 
with the process data rather than decided upon before 
monitoring. Not that if a short-run change occurs, 
starting testing with a very small set of observations 
would result in a severe masking-effect [28].

4- SIMULATION STUDY
In this section, we evaluate the performance 

of the Bernoulli risk-adjusted CUSUM chart with 
self-starting monitoring procedure and considering 
DPCLs for specific sequences of patients from 
different patient populations. Here, the data set of 
patients from a seven-year study used by Steiner et 
al. [8] is applied. Moreover, the same criteria in Tian 
et al. [32] are used to differentiate the Parsonnet score 
distributions. In this context, in the first two years, 
2218 patients are considered as in-control group 
and utilized to fit the logistic regression risk model 
refereed to Zhang et al. [22] according to the Eq. (3):

(3)
in which pt is the probability of death within 30 
days corresponding surgery. Also, xt is the Parsonnet 
score of patient t. It should be noted that the number 
of primary observations may affect in control 
performance of the proposed monitoring schemes. 
Also, three states as low, medium and high are 
considered for score distribution levels in which high 
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and low risk are the highest and lowest 50% of the 
scores, respectively. In addition, the medium risk is 
considered as 50% of the scores from average range. 
For this purpose, the control limits estimated based on 
historical data are obtained in each simulation trial. 
Then, the average in control ARL is estimated defined 
as AARL0 using a large number of the simulation 
trials where for each trial there is a different amount 
of the historical data. Hence, the performance of 
interest is then investigated in terms of this criterion. 
The estimated AARL0 and the absolute relative error 
called as δ=|ARL0-AARL0|/ARL0 are shown in Table 
1 for the proposed self-starting monitoring scheme.

The simulation results show that the proposed 
monitoring scheme has a suitable in control 
performance under a specific conditional false 
alarm rate. In other words, the value of the average 
in control ARLs obtained is approximately close to 
the predetermined ARL0 for all number of historical 
observations. It is worth mentioning that when 
the number of primary data is small, the proposed 
monitoring procedure can provide a satisfactory 
performance. As seen in the result, in these situations 
the AARL0 is close to desired value. on the other hand, 
performance of the proposed approach significantly 
improves when the reference sample would be large. 
Also, the different primary observation can be applied 
in the similar way to show varying estimates, control 
limits, and their corresponding in control ARLs.

Now, we survey the out of control performance of 
the proposed self-starting scheme. For this aim, type I 

probability is considered equal to 0.005. To this end, 
we set m0=20 and assume R0 to be 1. We investigated 
the out of control performance under the different 
magnitude of shifts. In this respect, the different 
step shifts are imposed on the regression parameters 
of Bernoulli process separately and simultaneous in 
Table 2.

Generally, as the magnitude of the shift increases, 
the performance of the monitoring schemes improves 
significantly. As a result, the simulation studies show 
satisfactory performance of the self-monitoring 
scheme in risk-adjusted Bernoulli CUSUM control 
chart with DPCL.

In Table 3, the simulation study is given to provide 
sufficient evidence to advantage of the proposed 
monitoring scheme in comparison with the previous 
scheme without a self-starting plan. To this aim, m0 
is considered  historical data in Phase I in monitoring 
without self-starting. Comparing the results between 
Tables 2 and 3, it can be understood easily risk-
adjusted self-starting Bernoulli CUSUM control chart 
with DPCLs has a better performance than without 
considering self-starting monitoring scheme. Also, 
Fig. 1 demonstrates a difference between them under 
given shifts in discarding alarm more clearly.

5- CONCLUSION AND FUTURE 
RESEARCHES

Recently, with the increasing importance of the 
quality of health care, performance monitoring of 

Table 1. Estimated AARL0 of the proposed control monitoring scheme considering different m0 
(within δ parentheses)

m0 Risk distribution
α

0.005 0.002 0.001

10

Low 184 (0.06) 462(0.03) 943(0.01)

Medium 189 (0.01) 465(0.01) 939(0.04)

High 194 (0.03) 471(0.08) 968 (0.03)

20

Low 188 (0.04) 465(0.05) 971(0.05)

Medium 191 (0.02) 482(0.09) 985(0.08)

High 187 (0.02) 459(0.07) 992(0.03)

50

Low 194 (0.07) 487 (0.05) 987(0.02)

Medium 185 (0.06) 475(0.02) 955(0.01)

High 180 (0.04) 494(0.03) 982(0.09)
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Table 2. Estimated performance of self-starting monitoring risk-adjusted Bernoulli CUSUM charts with DPCLs

Shift in β0 ARL1 Std Shift in β1 ARL1 Std Shift in (β0, β1) ARL1 Std

0.001 51.11 0.05 0.001 53.15 0.04 (0.001,0.001) 48.08 0.03

0.003 49.77 0.08 0.003 46.87 0.05 (0.003,0.003) 47.01 0.08

0.005 42.65 0.04 0.005 40.05 0.01 (0.005,0.005) 40.14 0.04

0.007 38.09 0.04 0.007 39.4 0.08 (0.007,0.007) 36.12 0.04

0.009 33.75 0.01 0.009 32.99 0.09 (0.009,0.009) 30.15 0.01

0.01 30.87 0.03 0.01 31.02 0.05 (0.01,0.01) 30.22 0.03

0.03 23.08 0.09 0.03 22.11 0.01 (0.03,0.03) 21.18 0.09

0.05 17.22 0.07 0.05 18.09 0.02 (0.05,0.05) 15.15 0.01

0.07 12.93 0.04 0.07 14.12 0.07 (0.07,0.07) 10.05 0.03

0.09 9.15 0.01 0.09 8.97 0.04 (0.09,0.09) 6.6 0.05

0.1 6.45 0.03 0.1 5.96 0.01 (0.1,0.1) 5.05 0.07

care providers has received much concentration. 
In this scope, monitoring the quality of surgical 
outcome performance leads to the improved surgical 
performance. Regarding the monitoring of them, 
Bernoulli process is applied in which prior risks 
of different patient populations is considered. 
On the other hand, until now, most of studies are 
concerned with known assumption and estimable 
parameter, however, it is violated in practice. It is 
worth mentioning that the control limits typically are 
affected based on the estimation of parameters. Hence, 

in this paper, a self-starting scheme is proposed based 
on a parametric bootstrap method and DPCLs for the 
risk-adjusted Bernoulli CUSUM. It is also known 
that all proposed control charts have a very good 
performance in which the number of primary data is 
insufficient.

Future research may be extended in the following 
directions. First of all, the presented approach can be 
applied in the other health-related process. In addition, 
proposed approach could be easily adapted to design 
the method of Tang et al. [14] where there can be 

Table 3. Estimated performance of the risk-adjusted Bernoulli CUSUM charts with DPCLs

Shift in β0 ARL1 Std Shift in β1 ARL1 Std Shift in (β0, β1) ARL1 Std

0.001 98.75 0.09 0.001 102.04 0.04 (0.001,0.001) 91.54 0.08

0.003 86.47 0.01 0.003 95.33 0.05 (0.003,0.003) 85.61 0.09

0.005 80.05 0.03 0.005 88.25 0.01 (0.005,0.005) 79.28 0.04

0.007 76.92 0.04 0.007 81.13 0.08 (0.007,0.007) 70.53 0.05

0.009 72.57 0.02 0.009 79.65 0.09 (0.009,0.009) 65.15 0.05

0.01 66.12 0.03 0.01 72.33 0.04 (0.01,0.01) 58.46 0.01

0.03 57.39 0.07 0.03 64.54 0.05 (0.03,0.03) 42.57 0.04

0.05 51.08 0.08 0.05 50.33 0.01 (0.05,0.05) 38.4 0.01

0.07 48.19 0.04 0.07 45.35 0.03 (0.07,0.07) 30.12 0.03

0.09 43.24 0.09 0.09 41.08 0.05 (0.09,0.09) 26.13 0.05

0.1 36.71 0.01 0.1 40.47 0.07 (0.1,0.1) 23.05 0.07
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Fig. 1. The comparison of the proposed and traditional monitoring scheme performances

more than two possible outcomes for each patient. 
On the other hand, the performance of all monitoring 
schemes is affected by the number of primary 
observations. Hence, the necessary number of Phase 
I data should be analyzed to provide the given in-
control performance. Moreover, the bootstrap-based 
approach may be applied to design a generalized 
likelihood ratio test (GLRT)-based control chart.

REFERENCES
[1] Chou, S. C.; “Statistical Process Control for 
Health Care,” International Journal for Quality in 
Health Care, Vol. 14, No. 5, pp. 427-428, 2002.

[2] Tennant, R.; Mohammed, M. A.; Coleman, J. J. 
and Martin, U.; “Monitoring Patients Using Control 
Charts: A Systematic Review,” International Journal 
for Quality in Health Care, Vol. 19, No. 4, pp. 187-
194, 2007.

[3] Woodall, W. H.; Adams, B. M.; Benneyan, J. C.; 
“The Use of Control Charts in Healthcare,” Statistical 
Methods in Healthcare, Wiley, in Faltin, F.; Kenett, 
R.; Ruggeri, F. Eds., pp. 251-267, 2011.

[4] Lim, T. O.; “Statistical Process Control Tools for 
Monitoring Clinical Performance,” International 
Journal for Quality in Health Care, Vol. 15, No. 1, 
pp. 3-4, 2003.

[5] Coory, M.; Duckett, S. and Sketcher-Baker, K.; 
“Using Control Charts to Monitor Quality of Hospital 

Care with Administrative Data,” International 
Journal for Quality in Health Care, Vol. 20, No. 1, 
pp. 31-39, 2008.

[6] Joner, M. D.; Woodall, W. H.; Reynolds, M. R.; 
“Detecting a Rate Increase Using a Bernoulli Scan 
Statistic,” Statistics in Medicine, Vol. 27, No. 14, pp. 
2555-2575, 2008.

[7] De-Leval, M. R., François, K.; Bull, C.; Brawn, 
W. B. and Spiegelhalter, D.; “Analysis of a Cluster 
of Surgical Failures,” The Journal of Thoracic and 
Cardiovascular Surgery, Vol. 107, No. 3, pp. 914-
924, 1994.

[8] Steiner, S. H.; Cook, R. and Farewell, V.; 
“Monitoring Paired Binary Surgical Outcomes Using 
Cumulative Sum Charts,” Statistics in Medicine, Vol. 
18, No. 1, pp. 69-86, 1999.

[9] Shu, L.; Jiang, W.; Tsui, K. L.; “A Comparison 
of Weighted CUSUM Procedures that Account for 
Monotone Changes in Population Size,” Statistics in 
Medicine, Vol. 30, No. 7, pp. 725-741, 2011.

[10] Sun, R. J.; Kalbfleisch, J. D.; Schaubel, D. E.; “A 
Weighted Cumulative Sum (WCUSUM) to Monitor 
Medical Outcomes with Dependent Censoring,” 
Statistics in Medicine, Vol. 33, No. 18, pp. 3114-
3129, 2014.

[11] Lim, T. O.; Soraya, A.; Ding, L. M. and Morad, 
Z.; “Assessing Doctors’ Competence: Application 



A Risk-Adjusted Self-Starting Bernoulli CUSUM Control Chart with Dynamic Probability Control Limits

110 AIJ - Modeling, Identification, Simulation and Control, Vol. 48, No. 2, Fall 2016

of CUSUM Technique in Monitoring Doctors’ 
Performance,” International Journal for Quality in 
Health Care, Vol. 14, No. 3, pp. 251-258, 2002.

[12] Steiner, S. H.; Cook, R. J.; Farewell, V. T. and 
Treasure, T.; “Monitoring Surgical Performance 
Using Risk-Adjusted Cumulative Sum Charts,” 
Biostatistics, Vol. 1, No. 4, pp. 441-452, 2000.

[13] Jones, M. A.; Steiner, S. H.; “Assessing the Effect 
of Estimation Error on Risk-Adjusted CUSUM Chart 
Performance,” International Journal for Quality in 
Health Care, Vol. 24, No. 2, pp. 176-181, 2012.

[14] Rossi, G.; Del-Sarto, S. and Marchi, M.; “A New 
Risk-Adjusted Bernoulli Cumulative Sum Chart for 
Monitoring Binary Health Data,” Statistical Methods 
in Medical Research, 2014.

[15] Taseli, J. C. and Benneyan, A.; “Cumulative Sum 
Charts for Heterogeneous Dichotomous Events,” 
Industrial Engineering Research Conference 
Proceedings, pp. 1754-1759, 2008.

[16] Gombay, E.; Hussein, A. and Steiner, S. H.; 
“Monitoring Binary Outcomes Using Risk-Adjusted 
Charts: a Comparative Study,” Statistics in Medicine, 
Vol. 30, No. 23, pp. 2815-2826, 2008.

[17] Zeng, L.; “Risk-Adjusted Performance 
Monitoring in Healthcare Quality Control,” Quality 
and Reliability Management and Its Applications, 
Springer, London, pp. 27-45, 2016.

[18] Tang, X.; Gan, F. F. and Zhang, L.; “Risk-
Adjusted Cumulative Sum Charting Procedure 
Based on Multiresponses,” Journal of the American 
Statistical Association, Vol. 110, No. 509, pp. 16-26, 
2016.

[19] Cook, D. A.; Coory, M. and Webster, R. A.; 
“Exponentially Weighted Moving Average Charts 
to Compare Observed and Expected Values for 
Monitoring Risk-Adjusted Hospital Indicators,” BMJ 
Quality and Safety, Vol. 20, No. 6, pp. 469–474, 2011.

[20] Fang, Y. Y.; Khoo, M. B.; Teh, S. Y. and Xie, 
M.; “Monitoring of Time between Events with a 
Generalized Group Runs Control Chart,” Quality and 
Reliability Engineering International, 2015.

[21] Pan, X. and Jarrett, J. E.; “The Multivariate 
EWMA Model and Health Care Monitoring,” 
International Journal of Economics and Management 
Sciences, 2014.

[22] Zhang, X. and Woodall, W. H.; “Dynamic 

Probability Control Limits for Risk-Adjusted 
Bernoulli CUSUM Charts,” Statistics in Medicine, 
Vol. 34, No. 25, pp. 3336-3348, 2014.

[23] Shen, X.; Tsung, F.; Zou, C. and Jiang, W.; 
“Monitoring Poisson Count Data with Probability 
Control Limits When Sample Sizes are Time-
Varying,” Naval Research Logistics, Vol. 60, No. 8, 
pp. 625-636, 2011.

[24] Paynabar, K.; Jin, J. and Yeh, A.; “Phase 
I Risk Adjusted Control Charts for Monitoring 
Surgical Performance with Considering Categorical 
Covariates,” Journal of Quality Technology, Vol.  44, 
No. 1, pp. 39-53, 2012.

[25] Asadayyoobi, N. and Niaki, S. T. A.; “Monitoring 
Patient Survival Times in Surgical Systems Using a 
Risk-Adjusted AFT Regression,” Quality Technology 
and Quantitative Management Chart, 2015 
[Accepted].

[26] Mohammadian, F.; Niaki, S. T. A. and Amiri, A.; 
“Phase I Risk-Adjusted Geometric Control Charts 
to Monitor Health Care Systems,” Quality and 
Reliability Engineering International, 2014.

[27] Hawkins, D. M.; “Self-Starting CUSUM Charts 
for Location and Scale,” The Statistican, Vol. 36, No. 
1, pp. 299-315, 1987.

[28] Hawkins, D. M. and Maboudou-Tchao, E. M.; 
“Self-Starting Multivariate Exponentially Weighted 
Moving Average Control Charting,” Technometrics, 
Vol. 49, No. 1, pp. 199-209, 2007.

[29] Shen, X.; Tsui, K. L.; Woodall, W. H. and Zou, C.; 
“Self-Starting Monitoring Scheme for Poisson Count 
Data with Varying Population Sizes,” Technometrics, 
2015 [Accepted].

[30] Szarka, J. L. and Woodall, W. H.; “A Review and 
Perspective on Surveillance of Bernoulli Processes,” 
Quality and Reliability Engineering International, 
Vol. 27, No. 6, pp. 735-752, 2007.

[31] Parsonnet, V.; Dean, D. and Berstein, A. D.; 
“A Method of Uniform Stratification of Risk for 
Evaluating the Results of Surgery in Acquired Adult 
Heart Disease,” Circulation, Vol. 79, No. 6, pp. 3-12, 
1989.

[32] Tian, W. M.; Sun, H. Y.; Zhang, X. and Woodall, 
W. H.; “The Impact of Varying Patient Populations 
on the in Control Performance of the Risk-Adjusted 
CUSUM Chart,” International Journal for Quality in 
Health Care, Vol. 27, No. 1, pp. 31-36, 2015.


