

 Amirkabir University of Technology

 (Tehran Polytechnic)

 Vol. 47 - No. 1 - Spring 2015, pp. 41- 53

Amirkabir International Journal of Science & Research

(Modeling, Identification, Simulation & Control)

AIJ-MISC))

 Corresponding Author, Email: najme.mansouri@gmail.com٭

Vol. 47 - No. 1 - Spring 2015 41

A New Job Scheduling in Data Grid Environment Based

on Data and Computational Resource Availability

Najme Mansouri
1

1-Department of Computer Science, Shahid Bahonar University of Kerman, Kerman, Iran

ABSTRACT

Data Grid is an infrastructure that controls huge amount of data files, and provides intensive

computational resources across geographically distributed collaboration. The heterogeneity and geographic

dispersion of grid resources and applications place some complex problems such as job scheduling. Most

existing scheduling algorithms in Grids only focus on one kind of Grid jobs which can be data-intensive or

computation-intensive. However, only considering one kind of jobs in scheduling does not result in suitable

scheduling in the viewpoint of all systems, and sometimes causes wasting of resources on the other side. To

address the challenge of simultaneously considering both kinds of jobs, a new Integrated Job Scheduling

Strategy (IJSS) is proposed in this paper. At one hand, the IJSS algorithm considers both data and

computational resource availability of the network, and on the other hand, considering the corresponding

requirements of each job, it determines a value called W to the job. Using the W value, the importance of

two aspects (being data or computation intensive) for each job is determined, and then the job is assigned to

the available resources. The simulation results with OptorSim show that IJSS outperforms comparing to the

existing algorithms mentioned in literature as number of jobs increases.

KEYWORDS

Data Grid, Scheduling, Access Pattern, Simulation

Amirkabir International Journal of Science & Research

(Modeling, Identification, Simulation & Control)

(AIJ-MISC)

Najme Mansouri

Vol. 47 - No. 1 - Spring 2015 42

1. INTRODUCTION

Nowadays, in different scientific disciplines, large data

sets are becoming an important part of shared resources.

Most applications especially in scientific and engineering

fields tend to be data-intensive and/or computation-

intensive. Due to the fact that it is impossible to manage

these applications in a central server, Grid technology has

been proposed as a suitable infrastructure to replace it. All

jobs in such environment will compete for some resources

and this is possible to distribute the load

disproportionately among the Grid sites. One of the most

important challenges in Grid is job scheduling problem.

Indeed, determining the optimal schedule for a Grid

environment which can distribute the sent jobs to the Grid

resources to optimize a specify measure is a well-known

NP-complete problem [1]. To overcome this difficulty,

many heuristic strategies have been presented to

appropriately schedule jobs among resources [2-7]. None

of these types of scheduling strategies can be clearly

claimed to propose optimal solutions. Moreover, the

current scheduling strategies [8-16] are immutable to

changing schedules and behave like static time-dependent

Grid systems. These schedulers cannot consider the input

parameters such as network features and data location at

runtime. The job scheduler should take into consideration

input constraints such as data location, data size, site

availability, network features, computation power and

various optimization criteria in making scheduling

decisions.

1.1MOTIVATION

Generally speaking, the applications can be divided

into two basic classes, data-intensive and computation-

intensive applications. Data-intensive applications

dedicate most of their operation time to access data (like

High Energy Physics, Genetic, and Earth Observation),

however, computation-intensive applications devote most

of their operation time to compute and process on data

(like Image processing). The Grid scheduling decisions

are often made on the basis of jobs being either data or

computation intensive: in data intensive states jobs may be

pushed to the data and in computation intensive states data

may be pulled to the jobs. This type of scheduling, in

which there is no consideration of network features, can

lead to performance reduction in a Grid environment and

may result in large processing queues and job execution

delays due to site overloads. Furthermore, previous

strategies have been based on so-called greedy algorithms

where a job is assigned to a ‘best’ resource without

evaluating the global cost of this action. However, this can

lead to a skewing in the allocation of resources and can

result in large queues, reduced performance and

throughput degradation for the other jobs.

Also some application is both data-intensive and

computation-intensive (like Galaxy Formation and

Evolution). For example, most SAMR applications are

computation intensive; belong to high performance

scientific computing capacity. Due to deep levels of

adaptive refinements, SAMR applications can also be

communication intensive. In some cases, when dealing

with large amounts of data, SAMR applications can fall

into data intensive category. Experiments show that

during the entire course of execution, SAMR applications

may run in different execution modes as the simulated

physical phenomena evolve.

The nature of applications can also affect the result of

the scheduling and should be used during scheduling

decision. Generally speaking, the applications can be

classified into two common classes, data-intensive and

computation-intensive applications. Data-intensive

applications devote most of their operation time to access

data [17-19], however, computation-intensive applications

dedicate most of their operation time to process on data

[20]. In fact, almost no application belongs to one of these

two categories specifically; nevertheless it requires

data/computational resources proportionally to be run. In

other words, most applications are both data-intensive and

computation-intensive. However, the proportion between

being data and computation intensive differs among

applications. Focusing on only one of these aspects causes

important problems, since the other one is not negligible.

At one hand, evaluating only data-intensive aspect causes

a waste of computational power; on the other hand,

evaluating only computation-intensive aspect leads to a

waste of network resources such as bandwidth. We

propose a new Integrated Job Scheduling Strategy (IJSS)

that addresses these problems. The IJSS algorithm is a

way to simultaneously use data-intensive and

computation-intensive dimensions of the job, while taking

into account the same characteristics of the available Grid

environment. The scheduler can make good selections by

considering the changing state of the network, the locality

and the size of data and computational power. In other

words, the scheduler needs to schedule any sent job

adaptively based on the present state of the network as

well as the job. The simulation results show that

considerable performance improvements can be gained by

adopting the IJSS scheduling approach.

The rest of the paper is organized as follows. Section 2

explains phases of Grid job scheduling. Section 3

introduces related work of this study. Section 4 presents

http://eej.aut.ac.ir/
http://eej.aut.ac.ir/

Amirkabir International Journal of Science & Research

(Modeling, Identification, Simulation & Control)

(AIJ-MISC)

A New Job Scheduling in Data Grid Environment based on Data and

Computational Resource Availability

Vol. 47 - No. 1 - Spring 2015 43

the proposed job scheduling algorithms. Section 5

explains elements of grid simulation. We show and

analyze the simulation results in section 6. Finally, section

7 concludes the paper and suggests some directions for

future work.

2. PHASES OF GRID JOB SCHEDULING

The Grid scheduling process can be divided into three

main stages [21]: resource discovery where a list of

possible resources is generated, resource selection where a

set of resources is selected and task execution where the

tasks are run and monitored. Figure 1 presents the three

main steps and the phases that make them.

Resource Discovery: the first phase is to determine

which resources are available. The first step consists in

specifying the set of resources that a user has access to. At

the end of this phase, the user will have a set of resources

that he/she can access. The next stage is the application

requirement definition. In this step the user determines a

list of requirements for the job in order to filter the set of

resources. The next stage is to do a minimal requirement

filtering. The goal is to remove the resources that do not

meet the minimal requirements.

System Selection: in this phase the goal is to select a

single resource to schedule the job. This is done in two

steps: gather dynamic information and system selection.

Gather dynamic information is important in order to make

the best mapping between job and resource. The system

selection consists in choosing a resource with the gathered

information.

Task Execution: the first stage, advanced reservation,

is optional. The aim is to make the best use of the system.

Advanced reservation difficulty related to the considered

resource. When the resource or resources are selected, the

task needs to be submitted. The next stage is preparation.

In this step a list of operations takes place to prepare the

resource to execute the task. The following stage is

monitoring. Once the task is started it is essential to keep

track of its progress. By monitoring tasks, the scheduler

can decide that a given task in not making progress and

may reschedule it. The next stage is job completion were

the user is informed when a task or job completed. The

last stage is the cleanup were temporary files are deleted

and the user gets information from the resource that will

be used to analyze the results finally

Complete content and organizational editing before

formatting. Please take note of the following items when

proofreading spelling and grammar:

3. RELATED WORK

Generally, job scheduling in Grid has been studied

from the perspective of computational Grid [22-23]. In

Data Grid, effective scheduling policy should consider

both computational and data storage resources.

Fig. 1. Grid scheduling phases.

Foster et al. [24-25] proposed six distinct replica

strategies for a multi-tier data: No Replica, Best Client,

Cascading Replication, Plain Caching, Caching plus

Cascading Replica and Fast Spread. They also introduced

three types of localities, namely:

 Temporal locality: The files accessed recently are

much possible to be requested again shortly.

 Geographical locality: The files accessed recently by

a client are probably to be requested by adjacent

clients, too

 Spatial locality: The related files to recently

accessed file are likely to be requested in near

future.

They evaluated these strategies with different data

patterns: access pattern with no locality, data access with a

small degree of temporal locality and finally data access

with a small degree of temporal and geographical locality.

The results of simulations indicate that different access

pattern needs different replica strategies. Cascading and

Fast Spread performed the best in the simulations. They

have presented in another work [24] the problem of

scheduling job and data movement operations in a

distributed “Data Grid” environment to identify both

general principles and specific strategy that can be used to

improve system utilization and/or response times. They

have also proposed framework with four different job

scheduling algorithms, as follows:

(1) JobRadom: select a site randomly, (2)

JobLeastLoaded: select a site where has the least number

of jobs waiting to run, (3) JobDataPresent: select a site

where has requested data, and (4) JobLocally: run jobs

locally. These job scheduling strategies are combined with

http://eej.aut.ac.ir/
http://eej.aut.ac.ir/

Amirkabir International Journal of Science & Research

(Modeling, Identification, Simulation & Control)

(AIJ-MISC)

Najme Mansouri

Vol. 47 - No. 1 - Spring 2015 44

three various replication algorithms: (1) DataDoNothing:

there is no replication and data.

 May be fetched from a remote site for a particular job,

(2) DataRandom: when popularity of the file exceeds a

threshold, a replica is created at a random site, (3)

DataLeastLoad: when the threshold for a file exceeds, a

replica is placed at the least loaded site. They can enhance

performance by scheduling jobs where data is located and

using a replication policy that periodically creates new

replicas of popular datasets at each site. The results also

show that while it is important to consider the impact of

replication on the scheduling strategy, it is not always

necessary to couple data movement and computation

scheduling.

Chang et al. [26] developed the Hierarchical Cluster

Scheduling algorithm (HCS) and the Hierarchical

Replication Strategy (HRS) to enhance the data access

efficiencies in a Grid. HCS considers the locations of

required data, the access cost and the job queue length of a

computing node. It also takes into account hierarchical

cluster Grid structure and all of data replicas owned by a

cluster. The HRS replication algorithm uses the concept of

“network locality” as a Bandwidth Hierarchy based

Replication (BHR) strategy. HCS scheduling along with

HRS replica strategy improves data access time and the

amount of inter-cluster communications in comparison

with others scheduling algorithms and replication

strategies.

A replication algorithm for a 3-level hierarchy

structure and a scheduling algorithm are proposed. Horri

et al. [27] considered a hierarchical network structure that

has three levels. In their proposed replication method

among the candidate replicas they select the one that has

the highest bandwidth to the requested file. Similarly, it

uses the same technique for file deletion. This leads to a

better performance comparing with LRU (Least Recently

Used) method. For efficient scheduling, 3-level

scheduling (3LS) algorithm selects the best region, LAN

and site respectively. Best region (LAN, site) is a region

(LAN, site) with most of the requested files. This will

significantly reduce total transfer time, and consequently

the network traffic.

Mansouri et al. [28] proposed a new job scheduling

algorithm, called Combine Scheduling Strategy (CSS).

CSS first selects the appropriate region, next selects the

appropriate LAN in that region (i.e. available maximum

requested files) and finally selects the appropriate site in

that LAN by considering number of jobs waiting in the

queue, location of required data and the computing

capacity of sites. Simulation results show that CSS takes

less job execution time than other strategies especially

when number of jobs or size of the files or both increases.

Zhang et al. [29] investigated the impact of parallel

download on job scheduling performance in Data Grid. In

their proposed method, data file is divided into fragments

and placed on various replica servers. The replica

fragments are transferred concurrently from several

replica servers when a replica is requested. They have

evaluated the performance of the parallel downloading

system with the traditional non-parallel downloading

systems using different Grid scheduling strategies. The

results of simulation indicated that it can improve the

network bandwidth consumption and speed up the data

access. When network bandwidth is relatively low and

computing power is relatively high, parallel downloading

has been effective.

Mohamed et al. [30] proposed the Close-to-Files (CF)

scheduling algorithm that schedules a job on sites with

enough processing capacity close to a site where data are

present. CF uses an exhaustive algorithm to check all

combinations of computing sites and data sites to select a

site with the minimum computation and transmission

delay. CF has a better performance in comparison with

WF (Worst-Fit) job placement strategy, which allocates

jobs on the sites with the largest number of idle

processors.

Tang et al. [31] proposed a framework that supports

job scheduling and data replication in Data Grid. Several

replication strategies and their performance are evaluated

with some scheduling heuristics. The computing sites are

organized into individual domains according to the

network connection, and a replica server is placed in each

domain. The data replication algorithms increase the

scheduling performance from the perspective of job

computing time. In particular, the combination of shortest

turnaround time scheduling heuristic (STT) and

centralized dynamic replication indicates prominent

performance.

In [32] the problem of co-scheduling job dispatching

and data replication in large distributed systems in an

integrated manner is presented. They used a massively-

parallel computation model that contains a collection of

heterogeneous independent jobs with no inter job

communication. The proposed model has three variables

within a job scheduling system: the job order in the

scheduler queue, the assignment of jobs to the nodes, and

the assignment of data replicas to data stores. Finding the

optimal tuple requires an exhaustive search and it is costly

because the solution space is very big. The results show

that deploying a genetic search algorithm has the potential

http://eej.aut.ac.ir/
http://eej.aut.ac.ir/

Amirkabir International Journal of Science & Research

(Modeling, Identification, Simulation & Control)

(AIJ-MISC)

A New Job Scheduling in Data Grid Environment based on Data and

Computational Resource Availability

Vol. 47 - No. 1 - Spring 2015 45

to achieve a better performance than traditional allocation

methods.

Kumar et al. [33] showed why network characteristics,

data locations of input files, and disk read speed of data

sources must be taken into account when scheduling data

intensive jobs, not only to minimize file staging (data

transfer) time over network, but also to reduce turnaround

and waiting time of jobs in Grid environment. They

presented Network and Data Location Aware Scheduling

(NDAS) algorithm. The presented algorithm is evaluated

by improving the existing GridWay MetaScheduler with

the new scheduling algorithm. The excremental results

regarding the influence of the network characteristics, data

locations, disk latency of data source, and jobs types

variability are presented, showing that the enhanced

GridWay can perform better job scheduling resulting to

lower data transfer and turnaround time.

Wu et al. [34] presented an integrated security-aware

job scheduling strategy for computational grids. They

proposed a genetic algorithm for job scheduling to address

the heterogeneity of fault-tolerance mechanisms problem

in a computational grid. They considered that the system

supports four types fault-tolerance methods, including the

job retry, the job migration without check pointing, the job

migration with check pointing, and the job replication

mechanisms. Because each fault-tolerance method has

different requirements for gene encoding, they also

proposed a novel chromosome encoding approach to

integrate the four kinds of mechanisms in a chromosome.

Simulation results demonstrated that their algorithm has

shorter makes span and more excellent efficiencies on

improving the job failure rate than the Min–Min and

suffer age algorithms. But the main limitation of the

algorithm is that it considers only the fault-tolerance

strategy. Further, they focus on the improvement of the

system performance and they do not address the locality

and the size of data.

Hemamalini et al. [35] presented an assessment of task

scheduling algorithm based on various factors such as

communication cost, and task duplications in a

heterogeneous grid computing environment. Some task

scheduling algorithms improves the make span but it

causes a load imbalance. Many tasks scheduling

algorithms only focus on one kind of Grid jobs which can

be data-intensive or computation-intensive. Therefore, we

present a way to simultaneously use of data-intensive and

computation-intensive dimensions of the job, while taking

into account the same characteristics of the available Grid

environment.

Amalarethinam et al. [36] listed a sequence of

classification and comparison of the scheduling policies in

grid computing. They presented a package of reviews

taking various factors that are having a greater influence

while scheduling the jobs. In this survey, the algorithms

are keyed with communication cost, execution time

length, error factors, and task duplications. To the best of

our knowledge, job scheduling problem has been

intensively investigated in grid computing environment

while, the job scheduling issue in data grid environment

has not been thoroughly studied yet. Also the most

available scheduling algorithms in grid computing only

focus on computation-intensive job. We propose a new

Integrated Job Scheduling Strategy (IJSS) that addresses

these problems.

4. NETWORK AND DATA LOCATION AWARE

SCHEDULING (NDAS) ALGORITHM

To select a best site, a parallel strategy is proposed as

shown in Fig 2.

A. Transfer Time

Let Bji is the bandwidth from site Sj to the site that fi

resides. PropagationDelayij is propagation delay / network

latency (in seconds) from site Sj to site Si. Then transfer

time for fi (TransferTimefi) is obtained by

 (1)

Let Jx = {f1, f2, fm} be the m required files for job x.

Now estimated file staging (data transfer) time of job x

when scheduled on site Sj (JobTimex,j) is given as :

(2)

Replica selection is crucial to data intensive

scheduling; it depends on the network characteristics and

an optimized replica selection leads to an optimized data

intensive scheduling.

These considerations not only improved the execution

times of the jobs but also reduced the queue times of the

jobs. So, if several sites have the replica of fi, it selects

one that has a maximum Score.

(3)

where PBW represents the percentage of bandwidth

available from the selected site to the site that the

requested file resides, PCPU is the percentage CPU idle

states of site that requested file resides, and PIO is the

percentage of memory free space of site that requested file

resides.

  * 8 /
fi ij ji

TransferTime PropagationDelay fi B 

1

,JobTime Min(TransferTime)
m

i

i

x j




1 2 3

BW CPU IO
Score P w P w P w     

http://eej.aut.ac.ir/
http://eej.aut.ac.ir/

Amirkabir International Journal of Science & Research

(Modeling, Identification, Simulation & Control)

(AIJ-MISC)

Najme Mansouri

Vol. 47 - No. 1 - Spring 2015 46

Fig. 2. A parallel execution flow of master and slave

1 2 3
1w w w  

(4)

These weights can be set by the administrator of the

Data Grid organization. According to different attributes

of storage systems in data Grid node.

Let k is the number of jobs waiting in queue of site Sj.

The value of TotalTimej for site Sj is calculated by

1

,TotalTime JobTime

k

x

j x j




(5)

B. Computational Power

The processing power provided by resources (required

for jobs) is described in the form of MIPS (MI).

Therefore, the total time required for the job Jx to be

completed in the resource Sj can be calculated by Eq. (6).

x

j

CP
ComputingScore

CP



(6)

where CPj is the computational power provided by the

computational resource Cj and CPx is the computational

power required by job Jx. The ComputingScore is used as

a score for fitness of the resource Cj for job Jx. The

available information about each job send to the

environment is stored in two areas. The first one contains

information about needed data files, so we can obtain the

total size of data files, and the second one gives

information about the total computational power needed

by the job in terms of MI. The main goal at this stage is to

calculate the proportion of being data-intensive to being

computation-intensive, while considering the availability

of resources in each area. Hence, the strategy needs to

jointly consider both required and provided resources, and

then estimate a value for scheduler to show how much the

submitted job is generally data/computation intensive in

the context of available grid environment.

To achieve this, the strategy first determines the

expected value of the provided computational power using

Eq. (7).

1

N

i

i

ComputationPower

N

Cp






(7)

where, N is the number of sites. To find the corresponding

value for data-intensive aspect of the submitted job, the

strategy needs to apply an equivalent mean operation on

network links. Eq. (5) obtains this value by averaging on

time needed to collect a specific set of data files for each

site.

1

N

i

i
TotalTime

TotalTransferTime

N







(8)

C. Final Cost

Finally, the factor W is determined by using Eq. (9)

and Eq. (10) for a given job is.

i
TotalTime

TT
TotalTransferTime



i
CP

CC
ComputationPower



(9)

CC
W

CC TT





(10)

when the IJSS strategy is executed for a submitted job,

both Total Time and ComputingScore are determined for

each site. Combining these two scores by affecting the

factor W gives the Final Cost for all sites Eq. (11).

(,) (1)FinalCost J S w TotalTime

w ComputingScore

   



(11)

The IJSS strategy chooses the site with minimum Final

Cost and assigns the job to it.

http://eej.aut.ac.ir/
http://eej.aut.ac.ir/

Amirkabir International Journal of Science & Research

(Modeling, Identification, Simulation & Control)

(AIJ-MISC)

A New Job Scheduling in Data Grid Environment based on Data and

Computational Resource Availability

Vol. 47 - No. 1 - Spring 2015 47

5. ELEMENTS OF GRID SIMULATION

We have implemented the proposed strategy using

OptorSim, a simulator for Data Grids. OptorSim was

presented by the European Data Grid (EDG) project [37].

It provides users with the Data Grids simulated

architecture and programming interfaces to analysis and

validate their strategies. In order to obtain a realistic

simulated environment, there are a number of components

which are included in OptorSim. These include

Computing Elements (CEs), Storage Elements (SEs),

Resource Broker (RB), Replica Manager (RM), and

Replica Optimizer (RO). Each site consists of zero or

more CEs and zero or more SEs (as shown in Fig 3.)

6. EXPERIMENTS

In this section, network configuration and the

simulation results are described.

A. Configuration

The study of our scheduling algorithm is carried out

using a model of the EU Data Grid Testbed [37] sites and

their associated network geometry as shown in Fig. 4.

Initially all jobs are placed on CERN (European

Organization for Nuclear Research) storage element.

CERN contains an original copy of some data sample files

that cannot be removed. Since all files are available in Site

0, so any job sent to this site does not require any file

transfer. Therefore, in our simulation we only consider all

CE sites except site 0. Each file is set to 1 GB. To record

file transfer time and path, we changed OptorSim code. A

job will typically request a set of logical filename(s) for

data access. The order in which the files are requested is

specified by the access pattern. We considered five

different access patterns: sequential (files are accessed in

the order stated in the job configuration file), random

(files are accessed using a flat random distribution),

unitary random (file requests are one element away from

previous file request but the direction is random),

Gaussian random walk (files are accessed using a

Gaussian distribution), and Random Zipf access (given by

Pi = K/ is, where Pi is the frequency of the ith ranked

item, K is the popularity of the most frequently accessed

data item and S determines the shape of the distribution).

B. Simulation Results And Discussion

Eight scheduling strategies are considered, as follows:

The Random scheduler that schedules a job randomly.

The Shortest Queue scheduler that selects computing

element that has the least number of jobs waiting in the

queue.

The Access Cost scheduler that assigns the job to

computing element where the file has the lowest access

cost (cost to get all unavailable requested data files needed

for executing job).

Fig. 3. OptorSim architecture.

Fig. 4. The gird topology of EDG.

The Queue Access Cost scheduler that selects

computing element with the smallest sum of the access

cost for the job and the access costs for all of the jobs in

the queue.

Hierarchical Cluster Scheduling (HCS) takes into

account hierarchical cluster Grid structure and all of data

replicas owned by a cluster. It schedules jobs to certain

specific sites and specific cluster according to inter-cluster

communication costs.

An OVERA3-level Scheduling (3LS) determines the

most appropriate region, LAN and site respectively. An

appropriate region (LAN, site) is a region that holds most

of the requested files (from size point of view). I.e. most

of the requested files are available in that region.

http://eej.aut.ac.ir/
http://eej.aut.ac.ir/

Amirkabir International Journal of Science & Research

(Modeling, Identification, Simulation & Control)

(AIJ-MISC)

Najme Mansouri

Vol. 47 - No. 1 - Spring 2015 48

Network and Data location Aware Scheduling

(NDAS) takes into account network characteristics, data

locations of input files, and disk read speed of data

sources in scheduling decision.

The Combine Scheduling Strategy (CSS) considers the

number of jobs waiting in queue, the location of required

data for the job and the computing capacity of sites.

Figure 5 depicts the Mean Job Time for different job

scheduling algorithms with various access patterns. The

mean job execution time is defined as the total time to run

all the jobs divided by the number of jobs finished. The

total time includes the time that elapses from when a job

enters the queue in a site to await execution until the time

when the job completes its processing and leaves the site.

In Random scheduling the mean job execution time

obviously increases because it doesn’t consider any

factors.

In Shortest Job Queue Scheduling each CE receives

approximately the same number of jobs. If CE’s have low

network bandwidth, then file transfer time will be high

and the overall job execution time will increase. Access

Cost Scheduling selects a CE based on its access cost.

CE’s with lower access cost may receive large number of

jobs to execute. So, overall performance is decreased. The

Queue Access Cost considers not only the shortest job

queue but also access cost. Therefore, the Queue Access

Cost decreases total the job execution time. The mean job

time is about 8% faster using HCS than using Queue

Access Cost because HCS uses a hierarchical tree to

schedule a job and minimizes the overhead of searching

for the suitable site. The 3LS first selects the appropriate

region (i.e. available maximum requested files), next

selects the appropriate LAN in that region and finally

selects the appropriate site in that LAN, therefore, job

execution time decreases since it has minimum data

transfer time. The mean job time is about 12% faster using

CSS than using HCS because it schedules jobs close to the

data whilst ensuring sites with a high network

connectivity are not overloaded and sites with a poor

connectivity are not left idle. It also takes into account

hierarchical Grid structure and considers computational

capability. The mean job time of IJSS is lower about 11%

compared to the CSS algorithm. The reason is that it takes

into account data, processing power and network

characteristics when making scheduling decisions across

different sites.

Figure 6 shows the queue time for nine scheduling

strategies with different number of jobs. We changed the

number of jobs for two important reasons: to monitor how

the queue size increases over time and in which proportion

the scheduler submits the jobs (that is whether the jobs are

sent to some particular site or to a number of CPUs at

various locations depending on the queue size and the

computing capability). It presents that queue time is

almost proportional to execution time because if the job is

executing and taking more time on the processor, the

waiting time of the new job will also increase

correspondingly since it will waste more time in the

queue.

Although the execution time does not comprise queue

times, a higher number of jobs executing at a site can

influence the queue time. Moreover, increasing the

number of jobs in the queue can affect the overall job

completion times (i.e. the scheduling time, queuing time

and execution time) of the new jobs. The queue time of

the schedulers is very important in the Grid environment

and it takes a large ratio of the job’s overall time.

Sometimes this is greater than the execution time if the

resources are rare compared to the job frequency. In

experimental setup of this work, we took only a single job

queue and we considered that all jobs have the same

priority.

Multi-queue and multi-priority job scenarios will be

discussed later in future work. Figure 6 indicates that the

queue grows with an increasing number of jobs and that

the number of jobs waiting for the allocation of the

processors for running also increases. From the figure it is

clear that the IJSS scheduling strategy remarkably

decreases the queue time of the jobs. The main reason is

only those sites were selected for job placement which had

fewest jobs in the queue and which were likely to quickly

run the jobs once scheduled on that site were selected for

job placement.

Figure 7 indicates execution times for various

scheduling strategies. We see from the results obtained in

Fig. 6 and 7 that both queue and execution times follow

very similar trends. This is mainly due to the fact that IJSS

preferentially chose those sites for job execution which

could execute jobs fast.

The computing resource usage is shown in Fig. 8. It is

the percentage of time that CEs are in active state. The

IJSS has good computing resource usage because it

completes all jobs first, so the CPUs are not idle most of

the time. It can make intelligent decisions by considering

the changing state of the network, and the pool of

processing cycles.

The average number of intercommunications for a job

execution is presented in Fig. 9. By choosing the best site

with minimum cost, IJSS can decrease the cost of

http://eej.aut.ac.ir/
http://eej.aut.ac.ir/

Amirkabir International Journal of Science & Research

(Modeling, Identification, Simulation & Control)

(AIJ-MISC)

A New Job Scheduling in Data Grid Environment based on Data and

Computational Resource Availability

Vol. 47 - No. 1 - Spring 2015 49

intercommunications effectively as compared with the

other job scheduling algorithms. Since IJSS schedules

data-intensive jobs to certain specific sites according to

data transfer costs. Therefore, data-intensive jobs would

be executed on a site with the most needed files.

http://eej.aut.ac.ir/
http://eej.aut.ac.ir/

Amirkabir International Journal of Science & Research

(Modeling, Identification, Simulation & Control)

(AIJ-MISC)

Najme Mansouri

Vol. 47 - No. 1 - Spring 2015 50

Fig. 5. Mean job Time for different access patterns.

Fig. 6. Queue time versus number of jobs.

http://eej.aut.ac.ir/
http://eej.aut.ac.ir/

Amirkabir International Journal of Science & Research

(Modeling, Identification, Simulation & Control)

(AIJ-MISC)

A New Job Scheduling in Data Grid Environment based on Data and

Computational Resource Availability

Vol. 47 - No. 1 - Spring 2015 51

Fig. 7. Execution time versus number of jobs.

Fig. 8. Computing resource usage for various job scheduling.

Fig. 9. Number of inter-communications

http://eej.aut.ac.ir/
http://eej.aut.ac.ir/

Amirkabir International Journal of Science & Research

(Modeling, Identification, Simulation & Control)

(AIJ-MISC)

Najme Mansouri

Vol. 47 - No. 1 - Spring 2015 52

7. CONCLUSION

Data Grid has evolved to be the solution for data-

intensive applications, such as astrophysics, and

computational genomics. Yet effective scheduling in data

grid environments is challenging, due to a need to address

a variety of metrics and constraints (e.g., resource

utilization, response time,) while dealing with multiple,

potentially independent sources of jobs and a large

number of storage, compute, and network resources.

Considering various requirements of jobs during

scheduling decision within Grid environments is the main

concern of this paper. The scheduler can make

“intelligent” decisions by taking into account the changing

state of the network, the locality and the size of the data

and the computational power. To achieve a more

appropriate scheduling in Grids, an algorithm named IJSS

was proposed in this paper to discuss the problem of

simultaneously considering data-intensive and

computation-intensive dimensions of the jobs.

The IJSS strategy takes network characteristics as a

primary class criterion in the scheduling decision along

with computations and data. It was also deduced that a

combination of data transfer cost, network cost and

computation cost can considerably optimize the Grid

scheduling and execution process which was the key

message of the IJSS scheduling approach. A grid

simulator (i.e. OptorSim) was utilized to evaluate the IJSS

algorithm. The simulation results showed that the new

algorithm enhanced the performance of the grid

environment and thus decreased the job’s average total

time. From a simulation perspective, it will be interesting

to evaluate the results in more complex networks. Another

interesting issue is modeling a real grid scenario with the

existing resources and real job traces.

REFERENCES

[1] D. Fernandez-Baca, “Allocating modules to

processors in a distributed system,” IEEE

Transactions on Software Engineering, 15: pp.

427-1436, 1989.

[2] S. Kardani-Moghadam, F. Khodadadi, and R.

Entezari-Maleki, A. Movaghar, “A hybrid genetic

algorithm and variable neighborhood search for

task scheduling problem in grid environment,”

Procedia Engineering, 29: pp. 3808-3814, 2012.

[3] R. Entezari-Maleki, and A. Movaghar, “A genetic-

based scheduling algorithm to minimize the

makespan of the grid applications,” In: Grid and

DistributedComputing Conference,

Communications in Computer and Information

Science (CCIS), pp. 22-31, 2010.

[4] Z. Mousavinasa, R. Entezari-Maleki, and A.

Movaghar, “A bee colony task scheduling

algorithm in computational grids,” In: Iternational

Conference on Digital Information Processing and

Communications (ICDIPC), pp. 200-211, 2011.

[5] B. Radha, and V. Sumathy, “Enhancement of grid

scheduling using dynamic error detection and fault

tolerance,” International Journal of Computer

Applications, 31(7), 2011.

[6] R. Shakerian, S.H. Kamali, M. Hedayati, and M.

Alipour, “comparative study of ant colony

optimization and particle swarm optimization for

grid scheduling,” The Journal of Mathematics and

Computer Science, 2 (3): pp. 469-474, 2011.

[7] S.H. Kamali, M. Hedayati, R. Shakerian, and S.

Ghasempour, “Using identity-based secret public

keys cryptography for heuristic security analyses in

grid computing,” The Journal of Mathematics and

Computer Science, 3 (4): pp. 357-375, 2011.

[8] J. Nabrzyski, J.M. Schopf, and J. Weglarz, Grid

Resource Management, Kluwer Publishing, 2003.

[9] L.R Anikode, and B. Tang, “Integrating scheduling

and replication in data grids with performance

guarantee,” In: Global Telecommunications

Conference, pp. 1-6, 2011.

[10] J. Basney, M. Livny, and P. Mazzanti, “Utilizing

widely distributed computational resources

efficiently with execution domains,” Comput Phys

Commun, 140(1): pp. 246-252, 2001.

[11] J. Zhang, B. Lee, X. Tang, and C. Yeo, “Improving

job scheduling performance with parall el access to

replicas in data grid environment,” J. Supercomput.

56: pp. 245-269, 2011.

[12] G. Falzon, and M. Li, “Enhancing list scheduling

heuristics for dependent job scheduling in grid

computing environments,” J. Supercomput. 59: pp.

104-130, 2012.

[13] S.Abdi, and S. Mohamadi, “Two level job

scheduling and data replication in data grid,”

International Journal of Grid Computing &

Applications, 1(1), 2010.

[14] K.Yi, F. Ding, and H. Wang, “Integration of task

scheduling with replica placement in data grid for

limited disk space of resources,” In: Fifth Annual

China Grid Conference, pp.37-42, 2010.

[15] A. Jula, N. Khatoon Naseri, and AM. Rahmani,

“Gravitational attraction search with virtual mass

GASVM to solve static Grid job scheduling

problem,” The Journal of Mathematics and

Computer Science, 1 (4): pp. 305-312, 2010.

[16] A.S Izadi, A.R. Sahab, and J. Vahidi, “A new

mechanism for traffic reduction the service

resource discovery protocol in ad-hoc grid

http://eej.aut.ac.ir/
http://eej.aut.ac.ir/

Amirkabir International Journal of Science & Research

(Modeling, Identification, Simulation & Control)

(AIJ-MISC)

A New Job Scheduling in Data Grid Environment based on Data and

Computational Resource Availability

Vol. 47 - No. 1 - Spring 2015 53

network,” The Journal of Mathematics and

Computer Science, 6 (2): pp. 129-138, 2013.

[17] H.M. Wong, V. Bharadwaj, Y. Dantong, and T.G.

Robertazzi, “Data intensive grid scheduling:

multiple sources with capacity constraints,” In:

Proceedings of the 15th International Conference

on Parallel and Distributed Computing Systems

(PDCS), pp. 163-170, 2004.

[18] K. Li, Z. Tong, D. Liu, T. Tesfazghi, and X. Liao,

“PTS-PGATS based approach for data-intensive

scheduling in data grids” Frontiers of Computer

Science, 5(4): pp. 513-525, 2011.

[19] W. Liu, R. Kettimuthu, B. Li, and I. Foster, “An

adaptive strategy for scheduling data-intensive

applications in grid environments” In: 17th

international conference on telecommunication, pp.

642-649, 2010.

[20] F. Xhafa, and A. Abraham, “Computational

models and heuristic methods for grid scheduling

problems,” Future Gener Comp Sy. 26: pp. 608-

621, 2010.

[21] J.M. Schopf, “Ten actions when grid scheduling

the user as a grid scheduler,” Chapter 1, 2004.

[22] R.S. Chang, C.Y. Lin, and C.F. Lin, “An adaptive

scoring job scheduling algorithm for grid

computing” Inform Sciences. 207: pp. 79-89, 2012.

[23] A. Chaudhuri, D. Jana, and B.B. Bhaumik,

“Optimal model for scheduling of computational

grid entities” In: India Conference (INDICON), pp.

1-6, 2011.

[24] I. Foster, and K. Ranganathan, “Design and

evaluation of dynamic replication strategies for

high performance data grids,” In: Proceedings of

International Conference on Computing in High

Energy and Nuclear Physics, 2001.

[25] [25] I. Foster, and k. Ranganathan,

“Identifying dynamic replication strategies for high

performance data grids,” In: Proceedings of 3rd

IEEE/ACM International Workshop on Grid

Computing, pp. 75–86, 2002.

[26] R, Chang, J. Chang, and S. Lin, “Job scheduling

and data replication on data grids,” Future Gener

Comp Sy. 23: pp. 846-860, 2007.

[27] A. Horri, R. Sepahvand, and G.H. Dastghaibyfard,

“A hierarchical scheduling and replication

strategy,” International Journal of Computer

Science and Network Security, 8, 2008.

[28] N. Mansouri, G.H. Dastghaibyfard, and E.

Mansouri, “Combination of data replication and

scheduling algorithm for improving data

availability in data grids” J. Netw. Comput. Appl.

36: pp. 711-722, 2013.

[29] J. Zhang, B. Lee, X. Tang, and C. Yeo, “Impact of

parallel download on job scheduling in data grid

environment,” In: Seventh International

Conference on Grid and Cooperative Computing,

pp. 102-109, 2008.

[30] H.H. Mohamed, and D.J. Epema, “An evaluation

of the close-to-files processor and data co-

allocation policy in multi-clusters,” In:

International Conference on Cluster Computing,

IEEE Society Press. IEEE Society Press, pp. 287-

298, 2004.

[31] M. Tang, B.S. Lee, X. Tang, and C. Yeo, “The

impact of data replication on job scheduling

performance in the data grid” Future Gener. Comp.

Sy. 22: pp. 254-268, 2006.

[32] S. Vazhkudai, “Enabling the co-allocation of grid

data transfers,” in: Proceedings of the Fourth

International Workshop on Grid Computing, pp.

44-51, 2003.

[33] S. Kumar, and N. Kumar, “Network and data

location aware job scheduling in grid:

improvement to GridWay Meta scheduler,”

International Journal of Grid and Distributed

Computing, 5(1), 2012.

[34] C. Wu, and R. Sun, “An integrated security-aware

job scheduling strategy for large-scale

computational grids,” Future Generation Computer

Systems, 26 (2): pp. 198–206, 2010.

[35] M. Hemamalini, and M.V. Srinath, “State of the

art: task scheduling algorithms in a heterogeneous

grid computing environment,” Engineering

research and management journal, 1(1): pp. 15-21,

2014.

[36] D.I. George Amalarethinam, and P. Muthulakshmi,

“An overview of the scheduling policies and

algorithms in grid computing,” International

Journal of Research and Reviews in Computer

Science 2 (2): pp. 280-294, 2011.

[37] D.G Cameron, A.P. Millar, C.C Nicholson, R.

Carvajal-Schiaffino, F. Zini, and k. Stockinger,

“Optorsim: a simulation tool for scheduling and

replica optimization in data grids,” In: International

conference for computing in high energy and

nuclear physics (CHEP’04), 2004.

http://eej.aut.ac.ir/
http://eej.aut.ac.ir/

