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ABSTRACT 

This paper is concerned with the consensus tracking problem of high order MIMO nonlinear multi-agent 

systems. The agents must follow a leader node in presence of unknown dynamics and uncertain external 

disturbances. The communication network topology of agents is assumed to be a fixed undirected graph. A 

distributed adaptive control method is proposed to solve the consensus problem utilizing relative information 

of neighbors of each agent and characteristics of the communication topology. A radial basis function neural 

network is used to represent the controller’s structure. The proposed method includes a robust term with 

adaptive gain to counter the approximation error of the designed neural network as well as the effect of 

external disturbances. The stability of the overall system is guaranteed through Lyapunov stability analysis. 

Simulations are performed for two examples: a benchmark nonlinear systems and multiple of autonomous 

surface vehicles (ASVs). The simulation results verify the merits of the proposed method against uncertainty 

and disturbances. 
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1. INTRODUCTION 

Coordination and consensus of multi-agent systems 

which is inspired from natural phenomena, e.g. birds 

flocking, have received considerable attention in the past 

decay. Sensor networks, unmanned air vehicles (UAVs), 

autonomous under water vehicles (AUVs) and robotic 

teams are a few examples of multi-agent systems 

application areas.  

Consensus of networked agents with linear dynamics 

is broadly developed for various points of view [1-8]. 

However, in practice, dynamics of most physical systems 

are nonlinear and distributed control of such systems is 

more complicated. In [9], leaderless consensus problem 

was studied for coordination of multi-agent systems with 

first order nonlinear dynamics under directed graph. The 

leader following problem of first order nonlinear systems 

with undirected graph was studied in [10]. In [11] 

distributed consensus protocol with a guaranteed H∞ 

performance was presented for a Lipchitz nonlinear 

network of agents subject to external disturbances. 

Second-order consensus of nonlinear multi-agent systems 

was investigated in [12] for directed graph and in [13] 

extended to the leader following problem under fixed 

undirected and directed communication topology. In [14] 

a master–slave type of chaos synchronization of Lur’e 

systems with time-delay has been investigated. Then, the 

authors addressed sampled-data exponential 

synchronization method for complex dynamical networks 

such that dynamics of each node includes time-varying 

coupling delay and variable sampling [15]. Some authors 

addressed synchronization of networked systems with 

dynamics described by Euler-Lagrange equations [16-17].  

All the above mentioned studies discussed nonlinear 

multi-agent systems with known dynamics. However, this 

assumption is not sufficient for many practical systems 

which have unknown nonlinear dynamics. Neural 

networks (NNs) and Fuzzy models have been considered 

as general tools for approximating nonlinear functions 

[18-23]. Therefore, developing consensus problem for 

such systems is necessary. Recently, distributed control of 

unknown multi-agent systems using NNs has received 

much research interest. In [24] decentralized robust 

adaptive control of unknown multi-agent systems was 

proposed for undirected graph. Then, leader following 

problem of these systems was investigated in [25]. In [26] 

synchronization of unknown single input-single output 

(SISO) nonlinear networked systems was studied. In [24-

26], degree of dynamics of agents was first-order and 

unknown nonlinearities were approximated by NNs. 

Cooperation of high order nonlinear SISO multi-agent 

systems with unknown dynamics were studied in [27-29]. 

In [29] NN adaptive protocol for undirected connected 

graph considered and [27-28] employed same method for 

consensus tracking under directed graph. In [30], 

distributed consensus control based on terminal sliding 

mode was proposed for second-order unknown nonlinear 

multi-agent system under undirected graph. In [31] 

distributed consensus control of SISO second-order 

unknown nonlinear multi-agent system was considered to 

follow a leader under a directed graph. Consensus based 

on NN adaptive control under undirected graphs was 

designed in [32].  

According to the literature, most existing researches 

on the consensus of multi-agent systems consider the 

agents with first-order [24-26] or second-order [30-31] 

unknown dynamics. Also, some few of them deals with 

MIMO agents [24-25, 30, 32]. Only SISO multi-agent 

systems with high order dynamics have been considered 

[27-29]. 

According to the best of the authors’ knowledge, there 

is no work in cooperation of high order MIMO nonlinear 

multi-agent systems with unknown dynamics. Also, 

control of MIMO systems becomes a more challenging 

problem due to coupling between inputs and outputs. This 

paper deals with consensus tracking problem of high order 

MIMO nonlinear multi-agent systems with unknown 

dynamics under undirected connected graph and in 

presence of uncertain external disturbances. The main 

contributions of this paper can be summarized as follows: 

(1) The considered class for agent dynamics leads to take 

into account cooperation of more general class of 

nonlinear systems in addition to first and second order 

ones. (2) Gain matrix of each agent is assumed to be 

function of states while in the most of the aforementioned 

methods, input gain (matrix gain) is assumed to be unity 

[24]-[31]. (3) Generally, dynamics of agents are assumed 

to be non-identical. (4) A distributed robust term with 

adaptive gain is designed to counter the approximation 

error of the designed NN as well as the effect of external 

disturbances. A radial basis function neural network 

(RBFNN) is used to estimate unknown nonlinearities. By 

using Lyapunov stability analysis, stability of the closed-

loop system is achieved and it is shown that all signals are 

uniformly ultimately bounded.  

The paper is organized as follows. Graph theory is 

presented in Section 2. Then, problem statement including 

derivation of the error dynamics for consensus tracking 

problem are introduced in section 3. In Section 4, 

controller design is discussed. Stability analysis using 

Lyapunov method is presented in Section 5. Stability 
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analysis guarantees the performance and stability of the 

designed distributed adaptive controllers based on NN 

approximation methods for networked systems. 

Simulation results are given in section 6. Finally, section 7 

concludes the paper. 

2. GRAPH THEORY 

Let G=(V,E,A) be an undirected graph of order n, 

where V={v1, ..., vN} is the nonempty set of nodes, 

E V V  is the set of edges, and A=[aij] is weighted 

adjacency matrix. The node indices belong to a finite set 

I={1,...,n}. eij={vi, vj} is an edge of G and for an 

undirected graph once 
i je E  then .jie E  The adjacency 

matrix is defined as aii =0 and 0ij jia a  , where 0ija   if 

and only if i je E . The set of neighbors of node 
iv  is 

denoted by Ni={ : ( , )j i jv vE v E  }. In-degree matrix is 

defined as D=diag(di) with 
i

ijji N
ad


 (i.e. ith row sum 

of A) [26]. An undirected graph is connected if there is a 

path between every pair of nodes. The Laplacian matrix of 

a graph is defined as L = D – A. The all row sums of the 

Laplacian matrix are equal to zero. Then, for the 

Laplacian matrix L=[lij], we have lii= di and lij=- aij, i j  

[26].For an undirected graph, L is symmetric positive 

semi-definite, i.e. .TL L  

3. PROBLEM STATEMENT 

Dynamics of the ith agent is defined as 

( ) ( ) ( ) ( ), 1,...,n

i i i i i i i t i N   x f x g x u w  (1) 

where 1( ,..., )T m

i i imx x x , ( ) ( )

1(n n

i ixx

( ),..., )n T m

imx  , , m

i i u w  are states, inputs and 

disturbances of the agent, respectively, and 

1 ( 1)( 1)

1 1( ,..., ,..., ,..., )mnn T n

i i i im imx x x x


 x . 
1

m

i

i

n n


 is 

the state vector available for the measurement [33] and N 

is number of agents. ( ) m

i i f x is an unknown 

continuous vector function and the gain matrix 

( ) m m

i i

g x  is known and nonsingular. 

Assumptions 1. Uncertain disturbance, 
iw , is assumed to 

be deterministic and bounded above by constants Mw i.e. 

i Miww , i=1,...,N. Knowing the boundness value of 

disturbance, Miw , is not necessary and its value will be 

estimated by adaptive rules in order to compensate for the 

effect of disturbance on the proposed controller. 

The tracking error for the ith agent is defined as 

0 , 1,...,i i i N  e x x  (2) 

where 0

mx  is state of leader/reference trajectory that 

should be followed by agents (followers). The relative 

state error for the ith follower agent is defined as 

0

1

( ) ( )
N

xi ij i j i i

j

a b


   e x x x x  (3) 

with 0ib   defined as pinning gain [24] and 0ib   for at 

least one i. Then, 0ib   implies that there exists an edge 

from the leader to the ith agent in G. The follower agents 

for which 0ib   are called pinned or controlled agents 

[28, 34]. Applying equation (2) in equation (3) yields 

1 1

( )
N N

xi ij i j i i ij j i i

j j

a b l b
 

     e e e e e e  (4) 

The overall system’s relative state error becomes 

x E Me  (5) 

where 1 1( ,..., ) , ( ,..., )T T T T T T

N x x xN e e e E e e  and M

( ) mL B I  .   denotes Kronecker product. 

Lemma 1 [30]: If G is connected, then the matrix L B

associated with G is symmetric and positive definite, 

where B = diag{bi}, i=1,...,N. 

Now, we define filtered error of the ith agent as  

1( )n

i i xi

d

dt
  s e  (6) 

where the coefficients are chosen such that the polynomial 
1 2

1 2 1...n n

in i is s s   

    is Hurwitz. Filtered error for 

the networked system is expressed as follows 

1( )n

x

 
d

S λ E
dt

 (7) 

where
1( ,..., )T T T Nm

N S s s , 1 1

1( ) (( )n nd

dt
   

d
λ

dt

1,..., ( ) )n T

N m

d

dt
  1  and (1,...,1)T m

m  1 . 

Differentiating (7) and applying Lemma 1 leads to 

( )

0( )n    S M f Gu w v x  (8) 

where 1( ,..., )T T T Nm

N u u u , w 1( ,..., )T T T Nm

N w w ,

1( ,..., )T T T Nm

N f f f , 1( ,..., ) Nm Nm

Ndiag  G g g

and 

( 1) ( 2)

1 2 1...n n

n n

 

    v α e α e α e  (9) 
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where 1( ,..., ) ,Nm Nm

i i Ni mdiag I    α 1,..., 1i n   

are diagonal matrices of coefficients of the binomial 

expansion of the corresponding filtered error in (7), 

0 0 N x x 1  and (1,...,1)T N

N  1 . 

4. CONTROLLER DESIGN 

The control objective here is to find some appropriate 

controllers such that for any initial conditions, the 

solutions of the controlled network (1) synchronize to the 

state of the leader in the sense that 

( )( )
0lim 0, 1,..., , 1,...,

jj
i

t
i N j n


    x x  (10) 

It is assumed that in (1) both the nonlinearities ( )if x  

and the disturbances ( )i tw  are unknown. Therefore, the 

consensus protocols must be robust to unknown dynamics 

and uncertain disturbances. In control engineering, NNs 

are usually employed as the function approximator to 

emulate the unknown function [18-22]. The RBFNN has 

been shown to have universal approximation ability to 

approximate any smooth function on a compact set. Also, 

due to their “linear-in-the-weight” property, RBFNN is a 

good candidate for this purpose. Assume that the unknown 

nonlinearities in (1) are locally smooth and thus can be 

approximated on a compact set i   by 

( ) ( )T

i i i i i i f x W x ε  (11) 

where weight matrix ip m

i


W , pi denotes the number 

of neurons, (.) ip

i   is the activation function and 

m

i ε  is the bounded approximation error. Ideal weight 

matrix iW  is unknown. Subsequently, for real 

applications its approximation ˆ
iW  is utilized. Estimation 

of (11) is defined as 

ˆ ˆ( ) ( )T

i i i i if x W x  (12) 

Based on (11) and (12), the overall graph 

nonlinearities and their estimation are written as 

( ) ( )T f x W Φ x ε  (13) 

ˆ ˆ( ) ( )Tf x W Φ x
 

(14) 

with 1
ˆ ˆ ˆ( , ..., )T T T Nm

N f f f , { } p Nm

idiag  W W , 

1( , ..., )T T T p

N  Φ
1

,
N

i

i

p p


 , ˆ ˆ{ }idiagW W

p mN  and 1( ,..., )T T T Nm

N ε ε ε . Local control law 

for every agent is given by 

1 ˆ( )[ ( ) ]i i i i i i i si    u g x f x v s u  (15) 

where constant 0  , 
m

si u  is robust term such that 

ˆ (( ) )si i i i isign d b  u s . Robust term is used to counter 

approximation error and external disturbances. According 

to (6), , 1,...,i i Nv  equals to 

( 1)

( 1) 1...n

i n i i i i 

  v e e  (16) 

Then taking into account (8) and (13-15), the global 

control input of the follower agents is 

1 ˆ( )[ ( ) ]s    u G x f x v S u  (17) 

where
1 1( ) { ( )}idiag G x g x , 1( ,..., )T T T Nm

N x x x  

and 1( ,... )T T T Nm

s s sN u u u is the overall robustifying 

term to counteract uncertainties. Substituting (17) in the 

filtered error dynamics, (8), yields to 

( )

0( )T n

s     S M W Φ S u w ε x  (18) 

where ˆ W W W is the parameter estimation error. 

Remark 1. Due to the appearance of the vector function 

ˆ( )f x in the controller (15), it has to be approximated by 

general approximators such as NNs. Otherwise, some 

assumptions on the vector function ˆ( )f x is needed, e.g., 

being bounded. Hence, using NNs provides possibility of 

considering more general class of nonlinear systems.  

Remark 2. Considering definition of robustifying term for 

each agent, the overall robust term becomes 

ˆ( ((( ) )) )T

s msign D B I   u S  (19) 

with ˆ ˆ{ }i mdiag I   as its gain which is tuned 

adaptively. The ideal gain,  , will be determined during 

Lyapunov analysis and sign function will be applied to 

every element of (( ) ))mD B I  S . 

Remark 3. (.) and (.)  denote minimum and maximum 

singular values of a matrix and .
F

 denotes Frobenius 

norm of a given matrix. tr{.} represents trace of a matrix. 

Remark 4 [19]. Robust term of the distributed control law 

(15), contains the discontinuous function sign(.). A 

continuous saturation function ( / )Tsat S M with   real 

positive constant can be used to overcome this issue. 
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5. STABILITY ANALYSIS 

First, in this subsection, it is shown how to tune NN 

weights and gain of robust term in a distributed manner. 

The following standard assumptions are required. 

Assumptions 2. Approximation error vector, 
iε , is 

bounded by constants Mi , i.e. Miε , i=1,...,N. 

Assumptions 3. State of leader agent/reference trajectory 

and its time-derivatives up to order n are given and 

bounded. Especially, 
( )

0

n
x is bound as ( )

0 M

n Xx . 

Assumptions 4.Unknown ideal NN weight matrix and 

NN activation functions are bounded by MF
WW  and 

,M Φ  respectively. 

The following adaptive rules are proposed to update 

the parameters ˆ
iW , i=1,...,N and ̂ . 

ˆ ˆ( )T

i w i i i i w ik d b k   W s W  (20) 

ˆ ˆ( )T

i s i i i s ik d b k   s  (21) 

where 0wk  , 0sk  and 0   are real constants. 

Theorem 1. Consider non-linear multi-agent systems (1) 

with adaptive protocol (15), adaptive laws (20)-(21) and 

assumptions 1-3. If the interaction graph G is connected, 

then all agents synchronize to reference trajectory and all 

the signals of the closed loop system are uniformly 

ultimately bounded. 

Proof: Consider the following Lyapunov function 

1 2V V V   (22) 

with 

1

1

2

TV  S S  (23) 

2

2

1

{ }
2 2

N
T i

iw s

tr
V

k k





 W W  (24) 

where 0wk  , 0sk   and gain error is ˆ
i i i    . The 

ideal gain, 
i , will be determined during this analysis. 

First, the time derivative of 1V  along the error dynamics 

(18) is calculated 

 

 

 

( )

1 0( )T T T n

sV       S S S M W Φ S u w ε x   

( )

0

2

( )

0

( )

( ) (( ) )

(( ) )( )

( ) ( )

( )( )

T T T n

s

T

m s

T

m

T T n T

m s

T

m

D B I

D B I

A I

A I





      

    

   

   

  

S MS S M W Φ u w ε x

M S S u

S w ε

S M W Φ x S u

S w ε

 
(25) 

Use assumption 1 and definition Mi Mi MiN w   to 

rewrite (25) as 

2 ( )

1 0( ) ( )

(( ) ) ( )

(( ) ) ( )

T T n

T

m s M

T T

m M m s

V

D B I A N

D B I N A I





   

   

    

M S S M W Φ x

S u S

S S u

 (26) 

Let i MiN  . Choosing 
2 2 1/2

1[ ... ]M MNN N    and 

replacing (19), (24) and (26) into (22) yields 

2

2

1

( )

0

( ) (( ) )

ˆ (( ) ) ((

( ) ) ) (( ) )

{ } ( )

( ) ( )

T T

m

T

Nm m

T

m m

N
T i i

iw s

T T T n

m

V D B I

I D B I sign

D B I D B I

tr
A

k k

A A I







 
 

 



    

   

    

  

   



M S S W Φ

S

S S

W W S

S S W Φ S Mx

 
(27) 

2

1

( ) ( ) ( )

{ ( (( ) )}

( ( ) ) ( )

( )

T T

m

w

N
T T Ti

i i

i s

M

i i m

V A

tr D B I
k

d b A I
k

X

A

   




 



  

   

    





M S M S S

W
W ΦS

s S W Φ

S

 (28) 

Inequality (28) is obtained from equality

(( ) )( ( (( ) ))) (( )T T T T

m mD B I sign D B I D B     S S S

)mI , ˆ
i i i    and property of the trace operator 

{ } ,T T mtr  x y yx x y . According to the definitions 

of the NN weight estimation error and the gain error, their 

derivatives are ˆ W W  and ˆ
i i   , respectively. By 

applying these derivatives to the equations of the updating 

laws of the parameters, Laplacian matrix definition, L=D-

A, and substituting the results in (28) leads to following 

the inequality 
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2

2

ˆ( ) { }

( )

( ) (2 ( ) ( ) )

T

M

M

V

A X

tr

A

A

 

   

    

  

  

  

M S W W

S W

S M S

  

2

2

22 2

( ) { ( )}

( )

( ) (2 ( ) ( ) )

( )

( ) ( )

(2 ( ) ( ) )

T

M

MF F

M

M

M

tr

A

A A

W

A A

A

X

X

 

   

    

   

  

    

   

  

  

    

 

  

M S W W W

S W

S M S

M S W W

S S W

M S

 

(29) 

where 1
ˆ ˆ( ,..., ) .T

N   By defining variables 

 

1 2

1

2

3

[ ],

( )
2 2

0 ,
2

0 1
2

F

M

a a

a

a

a W







 



 
  

 
  
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(30) 

where 1 ( )Ma A , 2 ( )a A  and 
3 2 ( )a A 

( ) MX M .One obtains 

TV   y Qy qy

 

(31) 

Therefore 0V  , if Q is positive definite and 

( )


q
y

Q

 

(32) 

Eq. (32) implies the overall system is ultimately 

bounded and according to section 4.8 in [31], it can be 

easily shown that all signals are uniformly ultimately 

bounded, i.e., 
( ) ( ) , ,j j
i o b i j  x x  and 0 ,ft t t  

0ft t where b>0 is the ultimate bound and it is 

independent of time 0 0t  . In order the matrix Q being 

positive definite, its principal minors must be positive. 

Hence, the following inequalities are obtained with 

respect those conditions  

2

21

2

1
0, ( )

4 ( )

a
a 

 
  

M

 

(33) 

This completes the proof. 

6. SIMULATION AND RESULTS 

In order to verify the effectiveness of the proposed 

method, simulations are carried out for two different 

cases. 

Case (1): We apply the proposed distributed NN 

adaptive control protocol to the undirected connected 

graph structure in Figure 1 with 4 agents with non-

identical dynamics and a leader node connected to agent 

1. The edge weights and the pinning gain in (4) were 

taken equal to 1. 

The agent i dynamics are given by [30] 

1 1

2

2 2

1

2

4 sin( ) sin( )
14 2 2

( ) ,
10

cos( )4 cos( )
22

i i

i

i i i

i i

i

i

h x it
x

f
h x it

x

I

   
   

    
   

  
  



x w

g

 

(34) 

where 1 1 2 2( , , , )T

i i i i ix x x xx . 1ih , 2ih  and the initial states 

of the follower agents are given in [30]. As seen from 

(34), the disturbance is periodic and bounded. Thus, 

Assumptions 1 is satisfied. The Laplacian and adjacency 

matrices L and B are defined by 

2 1 1 0

1 2 0 1
, (1,0,0,0)

1 0 1 0

0 1 0 1

L B diag

  
 
 
  
 
 

 

 

(35) 

Square waves are selected as desired consensus 

trajectory 0x . The following parameters are used in the 

simulation: Control gain 22  , gains of updating laws 

kw=0.25, ks=0.04, 1  , filtering error coefficients

12,i i   . One layer radial basis neural network with 

basis functions 
2exp( / )i i i i   x c  (i=1,..,4) 

including the centers ci evenly spaced in 

       2,2 2,2 2,2 2,2       and the spreads 2.4i   

were employed to estimate unknown nonlinearity if  with 

number of neurons at each node pi=16. The initial values 
of RBF weights were chosen randomly and the initial 
value of the robust term gain of the controller (19) was set 
simply to zero. By applying the proposed distributed 
control law (15), the simulation results are shown in 
Figure2 to Figure5. Figure2 shows the desired signal 
tracking by the states of the agents. Control inputs of the 
agents are illustrated in Figure3 which are bounded under 
the proposed protocol. Convergence of norms of the 
weights of the applied neural networks is shown in 
Figure4. In Figure5, the tracking errors of the given agents 
are seen. From Figure2 and Figure5, we find that 
performance of tracking is satisfactory and the tracking 
errors of all the agents rapidly converge to a small 
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neighborhood of zero. In other words, all the closed-loop 
signals are uniformly ultimately bounded. 

Compared to [30], synchronization speed of the agents 

to the desired signal based on the method proposed in this 

paper is much faster than that of the adaptive method 

proposed in [30]. 

 

Fig. 1. Connected graph of 4 agents and leader 

 

 

Fig. 2. Desired signal tracking by the states of the agents 

 

 

Fig. 3. Top: first inputs and Bottom: second inputs of the 

agents during consensus tracking 

 

Fig. 4. Convergence of weights of neural networks 

 

 

Fig. 5. Tracking errors of the agents during consensus 

tracking 

Case (2): In this example a group of three nonlinear 

ASVs governed by the 3 degrees-of-freedom (3DOF) 

model is considered. Due to large number of DOFs of 

ASVs, these robots belong to highly nonlinear systems. 

The ith ASV dynamics are represented by following 

equations [37] 

( )i i i iη R ν

 

(36) 

( , )i i i i i i di  M ν h η ν τ τ

 

(37) 

where

cos( ) sin( ) 0

( ) sin( ) cos( ) 0

0 0 1

i i

i i i i

 

  

 
 


 
  

R  and 

(500,1000,700),i diagM
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(38) 

3[ , , ]T

i i i ix y  η is the position vector in the earth-

fixed reference frame and 
3[ , , ]T

i i i iu v r ν  is velocity 

vector in the body-fixed reference frame. 
3T

i i M M

and
3( )i i i R R  denote the inertia matrix and the 

rotation matrix from the body-fixed to the earth-fixed 

reference frame, respectively. 
3[ , , ]T

i ui vi ri   τ  and 

3[ , , ]T

di udi vdi rdi   τ  represent the control input and 

the disturbances of the environment, respectively. By 

replacing (36) and its derivative into (37) yields following 

equation which is in form of the Equation (1) 

( , ) ( , )i i i i i i i i i  η f η η g η η τ w

 

(39) 

where 
1 1(.) ( , )i i i i i i i i i

  f R M h η ν R R η , (.)i g
1

i i


R M , 

1

i i i di

w R M τ . Laplacian and the adjacency matrices of 

the considered undirected connected graph are defined by 

2 1 1

1 1 0 , (1,0,0)

1 0 1

L B diag

  
 

  
 
  

 

(40) 

The initial conditions of agents are
1(0) [4,5, / 6]Tη

,
2 (0) [ 4,5, / 6]T η , 

2 (0) [0,-4η ,- / 6]T and i ν 0  

for i=1,2,3. The consensus desired trajectory is defined as 

t
[ , , ] [0.2 ,3cos( ),arctan( )]

20

T Td

d d d d

d

y
x y t

x
 η

 

(41) 

where t denotes time. The external disturbances include 

wind, wave and current are chosen as in which the wind is 

assumed to be constant and the wave and the current are 

assumed to be the sine wave with a fixed frequency at one 

time [36]. So, the external disturbances can be chosen as: 

[18+ 18sin(t)+ 14.4sin(5t),   

        -7.2+ 18sin(t- )+ 14.4sin(15t),
6

-7.2sin(t+ )-36sin(t)]
3

di

T





τ

 

(42) 

As mentioned in assumption 1, from the controller point 

of view, the disturbance of (42) is bounded and uncertain 

and the robust term of the proposed controller counteracts 

its effect. Similar to [30], the proposed control protocol 

(15) is compared to the linear control protocol 

1( )[ ]i i i i i

  u g x v s

 

(43) 

The following parameters are used in the simulation: 
Control gain, gains of updating laws kw=0.01, ks=0.04, 

2  and filtering error coefficients 1,i i   . The centers 

of the applied RBF networks, ci, i=1,2,3, evenly spaced in 

       1,1 1,1 1,1 / 6, / 6        with spreads 

0.34i   and number of neurons at each node pi=16 

were utilized. The initial values of RBF weights and 
robust term of the controller (19) were set to zero. Figure6 
to Figure10 illustrate the results of simulation for the 
grouped ASVs. The results for the proposed method (15) 
and the linear controller (43) are shown by solid line “-” 
and dotted line“...”, respectively. In the figures, NNA and 
LC stand for NN adaptive controller and linear control. 
The movements of ASVs in the plane and their heading 
tracking curve are shown in Figure 6. Figure 7to Figure 9 
show the velocities, the applied control forces and 
tracking errors during consensus process of ASVs, 
respectively. In order to see the transients and the speed of 
convergence clearly, in Figure 7 to Figure 9, the results 
were illustrated for 10 seconds. It is seen from Figure 6 
that the ASVs realized the coordinated tracking task. But 
the significant fluctuations in the motion of the ASVs 
using the linear controller (43) compared to the new 
control protocol (15) implies robustness of the proposed 
method against environment disturbances. According to 
Figure 7, the velocities of these agents achieve consensus 
as a whole. In order to investigate the performance of the 
proposed controller compared to the linear counterpart, an 
absolute relative error metric (AEM) defined as 

2
AEM  e  is employed. The absolute relative error 

criterion is shown in Figure10. As seen from Figure6 and 
Figure10, the proposed controller can provide faster 
convergence and higher consensus tracking performance 
than the linear counterpart.  

The simulation results show that the proposed method is 

robust against estimation errors and environment 

disturbances. 

 

Fig. 6. Left: trajectories in horizontal plane. Right: curve of 

heading ASVs 
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Fig. 7. The velocities of ASVs 

 

Fig. 8. Control inputs of ASVs during consensus tracking 

 

 

Fig. 9. Tracking errors of ASVs during consensus process 

 

Fig. 10. absolute relative error 

7. CONCLUSIONS 

In this paper, consensus tracking problem for high 

order MIMO multi-agent systems with nonlinear 

dynamics have been studied. The proposed protocol was 

distributed NN robust adaptive method under undirected 

connected topologies. The proposed control method was 

constructed based on filtered error which obtained using 

relative state error. To estimate unknown nonlinearities of 

the controller, RBFNNs were employed and 

approximation error and effect of uncertain disturbances 

was compensated for by additional robust term in the 

controller. Update laws of unknown parameters of neural 

networks were determined from Lyapunov stability 

analysis. Lyapunov stability analysis was applied to 

guarantee overall system stability and convergence of 

unknown parameters. Simulation results presented to 

confirm the validity of the proposed controllers. 
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